ELECTRONIC SUPPLEMENTARY INFORMATION

Suitability of bio-based ionic liquids for the extraction and purification of IgG antibodies

Dibyendu Mondal^{a§}, Mukesh Sharma^{b,c§}, Maria V. Quental^a, Ana P. M. Tavares^a, Kamalesh Prasad^{*b,c} and Mara G. Freire^{*a}

^aCICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal Tel: +351 234370200; Fax: +351 234370084; *E-mail address: maragfreire@ua.pt.

^bNatural Product and Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar-364002 (Gujarat), India. Tel: +91-278 2567760;Fax: +91-278-2567562; *E-mail address: kamlesh@csmcri.org; drkamaleshp@gmail.com

^cAcSIR- Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar-364002 (Gujarat), India. [§]Equally contributing authors

Figure S1: ¹H NMR spectra of IL-1 (cholinium indole-3-acetate).

¹H NMR (D₂O, 500 MHz, δ/ppm relative to TMS): 2.62 (s, 9H, -CH₃), 2.88 (t, 2H, -CH₂-N-), 3.47 (s, 2H, -CH₂-CO-), 3.60 (t, 2H, -O-CH₂-), 7.08 (d, 1H, =CH-N-), 6.96-7.51 (m, 4H, aromatic protons), 10.04 (s, 1H, -HN-). ESI-MS: Calculated for C₁₅H₂₂N₂O₃ [M]⁺: m/z = 104.11; Found: 104.17, [M]⁻: m/z = 174.06; Found: 174.29.

Figure S2: ¹H NMR spectra of IL-2 (choline glycolate).

¹H NMR (D₂O, 500 MHz, δ /ppm relative to TMS): 3.20 (s, 9H, -N-CH₃), 3.51 (t, 2H, -CH₂-N-), 3.94 (t, 2H, -O-CH₂-), 4.05 (t, 1H, -CH₂-O-). ESI-MS: Calculated for C₇H₁₇NO₄ [M]⁺: m/z = 104.11; Found: 103.97, [M]⁻: m/z = 75.01; Found: 75.05.

Figure S3: ¹H NMR spectra of IL-3 (cholinium pyruvate).

¹H NMR (D₂O, 500 MHz, δ /ppm relative to TMS):): 2.33 (s, 3H, -CH₃), 3.17 (s, 9H, -N-CH₃), 3.48 (t, 2H, -CH₂-N-), 4.01 (t, 2H, -O-CH₂-). ESI-MS: Calculated for C₈H₁₇NO₄ [M]⁺: *m/z* = 104.11; Found: 104.00, [M]⁻: *m/z* = 87.01; Found: 87.07.

Figure S4: ¹H NMR spectra of IL-4 (cholinium abeitate).

¹H NMR (d₆-DMSO, 500 MHz, δ /ppm relative to TMS): 0.71 (s, 3H, -CH₃), 0.94 (d, 3H, -CH₃), 0.98 (d, 3H, -CH₃), 1.03 (m, 3H, -CH₃), 1.37 (m, 6H, -CH₂-), 1.79 (m, 6H, -CH₂-), 2.03 (m, 2H, -CH₂-), 2.18 (m, 2H, -CH-), 3.16 (s, 9H, -N-CH₃), 3.42 (t, 2H, -CH₂-N-), 3.83 (t, 2H, -O-CH₂-), 5.31 (s, 1H, -HC=C-), 5.69 (s, 1H, -HC=C-). ESI-MS: Calculated for C₂₅H₄₃NO₃ [M]⁺: m/z = 104.11; Found: 104.17, [M]⁻: m/z = 301.22; Found: 301.28.

Figure S5: ¹H NMR spectra of IL-5 (cholinium-L-ascorbate).

¹H NMR (D₂O, 500 MHz, δ /ppm relative to TMS): 3.16 (s, 9H, -N-CH₃), 3.48 (t, 2H, -N-CH₂-), 3.71 (dt, 2H, -CH₂-OH), 3.97 (m, 1H, -CH-OH), 4.02 (t, 2H, -H₂C-OH), 4.49 (s, 1H, -O-CH-). ESI-MS: Calculated for C₁₁H₂₁NO₇ [M]⁺: m/z = 104.11; Found: 104.20, [M]⁻: m/z = 175.02; Found: 175.13.

Figure S6: ¹H NMR spectra of IL-6 (cholinium coumarine-3-carboxylate).

