Electronic Supplementary Information for:

Lignin depolymerization by fungal secretomes and a microbial sink[†]

Davinia Salvachúa^{a,‡}, Rui Katahira^{a,‡}, Nicholas S. Cleveland^a, Payal Khanna^a, Michael G. Resch^a, Brenna A. Black^a, Samuel O. Purvine^b, Erika M. Zink^b, Alicia Prieto^c, María J. Martínez^c, Angel T. Martínez^c, Blake A. Simmons^{d,e}, John M. Gladden^{d,f}, Gregg T. Beckham^{a,*}

a. National Bioenergy Center, National Renewable Energy Laboratory (NREL), Golden CO 80401, USA

b. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA

c. Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), E-28040 Madrid, Spain

d. Joint BioEnergy Institute (JBEI), Emeryville, CA 94608

e. Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA

f. Sandia National Laboratory, Livermore CA 94550

‡ Equal contribution

* Corresponding author: <u>Gregg.Beckham@nrel.gov</u>

Extension of materials and methods section

Analysis of aromatics by LC-MS/MS

Mass spectrometry was used in the last experiment of the current study to analyze aromatics from the soluble fraction. For this purpose, 14.5 mg of freeze-dried supernatant from 8 different treatments was reconstituted in 1 mL methanol. Analysis of samples was performed on an Agilent 1100 LC system equipped with a diode array detector (DAD) and an Ion Trap SL MS (Agilent Technologies, Palo Alto, CA) with in-line electrospray ionization (ESI). Each sample was injected at a volume of 25 µL into the LC-MS system. Primary degradation compounds were separated using a YMC C30 Carotenoid 0.3 µm, 4.6 x 150 mm column (YMC America, Allentown, PA) at an oven temperature of 30°C. The HPLC solvent gradient was performed using eluents of A) water modified with ammonium hydroxide (pH 7), and eluent B) 9:1 acetonitrile and water also modified with ammonium hydroxide (pH 7). At a flow rate of 0.7 mL min⁻¹, the gradient chromatography was as follows: 0-3 min, 0% B; at 16 min, 7% B; at 21 min, 8.5% B; at 34 min, 10% B; at 46 min, 25% B; and held at 30% B at 51-56 min, for a total run time of 65 min including equilibrium. Flow from the HPLC-DAD was directly routed to the ESI/MS ion trap. The DAD was used to monitor chromatography at 210 nm for a direct comparison to MS data. MS and MS/MS tuned parameters are as follows: smart parameter setting with target mass set to 165 Da, compound stability 70%, trap drive 50%, capillary at 3500 V, fragmentation amplitude of 0.75 V with a 30 to 200% ramped voltage implemented for 50 msec, and an isolation width of 2 m/z (He collision gas). The ESI nebulizer gas was set to 60 psi, with dry gas flow of 11 L min⁻¹ held at 350°C. MS scans and precursor isolation-fragmentation scans were performed across the range of 40-350 Da in negative- and positive-ion alternating mode. Vanillin, 4-hydroxybenzaldehyde, PCA, vanillic acid, syringic acid, 4-hydroxybenzoic acid, and FA were the only aromatics detected from an instrument specific in-house database of 70 aromatic compounds. Standards were prepared in the range of $1 - 100 \,\mu\text{g/mL}$ and run at the same conditions as the samples. Samples were diluted accordingly to maintain detector response within the linear range of the calibration curves (R^2 value of $\geq 99.5\%$).

Proteomic analysis in the secretome of P. eryngii

For proteomic analyses, 50 mL of the *P. eryngii* secretome from 9 days of incubation (used for the depolymerization assays) were taken from 2 biological replicates and flash-frozen. Then, samples were treated and analyzed as described below:

Volume concentration. The volumes of the secretomes from *P. eryngii* were initially reduced prior to isolating the proteins with a chloroform-methanol extraction. To reduce the volumes, centrifugal filters (MilliporeAmicon Ultra-15, 10k MWCO) were used following the vendor protocol for volume concentration. Briefly, the proteins were first denatured by adding 8 M urea and incubating for 1 h at 37°C. The denatured proteins were then added to a spin filter that had been pre-rinsed with 0.1 N NaOH and then 50 mM NH₄HCO₃. The sample was then added to the spin filter and concentrated to less than 0.5 mL by centrifugation ($3220 \times g$, 2 h) at room temperature. The concentrated sample was rinsed three times with 8 M urea in 50 mM NH₄HCO₃ before transferring to a 15-mL Falcon tube that was methanol-chloroform compatible. The volumes were normalized and then the samples were flash frozen and stored at -70°C until ready for extraction.

Methanol-chloroform extraction. Any residual detergents or lipids were removed by performing a methanolchloroform extraction.¹ Keeping each sample on ice, based on the sample volume (Svol), 4x the Svol of chilled methanol (-20°C) and 1x the Svol of chilled chloroform (-20°C) was added. The samples were vortexed gently before adding 3x Svol of chilled nanopure water (4°C) and vortexed to mix well before chilling on ice for 5 minutes. The layers were separated using centrifugation (8k x g, 4°C, 15 minutes) and the top layer was carefully removed and discarded. An additional 3x Svol was added to the tube, the sample was vortexed to mix well, and the proteins were isolated by centrifugation (8k x g, 4°C, 15 minutes) and removal of the supernatant. The protein pellet was allowed to dry completely under nitrogen before resuspending into 8 M urea in 50 mM NH₄HCO₃ and immediately digested.

Tryptic Digestion. The proteins were tryptically digested following a previously published protocol² with the following modifications. The proteins were first denatured with 5 mM dithiotreitol for 30 minutes at 60°C in a thermomixer. After cooling for a few minutes, the samples were diluted 10-fold with 50 mM NH₄HCO₃ and 1 mM CaCl₂ was added. A trypsin solution (1 μ g/uL in 5 mM acetic acid, UBX) was added at an enzyme-to-protein ratio of 1:50 and the samples were incubated for 3 h at 37°C in a thermomixer. The digested proteins were desalted using a C18 SPE column (Supelco) and the final protein concentration was estimated using a BCA protein assay (Pierce). The concentrations were normalized and a portion was diluted to 0.1 ug/uL to be analyzed by LC-MS.

