A. Supporting Information

Content

- A.1 Loading of the resin with acetate, succinate and lactate
- A.2 X-Ray photoelectron spectroscopy (XPS) of the anion exchange resin
- A.3 Thermogravimetric analysis (TGA) of the resin for detection of water content
- A.4 Desorption of acetate with water and carbon dioxide

A.1 Loading of the resin with acetate, succinate and lactate

Figure A.1. Loading of Dowex MSA (~5 g wet resin) with 2 mL/min of a solution of potassium acetate (10 g/L)

Figure A.2. Loading of Dowex MSA (~5 g wet resin) with 2 mL/min of a solution of sodium succinate (20 g/L)

Figure A.3. Loading of Dowex MSA (~5 g wet resin) with 2 mL/min of a solution of sodium lactate (20 g/L)

A.2 X-Ray photoelectron spectroscopy (XPS) of the anion exchange resin

A.2.1 Surface composition of Dowex Marathon resin with different counter-ions

Resin	Condition of the	Surface atomic composition (%)			
Counter-ion	resin	С	0	Ν	Cl
Chloride	wet	75.57 ± 0.08	14.94 ± 1.99	5.06 ± 0.86	3.36 ± 1.42
Chloride	dry	82.62 ± 0.26	5.40 ± 0.21	6.25 ± 0.26	5.57 ± 0.02
Acetate	dry	77.31 ± 0.76	18.45 ± 1.42	2.66 ± 2.14	Not present
Bicarbonate	dry	79.33 ± 0.78	12.88 ± 1.59	4.8 ± 0.52	Not present
Recycle (MeOH+ CO ₂)	dry	79.33 ± 0.78	14.39 ± 0.17	6.06 ± 0.31	0.42

Table A.1 X-ray photoelectron spectroscopy analysis of Dowex Marathon resin*

*Relative constitution as C, O, N and Cl

Table A.2 X-ray photoelectron spectroscopy of preliminary Dowex Marathon resin loaded in batch mode (not a complete anion exchange)

Resin	Condition of the	Surface atomic composition (%)			
Counter-ion	resin	С	0	Ν	Cl
Chloride	dry	81.7 ± 2.4	6.0 ± 1.4	6.2 ± 0.7	6.1 ± 1.3
Acetate	dry	83.7 ± 0.1	7.2 ± 0.3	5.7 ± 0.2	3.5 ± 0.1
Bicarbonate	dry	78.7 ± 0.5	15.6 ± 1.5	3.2 ± 0.8	2.4 ± 0.5

*Relative constitution as C, O, N, Cl

Table A.2 shows that on a batch process the resin is not fully exchanged, and some remaining chloride anion are bounded to the resin.

A.2.2 Deconvolution of C peak

The aim with de analysis of the deconvolution of the carbon peak is to analyse the type of the C bonds present at the resin surface. The deconvolution of the C peaks was done by keeping the C-C bond as internal standard at 284.8 eV.

Table A.3 Percentage of C-C, C-O and C=O bonds from the high resolution spectra*

Resin	Condition of				
Counter-ion	the resin	%С-С	%C-O	%C=0	$^{0}\!\!/_{0}\pi-\pi^{\dagger}$
Chloride	wet	41.0	34.2	18.2	6.7
Chloride	dry	57.6	34.6	6.3	1.5
Acetate	dry	71.5	18.5	9.9	Not observed
Bicarbonate	dry	74.1	20.0	4.6	1.4
Recycle (MeOH+	dry	60.1	20.82	7.2	1.9
CO ₂)			50.82		

*The fitting was done on representative spot for each sample.

†The π - π bond is calculated and represents the presence of the aromatic ring in the resin structure.

The deconvolution of the C peak shows three type of bonds for all the samples: C-C, C-O and C=O. Except for the acetate sample, all the other samples have the $\%\pi - \pi^{\dagger}$ transition, typical of the presence of aromatic rings. The wet chloride resin presents a lower amount of C-C (40.97) in comparison with the dry resin (57.63), but a higher amount of C=O (18.18) in comparison with the other samples. This might be because the water strongly binds to the resin, and for this reason the adsorbed water was further quantify with TGA. The C-C values increase for the acetate and bicarbonate resin in comparison with the chloride form of the resin. Moreover, the acetate form has a higher value of C=O (9.92) compared to the bicarbonate form (4.57).

A.2.3 X-ray photoelectron spectroscopy spectra

A.3 Thermogravimetric analysis (TGA) of the resin for detection of water content

Figure A.4. Thermogravimetric analysis of the resin in chloride, acetate and bicarbonate form

A.4 Desorption of acetate with water and carbon dioxide

Table A.5 Desorption of acetate from an anion exchange resin with CO_2 at 10 bar in water at 20-22 °C with a resin loading of 3.4 %w/w dry resin/water

Equilibrium CO ₂ pressure (bar)	Desorbed acetic acid (mg/g)	Desorption (mol acetic acid/mol acetate _{in})	
10.1±0.1	1.23±0.48	0.38±0.05	