¹H NMR (D₂O, 500 MHz, δ /ppm relative to TMS): 3.17 (s, 9H, -N-CH₃), 3.498(t, 2H, -CH₂-N-), 4.00 (t, 2H, -CH₂-OH), 7.20-7.59 (m, 4H, aromatic protons), 8.12 (t, 1H, =CH-Ar). ESI-MS: Calculated for C₁₅H₁₉NO₅ [M]⁺: m/z = 104.11; Found: 104.18, [M]⁻: m/z = 189.02; Found: 189.15.

Figure S7: ¹H NMR spectra of IL-7 (cholinium-2,5-dihydroxybenzoate).

¹H NMR (D₂O, 500 MHz, δ /ppm relative to TMS): 3.00 (s, 9H, -N-CH₃), 3.30 (t, 2H, -CH₂-N-), 3.87 (t, 2H, -O-CH₂-), 6.67 (d, 1H, =CH- aromatic), 6.84 (dd, 1H, =CH- aromatic), 7.13 (d, 1H, =CH- aromatic). ESI-MS: Calculated for C₁₂H₁₉NO₅ [M]⁺: *m*/*z* = 104.11; Found: 104.13, [M]⁻: *m*/*z* = 153.02; Found: 153.06.

Figure S8: ¹H NMR spectra of IL-8 (cholinium-D-(+)-galactouronate).

¹H NMR (D₂O, 500 MHz, δ /ppm relative to TMS): 3.06 (s, 9H, -N-CH₃), 3.36 (t, 2H, -CH₂-N-), 3.45 (d, 1H, -CH-OH), 3.59 (t, 1H, -CH-OH), 3.91 (m, 2H, -O-CH₂-), 3.99 (m, 1H, -CH-OH), 4.49 (d, 1H, -CH-COO⁻), 5.10 (d, 1H, -CH-OH). ESI-MS: Calculated for C₁₁H₂₃NO₈ [M]⁺: m/z = 104.11; Found: 104.17, [M]⁻: m/z = 193.03; Found: 193.14.

Figure S9: ¹H NMR spectra of IL-9 (cholinium-D-(–)-quinate).

¹H NMR (D₂O, 500 MHz, δ /ppm relative to TMS): 1.79 (m, 1H, -CH₂-), 1.86 (m, 1H, -CH₂), 1.89 (m, 1H, -CH₂-), 1.96 (m, 2H, -CH₂-), 3.11 (s, 9H, -N-CH₃), 3.43 (t, 2H, -CH₂-N-), 3.45 (m, 1H, -CH-OH), 3.93 (m, 1H, -CH-OH), 3.96 (t, 2H, -O-CH₂-), 4.05 (m, 1H, -HC-OH). ESI-MS: Calculated for C₁₂H₂₅NO₇ [M]⁺: m/z = 104.11; Found: 104.17, [M]⁻: m/z = 191.05; Found: 191.16.

Figure S10: Size-exclusion chromatograms of commercial rabbit serum. The IgG peak is characterized by a retention time around 15.6 min. Peaks corresponding to lower retention times correspond to protein aggregates, also present in the commercial pure IgG, while the peak corresponding to the higher retention time corresponds to serum albumin.

Figure S11 : Size-exclusion chromatograms of commercial rabbit serum (top and bottom phases) after the extraction with ionic-liquid-based ABS composed of [Cho][Gly] and [Cho][Pyr].

Table S1: Summary of the bio-based ILs synthesized.

Cation	Anion	Sources of anion	Observation
	Indole-3-acetate	Naturally occurring plant growth hormone found in	Liquid at r.t.
		all type of plants	
	Indole-3-butyrate	Naturally occurring plant growth hormone found in	Liquid at r.t.
		all type of plants	
	Glycolate	Sugarcane, sugar beets, pineapple and unripe grapes	Liquid at r.t.
	Pyruvate	Apple and wine	Liquid at r.t.
Cholinium	Abeitate	Trees, pine wood & resins	Liquid at r.t.
	L-ascorbate	Orange, green pepper, papaya, kiwi, cauliflower,	Liquid at r.t.
		broccoli, citrus juice	
	Coumarine-3-	Tonka beans, vanilla grass, sweet grass and cassia	Highly viscous at
	carboxylate	cinnamon, Cherries, Apricot	r.t.
	Genistate	African tree Alchorneacordifolia and wine	Semi-solid at r.t.
	D-(+)-Galactouronate	Fresh apple and trees	Liquid at r.t.
	D-(–)-Quinate	Cinchona bark & coffee beans	Liquid at r.t.