LC-MS Analysis. Data were acquired using a Velos Pro Orbitrap mass spectrometer (Thermo Scientific, San Jose, CA) outfitted with an electrospray ionization (ESI) interface coupled to custom built constant flow highperformance liquid chromatography (HPLC) system. The LC system consisted of two Agilent 1200 nanoflow pumps (Agilent Technologies, Santa Clara, CA), various Valco valves (Valco Instruments Co., Houston, TX), and a PAL autosampler (Leap Technologies, Carrboro, NC). Software developed in-house allowed for automated event coordination of two parallel reversed-phase analytical columns prepared in-house by slurry packing 3-µm Jupiter C18 (Phenomenex, Torrence, CA) into 40-cm x 360 µm o.d. x 75 µm i.d fused silica (Polymicro Technologies Inc., Phoenix, AZ) using a 1-cm sol-gel frit for media retention.³ Electrospray emitters were custom made using 150 um o.d. x 20 um i.d. chemically etched fused silica.⁴ Mobile phases consisted of 0.1% formic acid in water (A) and 0.1% formic acid acetonitrile (B) with a gradient profile as follows (min:%B); 0:5, 2:8, 20:12, 75:35, 97:60, 100: 85 at a flow rate of 300 nL/min. The gradient start was triggered 20 minutes after injecting a 5 uL sample aliquot with data acquisition beginning 15 minutes into the gradient to account for column dead volume. Ion transfer tube temperature and spray voltage were 350°C and 2.2 kV, respectively. Orbitrap spectra (AGC 1x106) were collected for 100 minutes over the mass (m/z) range of 400-2000 at a resolution of 60K followed by data dependent ion trap CID MS/MS (AGC 3x104) of the 10 most abundant ions using a collision energy of 35% and activation time 10 ms. A dynamic exclusion time of 60 seconds was used to discriminate against previously analyzed ions. The parallel use of two columns, allowed each column to be re-generated off-line at the end of each run.

Data search and protein identification. The MS/MS spectra from 15 LC-MS/MS datasets were converted to ASCII text (.dta format) using DeconMSn⁵ which attempts to more precisely assign the charge and parent mass values to an MS/MS spectrum. The data files were then interrogated via target-decoy approach⁶ using MSGFPlus⁷ using a +/-20 ppm parent mass tolerance, partially tryptic enzyme settings (one end of each candidate sequence must contain Lysine or Arginine), and a variable posttranslational modification of oxidized Methionine. All MS/MS search results for each dataset were collated into tab separated ASCII text.

Collated search results were further combined into a single result file. These results were imported into a Microsoft SQL Server database. Using decoy identifications (exactly reversed peptide sequences denoted as "XXX_" in their protein references), we determined the PSM level FDR to be less than 1% when using MSGFPlus's Q-value calculation (681 reversed PSMs from a total 71,995 filter passing PSMs using Q-value <= 0.01). Filter passing results were reported in Table S1. Using the protein references as a grouping term, unique peptides belonging to each protein were counted, as were all PSMs belonging to all peptides for that protein (i.e. a protein level observation count value). PSM observation counts were summed across biological replicates, and were also reported in the excel file. Using the pivot function in excel, a cross-tabulation table was created to enumerate protein level PSM observations for each of the five combined replicate samples, allowing low-precision quantitative comparisons to be made between each sample at the protein level.

Protein sequences for each reported entry were subjected to BLAST analysis (version 2.2.28) using a combined collection of 2,784,909 fungal proteins reported in the Uniprot knowledgebase and NCBI as of September 2014. Results were imported into SQL Server and the highest-similarity identification (lowest e-value, highest percent similarity) extracted. As many of these matches resulted in an uncharacterized or hypothetical protein reference, the highest similarity non-hypothetical entry (does NOT contain "Uncharacterized", "predicted protein", "hypothetical", or "Unplaced") was also extracted for each query allowing for more useful biological inferences to be made. All BLAST results were imported into the excel file and related to the cross-tabulated results to allow further investigation. SignalP 4.0⁸ was finally utilized to predict the presence of signal peptide cleavage sites in the detected proteins.

References

- 1. D. Wessel and U. I. Flugge, Anal. Bioochem., 1984, 138, 141-143.
- S. J. Callister, M. A. Domínguez, C. D. Nicora, X. Zeng, C. L. Tavano, S. Kaplan, T. J. Donohue, R. D. Smith and M. S. Lipton, *J. Proteome Res.*, 2006, 5, 1940-1947.
- 3. A. Maiolica, D. Borsotti and J. Rappsilber, *Proteomics*, 2005, 5, 3847-3850.
- 4. R. T. Kelly, J. S. Page, Q. Luo, R. J. Moore, D. J. Orton, K. Tang and R. D. Smith, *Anal. Chem.*, 2006, 78, 7796-7801.
- 5. A. M. Mayampurath, N. Jaitly, S. O. Purvine, M. E. Monroe, K. J. Auberry, J. N. Adkins and R. D. Smith, *Bioinformatics*, 2008, 24, 1021-1023.
- 6. J. E. Elias and S. P. Gygi, in *Proteome Bioinformatics*, eds. J. S. Hubbard and R. A. Jones, Humana Press, Totowa, NJ, 2010, DOI: 10.1007/978-1-60761-444-9_5, 55-71.
- 7. S. Kim and P. A. Pevzner, *Nat. Commun.*, 2014, 5.
- 8. T. N. Petersen, S. Brunak, G. von Heijne and H. Nielsen, *Nat. Meth.*, 2011, 8, 785-786.

Figures

Fig. S1: Detection of oxidoreductases in the secretome of twelve white-rot fungi: (A) Laccase activity tracked by the oxidation of 5 mM 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) at pH 5 and (B) peroxidase (e.g. manganese peroxidase (MnP) and versatile peroxidase (VP)) activity tracked by the oxidation of 0.1 mM MnSO₄ in the presence of 0.1 mM H₂O₂ at pH5. Data are the result of biological duplicates. The fungi presented in the manuscript are denoted in bold.

Tables:

Table S1: GPC results (M_p , M_n , M_w , PD) - associated to Fig. 4 in the main manuscript- from DMR-EH lignin before and after the enzyme treatments with the fungal secretomes at 3 and 6 days. Tables show the results from treatments with the *P. eryngii* secretome at (A) pH 4.5 and (B) pH 7, treatments with (C) *Bjerkandera* sp. secretome at pH 4.5 and treatments with (D) both fungal secretomes at pH 4.5. Enzyme treatments on DMR-EH lignin were conducted over 3 and 6 days at 30°C and 150 rpm. H₂O₂ and Mn²⁺ were added periodically to treatments containing peroxidases and to the corresponding controls (CTL). Enzyme dosages are expressed as U of enzyme per gram of DMR-EH lignin. Laccase (LA) and peroxidase (PE) activities were calculated following the oxidation of ABTS at the corresponding pH in the absence or the presence of Mn^{2+} and H_2O_2 , respectively. The asterisk (*) highlights 3-day treatments.

