Supplementary Information for

Hydrogen peroxide/dimethyl carbonate: a green system for epoxidation of *N*alkylimines and *N*-sulfonylimines. One-pot synthesis of *N*-alkyloxaziridines from *N*-alkylamines and (hetero)aromatic aldehydes

Jamil Kraiem,^{a,b} Donia Ghedira,^b Thierry Ollevier^a*

a Département de chimie, Université Laval, 1045 avenue de la Médecine Québec, QC, G1V 0A6, Canada.

b Laboratoire de Développement Chimique, Galénique et Pharmacologique des Médicaments, Faculté de Pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000 Monastir, Tunisia.

Table of contents	1
General methods	2
Synthesis of <i>N</i> -sulfonylimines	2
Synthesis of <i>N</i> -alkyloxaziridines	3
Synthesis of <i>N</i> -sulfonyloxaziridines	4
Characteristic NMR chemical shifts of <i>cis</i> and <i>trans-N</i> -alkyloxaziridines	5
NMR spectra of N-sulfonylimine 4h, N-alkyloxaziridines 3a-l and	N-
sulfonyloxaziridines 5a-k	5-61
References	.62

General methods

NMR spectra were acquired using CDCl₃ as solvent, running at 300 and 75 MHz for ¹H and ¹³C respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CHCl₃, 7.28 ppm and CH₂Cl₂, 5.32 ppm, H₂O 1.61 ppm for ¹H NMR; CDCl₃, 76.5 ppm for ¹³C NMR). In all ¹H NMR spectra, multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet) or m (multiplet). Coupling constant values (in Hertz) and number of protons for each signal are also indicated. Melting points were determined on a Büchi SMP-20 capillary apparatus and are uncorrected. TLC was carried out on Merck 60F-254 precoated silica gel plates (0.25 mm). Dimethyl carbonate (Reagent plus®, 99%) and hydrogen peroxide (30 % wt in water) were purchased from Sigma-Aldrich. All starting materials purchased from commercial suppliers were used without further purification, except alkylamines and aromatic aldehydes which were distilled or recrystallized (solid reagents) before use. *N*-Sulfonylimines were prepared according to the eco-friendly procedure reported by Morales.¹

Synthesis of N-sulfonylimines

Typical procedure: 2-chlorobenzaldehyde (2.4 mmol), pyrrolidine (0.2 mmol) and molecular sieves 4 Å (2 g) were added to a solution of *p*-toluenesulfonamide (2 mmol) in dry dichloromethane (1 mL). The mixture was stirred in a sealed vial at 60 °C for 24 h. Then, the reaction was filtered through a short pad of silica gel, the solvent was evaporated under reduced pressure and the residue was recrystallized with ethyl acetate/petroleum ether (20:80) to yield pure *N*-(2-chlorobenzylidene)-*p*-toluenesulfonamide **4h** as a white solid; mp 131–132 °C; yield 89%; $\delta_{\rm H}$ (CDCl₃) 2.43 (s, 1H, CH₃), 7.30-7.53 (m, 5H, CH–Ar), 7.89 (d,

J = 8.1 Hz, 2H, CH–Ar), 8.13 (d, *J* = 7.8 Hz, 1H, CH–Ar); δ_C (CDCl₃) 21.17 (CH₃), 126.88, 127.77, 129.26, 129.39, 129.66, 129.98, 134.19, 135.16, 138.40, 144.37, 166.25 (CH=N).

Compounds 4a,² 4b,³ 4c,⁴ 4d,⁵ 4e,⁶ 4f,⁷ 4g,⁶ 4h,⁶ 4i,⁶ 4j,⁶ and 4k ⁸ were characterized by comparing their NMR spectra with literature data.