Note: r.t. = room temperature (25 °C)

Table S2: Experimental weight fraction data for the systems composed of IL (1) + PPG400 (2) + H_2O (3) at 25 °C.

[Cho][IA]		[Cho][Gal]		[Cho][Asc]		[Cho][Qui]	
W1 100	W2 100	W1 100	W2 100	W1 100	W2 100	W1 100	W2 100
82.4468	2.6596	97.5816	1.2023	70.8522	1.9640	9.1611	9.1611
73.1132	6.1557	66.2352	1.8445	64.5122	3.0497	9.7281	9.7281
63.4076	11.8225	58.7615	2.7960	51.7866	5.7530	11.4003	11.4003
56.7454	17.1884	54.8822	3.6450	47.2744	6.8060	12.5340	12.5340
49.1595	24.4370	50.8973	4.2828	41.3080	7.9175	14.3345	14.3345
41.2015	33.1606	47.2442	5.0449	37.4845	8.8197	16.8416	16.8416
33.6189	42.5659	44.4952	5.1748	27.8751	12.6084	23.1121	23.1121
26.8445	51.9657	43.2505	5.4850	24.5975	16.0413	25.2966	25.2966
21.6163	59.4868	42.0451	5.7154	20.8751	19.9518	26.5002	26.5002
17.8716	64.9660	40.7003	6.1401	19.4996	20.2168	27.6180	27.6180
14.6600	69.6775	39.5427	6.4685	18.5338	21.1151	29.8614	29.8614
12.6603	72.5843	37.7845	6.8849	17.6260	21.8421	48.7142	48.7142
10.5809	75.5956	35.8236	7.0084	16.6897	22.7295	51.7196	51.7196
9.3627	77.4419	35.0000	7.3066	22.8388	15.2372	54.2745	54.2745
8.4887	78.7836	34.3175	7.9032	13.5938	26.4215	57.4239	57.4239
7.6642	80.1226	31.4114	8.0930	14.3913	25.2039	60.9038	60.9038
6.9984	81.0773	30.0260	8.4730	14.4669	23.9895	68.1847	68.1847
6.3774	82.0918	28.5624	9.1186	15.2372	22.8388		
6.0837	82.4967	26.9978	9.6413	4.2536	71.1192		
5.7082	83.1019	25.4148	10.1962	7.3126	51.4469		
5.2862	83.7918	24.1379	10.6632	8.6776	33.5863		
4.9432	84.2981	23.1365	11.2846	10.9115	27.6118		
4.6220	84.8710	21.9884	11.7819	12.1787	25.4082		
4.3539	85.2741	20.7284	12.5478				
4.1528	85.5669	19.6796	13.0721				
3.9487	85.8788	18.4484	13.7438				
		17.2470	14.8339				

16.0030	15.4070
15.1593	16.1437
14.0615	17.1058
13.1140	17.7976

Table S3: Experimental weight fraction data for the systems composed of IL (1) + PPG400 (2) + H_2O (3) at 25 °C.

[Cho	o][Glv]		
100 w1	100 w1 100 w2		100 w2
51.6194	5.7660	29.9833	7.2523
40.8260	7.4312	29.5173	7.4783
35.6452	8.1962	22.8492	9.2222
31.4733	9.0681	21.0939	9.7013
29.0617	9.7930	19.9952	10.5799
27.1250	11.1490	17.6795	11.8493
25.1284	11.7514	15.3324	13.6604
23.6811	12.3272	14.3374	14.4192
20.9760	13.9474	13.5719	15.6594
19.8795	14.5234	12.6340	16.7270
19.2300	15.1080	17.6795	11.8493
17.7279	18.9364	4.2337	52.0548
13.1800	26.0942	3.8981	37.1061
12.6106	27.0895	5.7902	33.9906
12.1660	27.3838	5.8292	29.1543
11.6156	28.0929	6.4451	27.6432
11.0976	28.8153	7.8759	24.5846
12.9534	22.3279	7.7262	21.9783
16.5772	19.8381	8.7543	20.9681
16.4111	18.2344	11.3500	19.1677
20.2368	15.6078	12.0512	18.1374
3.8457	67.8161	13.6250	16.6966
5.5194	42.7979	13.8319	16.1968
5.3602	36.8585	14.0416	15.1628
7.9996	32.6353	14.6613	14.4244
10.8798	26.6710	17.8427	12.9492
10.6499	23.2414	23.1422	10.6558
17.6876	19.3579	33.8080	6.7471