(A) P. eryngii secretome pH 4.5

(B) P. eryngii secretome pH 7

	Day	M _p	M _n	M _w	PD		Day	M _p	M _n	M _w	PD
CTL	6	4100	1900	12000	6.7	CTL	6	3700	1300	6100	4.5
10 U/g	6	4100	1700	9600	5.7	3 U/g	6	3800	1400	7400	5.3
50 U/g	6	3900	1500	7700	5.2	15 U/g	6	3700	1500	5600	3.8
100 U/g	6	3600	1100	5600	4.9	30 U/g	6	3200	840	3200	3.8
100 U/g*	3	3600	1200	5400	4.6	30 U/g*	3	390	530	2300	4.4

(C) Bjerkandera sp. secretome pH 4.5

(

	Day	M_p	M _n	M_w	PD		Day	M _p	M,	M	PD
CTL	6	4100	1800	12000	6.5	CTL	6	4100	1800	12000	6.5
8 U/g	6	4100	2100	15000	7.1	5 U/g LA + 4 U/g PE	6	3900	1300	10000	7.9
40 U/g	6	3900	1900	11000	5.7	25 U/g LA + 20 U/g PE	6	4100	1500	8800	6.0
80 U/g	6	3500	950	5600	5.8	50 U/g LA + 40 U/g PE	6	3400	620	3500	5.6
80 U/g*	3	4100	1700	11000	6.3	50 U/g LA + 40 U/g PE*	3	390	700	2000	2.9

Table S2: GPC results (M_p , M_n , M_w , PD) - associated to Fig. 4D in the main manuscript- as a function of time from *P. eryngii* secretome treatments at pH 7 over 4 days of incubation. DMR-EH lignin M_p , M_n , and PD by using different laccase dosages (3, 10, 30 U/g LA) from non-dialyzed secretomes. The asterisk (*) at 4 days corresponds to the control that contains boiled secretome.

Control	M _p	M _n	PD	-	3 U/g LA	M_{ρ}	M _n	PD
1 d	3450 ± 50	1850 ± 150	3.2 ± 0.0		1 d	3550±50	1300 ± 0	4.1 ± 0.0
4 d	3400 ± 0	1800 ± 0	2.9 ± 0.2		2 d	3600 ± 0	1300 ± 0	4.0 ± 0.3
4 d*	3450 + 50	1850 + 150	3.1+0.0		3 d	3350 ± 50	1250 ± 50	3.5 ± 0.2
. u	0 100 2 00	1000 - 100	012 - 010		4 d	3650 ± 50	1850 ± 50	3.0 ± 0.1
10 U/g l	.A M _p	M _n	PD		30 U/g L4	Α Μ _ρ	M _n	PD
1 d	3500 ± 100	1300 ± 0	4.2 ± 0.6		1 d	3350 ± 50	900 ± 100	3.8 ± 0.4
2 d	3400 ± 0	1250 ± 50	3.7 ± 0.0		2 d	3250 ± 50	950 ± 50	4.6 ± 1.0
3 d	3300 ± 0	1050 ± 50	3.4 ± 0.2		3 d	3200 ± 0	800 ± 0	3.8 ± 0.2
4 d	3500 ± 0	1500 ± 100	3.1±0.1	_	4 d	3350 ± 50	1150 ± 50	3.8±0.1

Table S3: Incubation of DMR-EH lignin, the *P. eryngii* secretome, and *P. putida* KT2440 to demonstrate the microbial sink concept. (A) DMR-EH with fungal secretome and bacteria. (B) Bacterial growth after the treatment represented in (B). (C) DMR-EH lignin M_w obtained from the different treatments in the insoluble and soluble fractions. (D) GPC profiles of DMR-EH lignin and other GPC parameters from the insoluble fraction after the different treatments. (E) LC-MS/MS from the soluble fraction at the end point of the different treatments. DMR = DMR-EH with inactivated fungal secretome; DMR+S = DMR-EH with fungal secretome; DMR + B = DMR-EH with bacteria and inactivated secretome; DMR + S + B = DMR-EH with bacteria and fungal secretome; 4-HBA: 4-hydroxybenzoic acid; 4-HB: 4-hydroxybenzaldehyde.

	Mρ	Mn	PD
DMR	3550 ± 50	1650 ± 50	5.0 ± 0.2
DMR+B	3567 ± 58	1633 ± 58	4.5 ± 0.1
DMR+S	3350 ± 50	1200 ± 100	4.3 ± 0.2
DMR+B+S	3100 ± 100	920 ± 10	4.0 ± 0.3

Table S4: Proteomic analysis of the secretome of *Pleurotus eryngii* after 9 days of incubation in the presence of DMR-EH lignin. Protein descriptions are based on the most similar fungal proteins found in Uniprot/NCBI databases (whose access numbers and fungal species are indicated) and organized by functional families: (A) oxidoreductases, (B) glycoside hydrolases, (C) proteinases, (D) esterases, (E) proteins with another function, and (F) proteins with unknown function. The analysis is the result of biological duplicates. E-values, identity, and the presence or absence of a signal peptide (predicted by SignalP) from the different proteins are also included. Proteins in each functional group are organized by "spectral mass counts number" in order of abundance.

