Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Pyridinium Modified β-Cyclodextrin: An Ionic Supramolecular Ligand for Palladium acetate in C-C Coupling Reactions in Water

Raihana Imran Khan^a and Kasi Pitchumani*^{a,b}

^aSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021

^bCenter for Green Chemistry Processes, School of Chemistry, Madurai Kamaraj University, Madurai,

India.

Spectroscopic data of compounds 2 and 3	2-6
Molecular Modeling studies for compounds 2 and 3	7-10
UV-DRS spectra	10
¹ H and ¹³ C-NMR spectra for compound 4a-r	11-21
¹ H and ¹³ C-NMR spectra for compound 6a-k	22-30

Spectrum data for pyridinium modified β-cyclodextrin: NMR spectrum for *N*-octyl-pyridine-2-amine(2).

Figure S1. ¹H-NMR (300 MHz, CDCl₃) spectrum of *N*-octyl-pyridine-2-amine (2).

Figure S2. ¹³C-NMR spectrum (75 MHz, CDCl₃) of *N*-octyl-pyridine-2-amine (2).

.

Figure S3. ESI-MS Spectra of *N*-octyl-pyridine-2-amine (2).

Figure S4. ¹H NMR (300 MHz, DMSO-d₆) for pyridinium modified β -cyclodextrin (3).

Figure S5. ESI-MS spectrum for pyridinium modified β –cyclodextrin (3) (M+1) adduct.

Figure S6. ¹³C-NMR spectrum (75 MHz, DMSO-d₆) for pyridinium modified β-cyclodextrin (3).

Figure S7. 2D-NOESY NMR spectrum of pyr:β-CD (3) (300 MHz in DMSO-d₆).

Figure S8. Elemental analysis of pyr: β -CD (3).

Figure S9. IR spectra for β-CD (blue), Pyr:β-CD (3) (green) and Pd@Pyr:β-CD (wine).

Figure S10. XRF image of Pd@pyr:β-CD complex

Figure S11. ¹H NMR (300 MHz, DMSO-d₆) for pyr:β-CD (blue) and Pd@pyr:β-CD (red).

Figure S12 Water solubility of a) pyr: β -CD (3) (0.1 mmol in 2mL water), b) *N*-octyl-pyridine-2-amine (2) and β -cyclodextrin in 2mL water.

Theoretical Calculation

Molecular modeling studies of pyridinium and pyridinium modified β -cyclodextrin

Energy minimization studies

The complexation of pyridinium modified β -cyclodextrin was also confirmed from energy minimization studies. From this studies *N*-octyl-pyridine-2-amine (2) present in outside the modified β -cyclodextrin cavity (Figure S7 Mode A) which was more favored than that of inclusion of *N*-octyl-pyridine-2-amine (2) inside the modified β -cyclodextrin (Figure S8. Mode B), because lower complexation energy (Mode A) (Δ E) -64.8600 kcal M⁻¹ is preferred more than that of mode B (Δ E) -50.8292 kcal M⁻¹.

Table S1: Molecular Modeling Studies of pyridinium modified β -cyclodextrin

Mode of Pyridinium	Mode of Inclusion	β-CD as Host (ΔEª Kcal.M ⁻¹)
<i>N</i> -octyl-pyridine-2-amine present in outside the pyridinium modified β -cyclodextrin cavity	Mode A	-64.8600
<i>N</i> -octyl-pyridine-2-amine present in inside the pyridinium modified β-cyclodextrin cavity.	Mode B	-50.8292

Figure S13 Mode A: CVFF optimized inclusion complex of *N*-octyl-pyridine-2-amine (2) group outside the Pyr:β-CD (3).

Figure S14 Mode B: CVFF optimized inclusion complex of *N*-octyl-pyridine-2-amine (2) group inside the Pyr:β-CD (3) cavity.

Figure S15. Mode A: CVFF optimized inclusion complex of *N*-octyl-pyridine-2-amine group outside the pyridinium modified β -cyclodextrin.

Figure S16. Mode A: CVFF optimized inclusion complex of *N*-octyl-pyridine-2-amine group inside the pyridinium modified β -cyclodextrin cavity.

Figure S17. CVFF optimized inclusion complex of β -cyclodextrin with pyidinium; In mode B: with inclusion of *N*-octyl sides for pyridinium in β -cyclodextrin.

Figure S18. CVFF optimized inclusion complex of β -cyclodextrin with pyidinium; In mode A: with inclusion of pyridine sides for pyridinium in β -cyclodextrin.

Figure S19. a) UV-Vis absorption spectra for Monotosyl- β -CD (Red), pyridinium modified- β -CD (Blue), *N*-octyl-pyridine-2-amine (Green), b) UV-DRS spectra for pyridinium modified- β -CD (Red), pyridinium modified- β -CD with Pd(OAc)₂ (Green).

Spectroscopic data for compound 4a-r

Figure S21. ¹³C-NMR spectrum for 4a

Figure S22. ¹H-NMR spectrum for 4b

Figure S23. ¹³C-NMR spectrum for 4b

Figure S24. ¹H-NMR spectrum for 4c

Figure S25. ¹³C-NMR spectrum for 4c

Figure S26. ¹H-NMR spectrum for 4d

Figure S28. ¹H-NMR spectrum for 4e

Figure S30. ¹H-NMR spectrum for 4f

Figure S33. ¹³C-NMR spectrum for 4i

SZR-18

00.0-----

Figure S35. ¹H-NMR spectrum for 4K

-170

Figure S37. ¹³C-NMR spectrum for 41

PYRWCD-12 -159.10 -140.79-133.75128.69128.69128.69128.63-77.42 -77.00 -76.57

19

ł

Figure S41. ¹³C-NMR spectrum for 40

Spectroscopic data for compound 5a-k

Figure S42. ¹H-NMR spectrum for 6a

Figure S44. ¹H-NMR spectrum for 6b

Figure S46. ¹H-NMR spectrum for 6c

Figure S47. ¹³C-NMR spectrum for 6c

Figure S48. ¹H-NMR spectrum for 6d

Figure S50. ¹H-NMR spectrum for 6e

Figure S52. ¹H-NMR spectrum for 6f

Figure S54. ¹H-NMR spectrum for 6g

Figure S56. ¹H-NMR spectrum for 6i

Figure S58. ¹H-NMR spectrum for 6k

Figure S59. ¹³C-NMR spectrum for 6k