Synthesis of *N*-alkyloxaziridines

Typical procedure: To a solution of benzaldehyde (1 mmol) in DMC (1 mL) was added cyclohexylamine (1.5 mmol). The mixture was stirred for 10 min. An hydrogen peroxide solution (30 % wt, 5 mmol) was then added over a period of 5 min. The mixture was stirred at room temperature until disappearance of aldehyde (15 h, reaction monitored by TLC). The reaction mixture was then diluted with ethyl acetate (5 mL), washed with a solution of sodium sulfite (5 mL) and extracted with ethyl acetate (3 × 2 mL). The combined organic phases were dried (MgSO₄) and concentrated under reduced pressure to yield pure 2-cyclohexyl-3-phenyloxaziridine **3g**. Colorless oil; Yield 96%; $\delta_{\rm H}$ (CDCl₃) 1.15–2.15 (m, 11H, cyclohexyl), 4.56 (s, 1H, O–CH–N, *trans* 91%), 5.31 (s, H, O–CH–N, *cis* 9%), 7.39–7.47 (m, 5H, Ar); $\delta_{\rm C}$ (CDCl₃) *trans*-isomer: 24.08 (CH₂), 24.56 (CH₂), 25.77 (CH₂), 29.21 (CH₂), 31.60 (CH₂), 70.18 (CH–cyclohexyl), 79.84 (O–CH–N), 127.45 (CH–Ar), 128.49 (CH–Ar), 129.90 (CH–Ar), 135.26 (C–Ar); *cis*-isomer: 23.92 (CH₂), 23.98 (CH₂), 25.65 (CH₂), 28.15 (CH₂), 31.71 (CH₂), 59.25 (CH–cyclohexyl), 79.70 (O–CH–N), 127.95 (CH–Ar), 128.11 (CH–Ar), 129.36 (CH–Ar), 131.90 (C–Ar).

N-Alkyloxaziridines 3a, ${}^{9}3b$, ${}^{10}3c$, ${}^{10}3d$, ${}^{5}3e$, ${}^{11}3f$, ${}^{10}3g$, ${}^{12}3h$, ${}^{13}3i$, ${}^{14}3j$, ${}^{15}3k$ 16 and 3l 17 were characterized by comparing their NMR spectra with literature data.

Synthesis of N-sulfonyloxaziridines

Typical procedure: To a solution of *N*-benzylidene-2,4,6-benzenesulfonamide **4k** (0.5 mmol) in DMC (1.5 mL) was added Na₂CO₃ (0.6 mmol) and Zn(OAc)₂·2H₂O (0.025 mmol). An hydrogen peroxide solution (30 % wt, 5 mmol) was then added over a period of 5 min. The mixture was stirred at room temperature until disappearance of the imine (14 h, TLC). The reaction mixture was then diluted with ethyl acetate (5 mL), washed with a solution of sodium sulfite (5 mL) and extracted with ethyl acetate (3 × 2 mL). The combined organic phases were dried (MgSO₄) and concentrated under reduced pressure. The residue was filtered through a short pad of silica gel to yield pure 2-(2,4,6-trimethylbenzenesulfonyl)-3-phenyloxaziridine **5k** as white solid; mp 104–106 °C; yield 93%; $\delta_{\rm H}$ (CDCl₃) 2.36 (s, 3H, CH₃), 2.78 (s, 6H, 2 CH₃), 5.52 (s, 1H, O–CH–N), 7.06 (s, 2H, CH–Ar), 7.43–7.50 (m, 5H, CH–Ar); $\delta_{\rm C}$ (CDCl₃) 21.09 (CH₃), 23.06 (2 CH₃), 75.47 (O–CH–N), 128.20, 128.68, 129.74, 130.78, 131.18, 132.11, 141.94, 144.72.

N-Sulfonyloxaziridines 5a,¹⁸ 5b,¹⁹ 5c,²⁰ 5d,¹⁸ 5e,²¹ 5f,²⁰ 5g,²⁰ 5h,²² 5i,²⁰ 5j,¹⁸ and 5k ²³ were characterized by comparing their NMR spectra with literature data.

Table: Characteristic NMR chemical shifts of *cis* and *trans-N*-alkyloxaziridines.