(A) OXIDOREDUCTASES							
Best BLAST non-hypothetical					Spectral ma counts	ass	Signal peptide
Access number	Protein description	Fungi	E-value	Identity (%)	Average	Error	
A0A0D2N8Y9_9AGAR	GMC oxidoreductase	Hypholoma sublateritium	0	53.06	1890	103	YES
Q96TR4_PLEOS	Laccase	Pleurotus ostreatus	0	98.08	700	69	YES
D3YBH4_PLEER	Aryl-alcohol oxidase	Pleurotus eryngii	0	99.16	664	1	YES
A0A0C2Y131_HEBCY	Copper radical oxidase	Hebeloma cylindrosporum	0	76.96	275	4	YES
Q9UVY4_PLEOS	Bilirubin oxidase	Pleurotus ostreatus	0	98.12	268	45	YES
A0A0D2N8Y9_9AGAR	GMC oxidoreductase	Hypholoma sublateritium	0	53.06	259	11	YES
B6V331_PLEER	Laccase	Pleurotus eryngii	0	100	239	2	YES
V2WWR3_MONRO	Putative FAD dependent oxidoreductase	Moniliophthora roreri	0	64.35	206	13	YES
A0AQZ6_PLEOS	POXA3b laccase small subunit	Pleurotus ostreatus	2E-124	97.31	205	15	YES
A0A067NSZ9_PLEOS	Laccase	Pleurotus ostreatus	0	94.55	155	1	YES
A0A067N4E7_PLEOS	DyP-type peroxidase	Pleurotus ostreatus	0	91.87	118	10	NO
A0A067PAG4_PLEOS	Putative GMC-oxidase	Pleurotus ostreatus	0	95.15	113	12	YES
A0A067NHL8_PLEOS	DyP-type peroxidase	Pleurotus ostreatus	0	97.48	105	7	YES
Q9P928_PLEPU	Aryl-alcohol oxidase	Pleurotus pulmonaris	0	50.17	59	5	YES
O94219_PLEER	Aryl-alcohol oxidase	Pleurotus eryngii	0	57.82	50	4	YES
V2XEX2_MONRO	Copper radical oxidase	Moniliophthora roreri	0	60.07	44	6	YES
gi 636619781 ref XP_008041025.1	Aldo/keto reductase	Trametes versicolor	3E-149	68.32	43	9	NO
M5BNG8_THACB	Glucose oxidase	Thanatephorus cucumeris	8E-173	46.31	39	1	YES
A0A0D2N8Y9_9AGAR	GMC oxidoreductase	Hypholoma sublateritium	0	53.06	39	4	YES
A0A0C3DRC3_9HOMO	Glyoxal oxidase	Moniliophthora roreri	0	72.33	33	1	YES
A0A0H2RBF2_9HOMO	Alcohol oxidase	Schizopora paradoxa	0	55.94	28	1	YES
A0A067NPB6_PLEOS	Multi-copper oxidase superfamily	Pleurotus ostreatus	0	95.01	20	4	YES
V2X5U0_MONRO	Tyrosinase central domain-containing protein	Moniliophthora roreri	2E-135	56.25	18	1	YES
B0DZR8_LACBS	Glyoxal oxidase	Laccaria bicolor	0	73.33	16	1	YES
A0A0C3DRC3_9HOMO	Glyoxal oxidase	Rhizoctonia solani	0	72.33	14	2	YES
gi 636608221 ref XP_008035245.1	Glyoxal oxidase precursor	Trametes versicolor	0	79.51	14	2	NO
V2X162_MONRO	Aryl-alcohol oxidase	Moniliophthora roreri	0	52.9	11	2	YES
gi 636621931 ref XP_008042100.1	Glyoxal oxidase precursor	Trametes versicolor	0	75.8	9	0	YES
gi 597979803 ref XP_007363089.1	GMC oxidoreductase	Dichomitus squalens	0	56.44	7	1	YES
gi 636621933 ref XP_008042101.1	FMN-linked oxidoreductase	Trametes versicolor	0	68.46	7	1	NO
V2WN23_MONRO	Aryl-alcohol oxidase	Moniliophthora roreri	1E-129	49.29	6	1	NO
D3YJ58_PLEER	Laccase	Pleurotus eryngii	0	99.81	5	1	YES
A0A0D7B374_9HOMO	FMN-linked oxidoreductase	Cylindrobasidium torrendii	2E-163	61.39	5	1	NO
A0A067NL45_PLEOS	Small subunit of laccase POXA3a	Pleurotus ostreatus	4E-118	94.57	5	2	YES

B5MAF4_PLEOS	Phenol oxidase	Pleurotus ostreatus	0	97.89	5	2	YES
A0A0D2N8Y9_9AGAR	GMC oxidoreductase	Hypholoma sublateritium	0	53.06	4	1	YES
A0A0D2N8Y9_9AGAR	GMC oxidoreductase	Hypholoma sublateritium	0	53.06	3	1	YES
A0A0D2KZY8_9AGAR	Copper radical oxidase	Hypholoma sublateritium	0	69.24	3	1	YES
A0A0D7B374_9HOMO	FMN-linked oxidoreductase	Cylindrobasidium torrendii	2E-163	61.39	3	1	NO
gi 597979803 ref XP_007363089.1	GMC oxidoreductase	Dichomitus squalens	0	56.44	3	1	YES
V2WIU4_MONRO	Glutathione-disulfide reductase	Moniliophthora roreri	0	77.22	2	1	NO
A0A067NUD9_PLEOS	Multi-copper oxidase	Pleurotus ostreatus	0	94.8	2	1	YES

