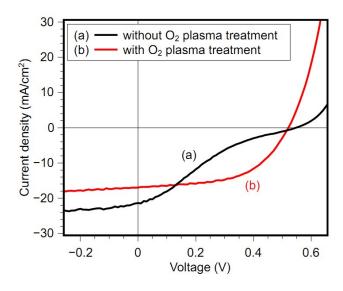
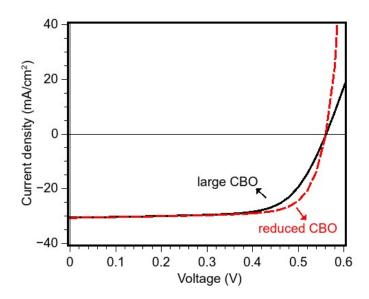
Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2016


Supplementary Information

Ammonia-free chemical-bath-deposited ZnS(O,OH) buffer layer for flexible Cu(In,Ga)Se₂ solar cell application: an eco-friendly approach achieving improved stability


Tzu-Hsuan Yeh,^a Chia-Hao Hsu,^a Wei-Hao Ho,^a Shih-Yuan Wei,^a Chung-Hao Cai^a and Chih-Huang Lai^{*a}

^a Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.

* Corresponding author. E-mail: chlai@mx.nthu.edu.tw

Fig. S1 *J-V* characteristics of devices with 20nm-thick ammonia-free CBD-ZnS(O,OH) (a) without and (b) with oxygen plasma treatment. Without oxygen plasma treatment, the solar cell exhibited significant current-blocking behavior due to the high S/S+O ratio in the film. After oxygen plasma treatment, the CBO at the CIGS/ZnS(O,OH) interface was reduced so the current blocking behavior became less evident.

Fig. S2 Simulated *J-V* curves based on the band diagrams shown in Fig. 6c. Larger conduction band offset (CBO) at the CIGS/buffer interface results in a larger series resistance. A reduced CBO results in a smaller series resistance and improved *FF*, consistent to our experimental observation. The simulation was done by using SCAPS [1].

[1] M. Burgelman, P. Nollet and S. Degrave, Thin Solid Films, 2000, 361–362, 527–532.