18.2525	17.0274	
19.7534	14.5141	
23.1474	12.9386	

Tie-lines (TLs) and tie-line lengths (TLLs) were determined by the lever–arm rule through the relationship between the top phase composition and the overall system composition, according to the following equations (Eqs.S1-4):

$$[PPG]_{PPG} = A \exp\left[\left(B[IL]_{PPG}^{0,5}\right) - \left(C[IL]_{PPG}^{3}\right)\right]$$
(S1)

$$[PPG]_{IL} = A \exp\left[\left(B[IL]X_{IL}^{0,5}\right) - \left(C[IL]_{IL}^{3}\right)\right]$$
(S2)

$$[PPG]_{PPG} = \left(\frac{[PPG]_M}{\alpha}\right) - \left(\frac{(1-\alpha)}{\alpha}\right)[PPG]_{IL}$$
(S3)

$$[IL]_{PPG} = \left(\frac{[IL]_M}{\alpha}\right) - \left(\frac{(1-\alpha)}{\alpha}\right)[IL]_{IL}$$
(S4)

where subscripts "PPG", "IL", and "M" correspond to the top (PPG-400-rich), bottom (IL-rich) and mixture phases, respectively. The parameter, α is the ratio between the mass of the PPG rich phase and the total mass of the two phases. The system solution results in the composition (wt%) of the PPG 400 and IL in the top and bottom phases. For the calculation of each tie-line length (TLL), EqS5 was used:

$$TLL = \sqrt{([IL]_{PPG} - [IL]_{IL})^2 + ([PPG]_{PPG} - [PPG]_{IL})^2}$$
(S5)

Table S4. Correlation parameters obtained from the fitting of the experimental binodal data by Eq. 1, respective standard deviations (σ) and correlation coefficients (R^2).

IL	$A \pm \sigma$	$B \pm \sigma$	$10^{-5} (C \pm \sigma)$	R^2
[Cho][Gly]	313.3 ± 38.6	-0.883 ± 0.046	-8.9 ± 1.7	0.9872
[Cho][D-Gal]	131.5 ± 0.7	-0.475 ± 0.003	7.1 ± 0.8	0.9963
[Cho][Qui]	975.0 ± 175.3	-1.146 ± 0.072	-7.8 ± 0.3	0.9862
[Cho][Pyr]	284.3 ± 23.6	-0.722 ± 0.029	-3.0 ± 0.4	0.9620
[Cho][Asc]	217.5 ± 19.7	0.567 ± 0.029	-13.3 ± 0.1	0.9967
[Cho][lA]	162.0 ± 6.1	-0.504 ± 0.020	0.5 ± 0.02	0.9986

Table S5. Tie-lines (TLs) and tie-line lengths (TLLs). Initial mixture compositions are represented as $[IL]_M$ and $[PPG]_M$ whereas $[IL]_{IL}$ and $[PPG]_{IL}$ are the compositions of IL and PPG at the IL-rich phase, respectively, and *vice-versa*.

	Weight fraction composition / wt %						
IL	[PPG] _{PPG}	[IL] _{PPG}	[PPG] _M	[IL] _M	[PPG] _{IL}	$[IL]_{IL}$	TLL
[Cho][IA]	48.27	1.73	40.16	39.77	1.73	82.53	69.63
[Cho][D-Gal]	85.66	0.81	29.76	26.20	0.078	39.68	93.99
[Cho][Pyr]	93.02	1.38	29.99	25.01	7.32	33.50	91.52
[Cho][Qui]	-	-	29.99	25.84	-	-	ND*
[Cho][Gly]	-	-	29.99	24.97	-	-	ND
[Cho][Asc]	72.96	3.71	30.20	25.36	6.52	36.85	74.25

*ND: not determined

Table S6: Extraction efficiencies of IgG (EE_{IgG} %), IgG recovery yield (Y_{IgG} %) and IgG percentage purity (%) from rabbit serum in ABS composed of PPG 400 (30 wt%) + bio-based IL (25 wt%) + 45 wt% of rabbit serum (diluted at 1:10 (v/v); pH \approx 7).

Bio-based IL	$EE_{IgG}\%$	Y_{IgG} %	% purity
[Cho][Gly]	100	45.1	24.8
[Cho][Pyr]	100	58.9	23.3
[Cho][Asc]	100	85.4	30.4
[Cho][Qui]	100	51.5	27.1