(B) GLYCOSIDE HYDROLASES							
Best BLAST non-hypothetical			E-value	Identity (%)	Spectral ma counts	ass	Signal peptide
Access number	Protein description	Fungi			Average	Error	
S7QEU8_GLOTA	Cerato-platanin	Gloeophyllum trabeum	3E-61	66.2	971	78	YES
gi 636609529 ref XP_008035899.1	Cerato-platanin	Trametes versicolor	2E-66	71.43	519	37	YES
G0TES6_PLEOS	Alfa-L-arabinofuranosidase	Pleurotus ostreatus	0	96.13	195	33	YES
A0A067NJI9_PLEOS	Glucoamylase	Pleurotus ostreatus	0	96.2	140	24	YES
A0A067NAN6_PLEOS	Glycoside hydrolase family 79 protein	Pleurotus ostreatus	0	97.25	135	9	YES
A0A067NTS1_PLEOS	1,3-beta-glucanosyltransferase	Pleurotus ostreatus	0	98.41	126	4	YES
A0A067P251_PLEOS	Glycoside hydrolase family 3 protein	Pleurotus ostreatus	0	95.88	75	12	YES
A0A067NVM1_PLEOS	alpha-1,2-Mannosidase	Pleurotus ostreatus	0	97.41	68	16	YES
A0A067NV32_PLEOS	Carbohydrate-binding module family 13 protein	Pleurotus ostreatus	0	93.7	60	8	NO
A0A067NE06_PLEOS	Glycoside hydrolase family 32 protein	Pleurotus ostreatus	0	93.05	60	4	YES
A0A0D7BL56_9HOMO	Glycoside hydrolase family 30 protein	Rhizoctonia solani	0	61.39	60	8	YES
S3DB13_GLAL2	Six-hairpin glycosidase	Glarea lozoyensis	2E-164	40.32	57	27	YES
A0A067NYS5_PLEOS	Glycoside hydrolase family 79 protein	Pleurotus ostreatus	0	95.39	56	3	YES
A0A067P1A5_PLEOS	Glycoside hydrolase family 3 protein	Pleurotus ostreatus	0	96.21	50	0	YES
A0A067NNN7_PLEOS	Glycoside hydrolase family 43 protein	Pleurotus ostreatus	0	88.99	49	1	YES
A0A074RMJ0_9HOMO	Putative glycoside hydrolase family 43 protein	Rhizoctonia solani	0	61.28	47	8	YES
A0A067N9V0_PLEOS	Glycoside hydrolase family 3 protein	Pleurotus ostreatus	0	98.15	45	9	YES
A0A067NAE1_PLEOS	Carbohydrate-binding module family 13 protein	Pleurotus ostreatus	0	97.85	42	16	YES
A0A067NZH6_PLEOS	Glycoside hydrolase family 105 protein	Pleurotus ostreatus	0	94.19	39	6	NO
A0A067NZB6_PLEOS	Glycoside hydrolase family 17 protein	Pleurotus ostreatus	0	96.76	31	0	NO
A0A067NQ10_PLEOS	Alpha-galactosidase	Pleurotus ostreatus	0	89.84	31	5	YES
A0A067P1X3_PLEOS	Glycoside hydrolase family 16 protein	Pleurotus ostreatus	6E-174	96.36	29	5	YES
A0A067NLD3_PLEOS	Beta-xylanase	Pleurotus ostreatus	0	91.43	28	0	YES
A0A067P022_PLEOS	Glycoside hydrolase family 61 protein	Pleurotus ostreatus	3E-153	95.78	28	6	YES
A0A067NT33_PLEOS	Carbohydrate esterase family 12 protein	Pleurotus ostreatus	2E-170	97.64	25	1	YES
A0A067P7X8_PLEOS	Glycoside hydrolase family 105 protein	Pleurotus ostreatus	0	95.79	24	4	YES
V2XER0_MONRO	Alpha beta hydrolase fold family	Moniliophthora roreri	7E-155	52.53	24	2	NO
V2YA34_MONRO	Arabinofuranosidase	Moniliophthora roreri	7E-154	81.85	20	3	NO
A0A067NUA1_PLEOS	Glycoside hydrolase family 3 protein	Pleurotus ostreatus	0	94.59	18	2	NO
A0A067NJP3_PLEOS	Glycoside hydrolase family 28 protein	Pleurotus ostreatus	0	96.92	16	1	YES
A0A067NTX6_PLEOS	Alpha-galactosidase	Pleurotus ostreatus	0	87.31	14	2	YES
A0A067PBN9_PLEOS	Glycoside hydrolase family 5 protein	Pleurotus ostreatus	0	98.76	13	3	YES
A0A0D6A8W8_PLEER	Glucanase	Pleurotus eryngii	0	96.29	13	4	YES
G3JQR4_CORMM	Glycoside hydrolase, family 25	Cordyceps militaris	6E-43	52.78	13	1	YES