Oyaziridine	δ _{H-3} (ppm)		δ _{C-3} (ppm)		Trans/Cis
O Auzzi funite	Trans	Cis	Trans	Cis	114115/ 015
t-Bu o N 3a	4.72	-	73.68	-	100:0
r-Bu N Br 3b	5.15	-	73.45	-	100:0
t-Bu_0 N→→OCH₃ 3c	4.68	-	73.59	-	100:0
r-Bu NO ₂ 3d	4.76	-	71.82	-	100:0
t-Bu № N→ Se	4.65	-	72.15	-	100:0
r-Bu N N 3f	4.78	-	67.93	-	100:0
G S S S S S S S S S S S S S S S S S S S	4.56	5.31	79.84	79.70	91:9
NO ₂ 3h	4.61	5.33	77.70	78.20	92:8
∽si	4.51	5.26	79.02	79.09	91:9
	4.52	5.29	80.03	79.87	92:8
och _a 3k	4.46	5.23	79.91	79.69	90:10
→ ⁰ → 31	4.50	5.28	8.046	79.47	90:10

		-113.0 113.5 -
	¹⁹ F NMR spe 3i: cis + trans	
		112.0
)65'TTT		
		-110.5
		ppm -110.0

References

- 1. S. Morales, F. G. Guijarro, J. F. G. Ruano and M. B. Cid, J. Am. Chem. Soc. 2014, 136, 1082.
- 2. R, Chawla, A. K. Singh, L. Dhar and S. Yadav, Tetrahedron Lett., 2014, 55, 3553.
- 3. X. Cui, F. Shi and Y. Deng, Chem. Commun., 2012, 48, 7586.
- 4. C-J. Wang and M. Shi, J. Org. Chem., 2003, 68, 6229.
- 5. D. Uraguchi, R. Tsutsumi and T. Ooi, Tetrahedron, 2014, 70, 1691.
- 6. S. Siang-en, L. Yu-Ting, J. Yeong-Jiunn and L.Wenwei, J. Org. Chem., 2011, 76, 2888.
- 7. M. Barbarotto, J. Geist, S. Choppin and F. Colobert, Tetrahedron: Asymmetry, 2009, 20, 2780.
- 8. M. Braun and K. Opdenbusch, Liebigs Ann., 1996, 1997, 141.

9. C. Boudou, M. Bergès, C. Sagnes, J. Sopková-De Oliveira Santos, S. Perrio and P. Metzner, *J. Org. Chem.*, 2007, **72**, 5403.

- 10. A. Kivrak and R. C. Larock, J. Org. Chem., 2010, 75, 7381.
- 11. K. Kloc, E. Kubicz, J. Mlochowski and L. Syper, Synthesis, 1987, 1084.
- 12. H. Yositeru and W. Masamichi, J. Org. Chem., 1981, 46, 610.
- 13. J. Kraiem, Y. Kacem, J. Khiari and B. Ben Hassine, Synth. Commun., 2001, 31, 263.
- 14. M. Shailaja, A. Manjula and B. Rao, Synlett, 2005, 1176.
- 15. Y. Hata and M. Watanabe, J. Am. Chem. Soc., 1979, 101, 6671.
- 16. A. Klausener, R. Langer, S. Ratsch and M. Dockner, Patent : US2002/111339 A1, 2002.
- 17. D. Mohajer, N. Iranpood and A. Rezaeifard, Tetrahedron Lett., 2004, 45, 631.
- 18. R. Garcia, L. Jose, J. Aleman, C. Fajardo and A. Parra, Org. Lett., 2005, 7, 5493.
- 19. F. A. Davis, J. Lamendola Jr, U. Nadir, E. W. Kluger, T. C. Sedergran, T. W. Panunto, R.
- Billmers, R. Jenkins Jr and I. J. Turchi, J. Am. Chem. Soc., 1980, 102, 2000.
- 20. T. Zhang, W. He, X. Zhao and Y. Jin, Tetrahedron, 2013, 69, 7416.
- 21. L. Lykke, C. Rodriguez-Escrich and A. K. Jærgensen, J. Am. Chem. Soc., 2011, 133, 14932.
- 22. S. Pan-Lin, C. Xiang-Yu and Y. Song, Angew. Chem . Int. Ed., 2010, 49, 8412.
- 23. K. S. Williamson, J. W. Sawicki and T. P. Yoon, Chem. Sci., 2014, 5, 3524.