A0A067P815_PLEOS	Glycoside hydrolase family 61 protein	Pleurotus ostreatus	4E-174	96.79	13	2	YES
A0A067NUL1_PLEOS	alpha-1,2-Mannosidase	Pleurotus ostreatus	0	87.94	12	1	YES
A0A067NXU0_PLEOS	Carbohydrate esterase family 4 protein	Pleurotus ostreatus	0	96.06	12	3	YES
A0A067P1W9_PLEOS	Glycoside hydrolase family 16 protein	Pleurotus ostreatus	0	98.77	12	8	NO
A0A067P251_PLEOS	Glycoside hydrolase family 3 protein	Pleurotus ostreatus	0	95.88	12	4	NO
A0A067N637_PLEOS	Glycoside hydrolase family 12 protein	Pleurotus ostreatus	4E-171	97.32	12	2	YES
A0A067P260_PLEOS	Glycoside hydrolase family 18 protein	Pleurotus ostreatus	0	96.61	10	1	YES
A0A067P3G0_PLEOS	Glycoside hydrolase family 43 protein	Pleurotus ostreatus	0	97.33	10	2	YES
A0A067NYF1_PLEOS	Glycoside hydrolase family 16 protein	Pleurotus ostreatus	0	92.86	9	2	YES
A0A067NUN5_PLEOS	Polysaccharide lyase family 8 protein	Pleurotus ostreatus	0	96.44	9	1	YES
A0A067N976_PLEOS	Glycoside hydrolase family 18 protein	Pleurotus ostreatus	0	95	8	4	YES
B0D2X1_LACBS	Cerato-platanin-related secreted protein	Laccaria bicolor	2E-45	55.47	8	4	YES
A0A067N715_PLEOS	Glycoside hydrolase family 28	Pleurotus ostreatus	0	93.01	7	3	YES
V2XUY0_MONRO	Glycoside hydrolase family 16 protein	Moniliophthora roreri	2E-117	69.41	7	3	YES
A0A067NFB3_PLEOS	Beta-galactosidase	Pleurotus ostreatus	0	95.38	7	4	NO
A0A067P149_PLEOS	Glycoside hydrolase family 31	Pleurotus ostreatus	0	95.81	7	3	YES
A0A067NPC3_PLEOS	Beta-hexosaminidase	Pleurotus ostreatus	0	93.49	7	4	YES
A0A067NXA3_PLEOS	Glycoside hydrolase family 28 protein	Pleurotus ostreatus	0	82.72	7	1	YES
A0A067NYG5_PLEOS	Polysaccharide lyase family 1 protein	Pleurotus ostreatus	1E-178	90.38	7	1	YES
A0A0D2KN72_9AGAR	Carbohydrate-binding module family 50 protein	Hypholoma sublateritium	1E-27	49.56	6	0	YES
A0A067NIV2_PLEOS	Glycoside hydrolase family 61 protein	Pleurotus ostreatus	5E-116	81.07	6	4	YES
A0A067PDP4_9HOMO	Carbohydrate-binding module 1 protein	Jaapia argillacea	0	64.91	6	1	NO
A0A067P0F8_PLEOS	Glycoside hydrolase family 16 protein	Pleurotus ostreatus	0	97.12	6	1	YES
A0A067N6T7_PLEOS	Glycoside hydrolase family 3 protein	Pleurotus ostreatus	0	94.07	5	1	YES
A0A067NXA3_PLEOS	Glycoside hydrolase family 28 protein	Pleurotus ostreatus	0	82.72	5	2	YES
A0A067NRR9_PLEOS	Polysaccharide lyase family 8 protein	Pleurotus ostreatus	0	95.98	5	1	YES
A0A067P3Z6_PLEOS	Glycoside hydrolase family 5 protein	Pleurotus ostreatus	0	98.48	5	1	NO
M5A7J8_GRIFR	Cerato-platanin-like protein 1	Grifola frondosa	3E-55	62.67	5	1	YES
A0A067NI47_PLEOS	Glycoside hydrolase family 30 protein	Pleurotus ostreatus	0	97.18	4	0	YES
A0A067P6M4_PLEOS	Carbohydrate-binding module family 13 protein	Pleurotus ostreatus	4E-101	92.26	4	2	YES
A0A067NX11_PLEOS	Glycoside hydrolase family 92 protein	Pleurotus ostreatus	0	93.38	4	1	NO
A0A067NUF0_PLEOS	Carbohydrate-binding module family 13 protein	Pleurotus ostreatus	2E-104	96.77	3	0	YES
A0A067PDE2_PLEOS	Glycoside hydrolase family 55 protein	Pleurotus ostreatus	0	97.2	3	0	YES
S7S1G5_GLOTA	Glycoside hydrolase	Gloeophyllum trabeum	8E-114	48.82	3		YES
A0A067NUM1_PLEOS	Glycoside hydrolase family 5 protein	Pleurotus ostreatus	0	91.09	3	0	YES
G3JQR4_CORMM	Glycoside hydrolase, family 25	Cordyceps militaris	6E-43	52.78	3	0	NO
A0A067P0T8_PLEOS	Glycoside hydrolase family 88 protein	Pleurotus ostreatus	0	93.4	3		NO
A0A067NB35_PLEOS	Beta-galactosidase	Pleurotus ostreatus	0	90.66	3	1	NO
A0A067N6L2_PLEOS	Glycoside hydrolase family 78 protein	Pleurotus ostreatus	0	94.12	3	1	YES
V2XVB2_MONRO	Glycoside hydrolase family 18 protein	Moniliophthora roreri	1E-163	67.47	3	1	YES
A0A067NB35_PLEOS	Beta-galactosidase	Pleurotus ostreatus	0	90.66	2	0	YES
A0A067NHA4_PLEOS	Glycoside hydrolase family 61 protein	Pleurotus ostreatus	0	89.46	2	0	YES
BOCU10_LACBS	MFS monosaccharide transporter	Laccaria bicolor	0	78.8	2	0	NO
A0A067NQW1_PLEOS	Trehalase	Pleurotus ostreatus	0	95.4	2	0	YES
A0A067P685_PLEOS	Arabinogalactan endo-beta-1,4-galactanase	Pleurotus ostreatus	0	93.59	2	1	YES
A0A067NLV1_PLEOS	Glycoside hydrolase family 79 protein	Pleurotus ostreatus	0	96.75	2	1	YES
A0A067NL40_PLEOS	Carbohydrate-binding module family 13 protein	Pleurotus ostreatus	0	97.31	2	1	YES
A0A067P3L9_PLEOS	Carbohydrate esterase family 4 protein	Pleurotus ostreatus	0	96.9	2	0	YES
A0A0C2XGR8_AMAMU	Glycoside hydrolase family 125 protein	Amanita muscaria	0	77.38	2	1	NO

(C) PROTEINASES							
Best BLAST non-hypothetical			E-value	Identity (%)	Spectral ma counts	ass	Signal peptide
Access number	Protein description	Fungi			Average	Error	
A6P7M6_CHLMY	Peptidyl-Lys metalloendopeptidase	Chlorophyllum molybdites	2E-149	61.32	421	16	YES
V2X6J0_MONRO	Tripeptidyl peptidase a	Moniliophthora roreri	0	60.54	350	22	YES
Q6ZYK6_PLEOS	Subtilisin-like protease	Pleurotus ostreatus	0	97.31	183	21	YES
A0A097IYG6_PLEER	Serine proteinase	Ashbya gossypii	2E-178	67.52	119	3	YES
K9HY03_AGABB	Carboxypeptidase	Agaricus bisporus var. bisporus	0	75	92	4	YES
A0A067NYE7_PLEOS	Peptide hydrolase	Pleurotus ostreatus	0	96.65	85	8	YES
V2XDI6_MONRO	Aspartic peptidase a1	Moniliophthora roreri	3E-157	57.27	51	7	YES
A0A0D7BN91_9HOMO	Extracellular elastinolytic metallo proteinase	Rhizoctonia solani	0	65.85	48	12	NO
A0A067N455_PLEOS	Peptide hydrolase	Pleurotus ostreatus	0	88.81	47	1	NO
A0A097IYG6_PLEER	Serine proteinase	Pleurotus eryngii	2E-178	67.52	31	4	YES
U6A6W7_PLEOS	Aspartic protease	Pleurotus ostreatus	0	98.01	31	8	YES
X8IWS6_9HOMO	Peptidase family s41 domain protein, putative	Rhizoctonia solani	4E-163	41.69	28	1	YES
Q8TGE4_COPCI	Leucine aminopeptidase	Coprinopsis cinerea	0	72.95	27	6	NO
V2XQK0_MONRO	Tripeptidyl peptidase	Moniliophthora roreri	0	69.04	26	7	YES
S7QH46_GLOTA	Zn-dependent exopeptidase	Gloeophyllum trabeum	0	58.73	24	8	NO
gi 597911709 ref XP_007303153.1	Zn-dependent exopeptidase	Stereum hirsutum	0	61.62	23	0	NO
gi 597972679 ref XP_007361264.1	Creatinase/aminopeptidase [LYAD-421 SS1]	Dichomitus squalens	5E-144	51.47	18	1	NO
W4JMJ9_9HOMO	Serine protease S8	Heterobasidion irregulare	0	64.26	18	1	YES
A0A067N859_PLEOS	Peptide hydrolase	Pleurotus ostreatus	0	89.87	17	4	YES
B0DCT4_LACBS	Aspartic peptidase A1	Coprinopsis cinerea	3E-138	53.37	14	1	YES
S7RKM8_GLOTA	Acid protease	Laccaria bicolor	0	47.68	14	2	NO
W4KN38_9HOMO	Aspartic peptidase	Heterobasidion irregulare	0	70.77	10	3	YES
A0A067NV51_PLEOS	Dipeptidase	Pleurotus ostreatus	0	95.74	7	1	NO
gi 636607343 ref XP_008034806.1	peptidase S28	Trametes versicolor	0	68.33	7	1	YES
A0A067N7S5_PLEOS	Peptide hydrolase	Pleurotus ostreatus	0	93.12	6	0	NO
X8IVN7_9HOMO	IgA peptidase M64	Rhizoctonia solani	8E-150	49.03	6	1	YES
A8NGX3_COPC7	Leucyl aminopeptidase	Coprinopsis cinerea	0	64.71	6	1	NO
S7S0P1_GLOTA	Peptidase M18, aminopeptidase	Gloeophyllum trabeum	0	78.94	5	3	NO
A0A067NXD4_PLEOS	Peptide hydrolase	Pleurotus ostreatus	0	95.31	4	1	YES
A0A067NID9_PLEOS	Peptide hydrolase	Pleurotus ostreatus	0	93.9	4	4	YES
V2XZJ8_MONRO	Zinc metalloprotease	Moniliophthora roreri	0	69.06	4	1	NO
W4JQ52_9HOMO	Metallo peptidase M36	Heterobasidion irregulare	0	69.98	3	1	YES
S8EK55_FOMPI	Proline iminopeptidase	Fomitopsis pinicola	0	82.69	3	1	NO
B0D4S6_LACBS	Glutamate carboxypeptidase	Laccaria bicolor	0	80.92	2	1	NO
A0A077K7X8_PLEER	Serine aminopeptidase	Pleurotus eryngii	0	80.34	2	1	NO

(D) ESTERASES							
Best BLAST non-hypothetical			E-value	Identity (%)	Spectral ma counts	ass	Signal peptide
Access number	Protein description	Fungi			Average	Error	
A0A067NTY7_PLEOS	Carbohydrate esterase family 4 protein	Pleurotus ostreatus	0	97.37	151	10	YES
A0A067NAF9_PLEOS	Carboxylic ester hydrolase	Pleurotus ostreatus	0	91.54	84	11	YES
A0A067NUV8_PLEOS	Pectinesterase	Pleurotus ostreatus	0	97.01	80	5	YES
A0A067NJF8_PLEOS	Carbohydrate esterase family 4 protein	Pleurotus ostreatus	2E-159	91.25	75	23	YES
V2YSM2_MONRO	Carbohydrate esterase family 12 protein	Moniliophthora roreri	2E-119	67.35	68	11	YES
A0A067PBW7_PLEOS	Carboxylic ester hydrolase	Pleurotus ostreatus	0	97.14	54	4	YES
V6BP73_PLEER	Carboxylic ester hydrolase	Pleurotus eryngii	0	99.64	38	4	YES
A0A067NPE5_PLEOS	Carbohydrate esterase family 8	Pleurotus ostreatus	0	94.12	37	0	YES
W4KLA6_9HOMO	Carbohydrate esterase family 4 protein	Heterobasidion irregulare	0	75.49	29	10	YES
A0A067N5U7_PLEOS	Carbohydrate esterase family 1 protein	Pleurotus ostreatus	0	97.56	28	4	YES
A0A067NXE9_PLEOS	Carboxylic ester hydrolase	Pleurotus ostreatus	0	98.89	21	9	YES
A0A067NLL5_PLEOS	Carbohydrate esterase family 4 protein	Pleurotus ostreatus	0	96.05	18	4	YES
S7RRX7_GLOTA	Carbohydrate esterase family 9 protein	Gloeophyllum trabeum	0	62.42	17	3	NO
A0A0F7VK25_9AGAR	GDSL like lipase	Pleurotus sapidus	0	95.27	12	3	YES
gi 599118120 ref XP_007386740.1	Lipase	Punctularia strigosozonata	2E-137	63.12	12	1	YES
A0A067NF84_PLEOS	Carbohydrate esterase family 4 protein	Pleurotus ostreatus	0	97.64	12	1	YES
V2YES2_MONRO	Carbohydrate esterase family 16 protein	Moniliophthora roreri	3E-136	56.95	10	8	YES
A0A067N8C4_PLEOS	Carbohydrate esterase family 4 protein	Pleurotus ostreatus	2E-176	97.96	7	4	YES
A0A067NL12_PLEOS	Carbohydrate esterase family 4 protein	Pleurotus ostreatus	0	96.77	6	1	YES
B0D886_LACBS	Carbohydrate esterase family 9 protein	Laccaria bicolor	0	65.41	4	0	NO
A0A067NGD7_PLEOS	Carbohydrate esterase family 4 protein	Pleurotus ostreatus	0	97.58	4	1	YES
gi 597968945 ref XP_007360303.1	PLC-like phosphodiesterase	Dichomitus squalens	2E-143	66.9	2	0	YES
A0A067NLJ6_PLEOS	Carboxylic ester hydrolase	Pleurotus ostreatus	0	94.61	2	0	YES

(E) OTHER FUNCTION							
Best BLAST non-hypothetical	_	_	E-value	Identity (%)	Spectral ma counts	ass	Signal peptide
Access number	Protein description	Fungi			Average	Error	
R8BRC1_TOGMI	Putative virulence plasmid b protein	Togninia minima	2E-50	23.76	229	6	NO
V2WWH5_MONRO	Serine-threonine rich	Moniliophthora roreri	2E-21	38.1	185	40	YES
V2X6R9_MONRO	Oxalate decarboxylase	Moniliophthora roreri	0	74.19	159	11	YES
gi 636610047 ref XP_008036158.1	Immunomodulatory protein	Trametes versicolor	2E-49	65.38	130	20	YES
V2XJ06_MONRO	Membrane autotransporter barrel domain protein	Moniliophthora roreri	0	62.71	89	8	YES
X8J981_9HOMO	Transmembrane protein, putative	Rhizoctonia solani	2E-28	36.96	85	8	YES
R9AHX0_WALI9	Coiled-coil domain-containing protein	Wallemia ichthyophaga	4E-88	64.52	74	10	YES
V2YLX4_MONRO	Extracellular dioxygenase	Moniliophthora roreri	2E-94	53.44	72	8	YES
Q75VR2_PLEER	Ribonuclease T2	Pleurotus eryngii	0	91.06	61	4	YES
M2PP67_CERS8	CsMn38	Ceriporiopsis subvermispora	1E-32	52.67	59	13	YES
A0A086T8T8_ACRCH	Mediator of RNA polymerase II transcription subunit- like protein	Acremonium chrysogenum	2.3	31.33	51	1	NO
A0A0A1UUM1_9HYPO	Ketosteroid isomerase-like protein	Metarhizium robertsii	0.0005	28.67	51	6	YES
I6UR56_ENCHA	Cyclin-dependent protein	Encephalitozoon hellem	0.004	28.07	48	18	YES
V2YLU2_MONRO	Nhl repeat-containing protein	Moniliophthora roreri	1E-154	55.33	46	3	YES

gi 636607513 ref XP_008034891.1	Galactose mutarotase-like protein	Trametes versicolor	0	71.15	44	0	YES
A0A067NZB1_PLEOS	S-adenosylmethionine synthase	Pleurotus ostreatus	0	99.48	40	4	NO
Q753M7_ASHGO	AFR285Cp	Ashbya gossypii	3E-50	100	40	2	NO
A0A0D7BTI4_9HOMO	Class I glutamine amidotransferase-like protein	Rhizoctonia solani	2E-81	57.01	39	2	NO
M5BXC7_THACB	Pathogenesis-related protein 5	Thanatephorus cucumeris	8E-143	78.04	38	2	YES
B1Q4S7_PLEOS	Ribonuclease T1	Pleurotus ostreatus	1E-81	95.24	35	3	YES
Q9P356_LENED	Nuclease Le1	Lentinula edodes	5E-105	62.18	35	1	NO
V2WHJ4_MONRO	Chitin synthase	Moniliophthora roreri	4E-11	34.93	35	0	NO
V2XER0_MONRO	Alpha beta hydrolase fold family	Moniliophthora roreri	7E-155	52.53	35	2	NO
G9MD63_PLEOS	Glyceraldehyde-3-phosphate dehydrogenase	Pleurotus ostreatus	0	100	32	4	NO
A0A074S4Z0_9HOMO	Putative Ran-binding protein	Rhizoctonia solani	2E-94	66.05	31	4	YES
G4THH4_PIRID	Related to TY3B-TY3B protein	Piriformospora indica	0.73	27.27	28	6	NO
A0A067P1S4 PLEOS	Aspartate aminotransferase	Pleurotus ostreatus	0	97.8	28	1	NO
V2XHH7_MONRO	Fad binding domain-containing protein	Moniliophthora roreri	5E-150	45.68	27	4	YES
A0A067NPM1 PLEOS	Superoxide dismutase	Pleurotus ostreatus	1E-118	89.23	27	8	NO
V2XBH5 MONRO	Formate dehydrogenase	Moniliophthora roreri	0	87.64	26	1	NO
A0A0A8IBD8 PLEOS	Lipoxygenase	Pleurotus ostreatus	0	97.51	26	4	NO
A0A067NEK4 PLEOS	Peptidyl-prolyl cis-trans isomerase	Pleurotus ostreatus	3E-110	96.91	26	5	NO
	Alpha/beta-hydrolase	Fomitiporia mediterranea	3E-69	44.33	24	4	YES
gi 597901894 ref XP_007298246.1	Dienelactone hydrolase	Stereum hirsutum	2E-168	82.18	23	0	NO
gi 628835621 ref XP_007768114.1	Alpha beta-hydrolase	Coniophora puteana	1E-145	59.52	23	4	YES
E2LF87 MONPE	Enolase	Moniliophthora perniciosa	0	95.58	21	6	NO
A0A067NCD3 PLEOS	Transaldolase	Pleurotus ostreatus	0	98.77	20	3	NO
gi 597911309 ref XP_007302953.1	Cobalamin-independent methionine synthase	Stereum hirsutum	0	85.36	20	3	NO
V2WXW2 MONRO	Maior roval jelly protein	Moniliophthora roreri	0	68.3	20	7	NO
	Cytochrome b2 (L-lactate ferricytochrome C		05.404	== 00			
	oxidoreductase)	Rhizoctonia solani	2E-121	55.98	20	5	YES
V2X4P6_MONRO	Acetyl-hydrolase	Moniliophthora roreri	0	82.2	20	2	NO
A0A0D7BIU0_9HOMO	Cupredoxin	Rhizoctonia solani	2E-98	51.98	20	1	YES
S7PXC3_GLOTA	Malate dehydrogenase	Gloeophyllum trabeum	5E-71	48.73	19	1	YES
X8JM78_9HOMO	GEgh 16 protein, putative	Rhizoctonia solani	7E-83	70.97	17	1	YES
A0A067NID3_PLEOS	tRNA pseudouridine synthase	Pleurotus ostreatus	0	84.28	17	1	NO
gi 599119355 ref XP_007387147.1	NAD(P)-binding protein	Punctularia strigosozonata	1E-104	62.99	15	1	NO
V2X1Q4_MONRO	Fumarylacetoacetate hydrolase domain-containing protein 2a	Moniliophthora roreri	7E-137	63.37	15	6	YES
A8NBU8 COPC7	Carbonic anhydrase	Coprinopsis cinerea	3E-50	53.94	14	3	NO
S7PXC3_GLOTA	Malate dehydrogenase	Gloeophyllum trabeum	5E-71	48.73	13	3	YES
V2XER0 MONRO	Alpha beta hydrolase fold family	Moniliophthora roreri	7E-155	52.53	13	6	YES
Q9C1M8_PLESA	Catalase	Pleurotus sajor-caju	0	97.35	13	2	NO
	Amidase signature enzyme	Fomitiporia mediterranea	0	77.52	13	8	NO
A0A0D7BR14_9HOMO	Aldehyde dehydrogenase	Cylindrobasidium torrendii	0	73.19	11	1	NO
A0A0C6DUW9_GRIFR	Gf.ODC1 protein	Polyporus frondosus	0	72.27	11	1	YES
A0A086TGA7_ACRCH	Serine/threonine-protein kinase-like protein	Acremonium chrysogenum	0.007	31.31	11	4	YES
A0A074S9X6_9HOMO	Putative six-hairpin glycosidase-like protein	Rhizoctonia solani	0	54.79	11	4	YES
B0DJI3_LACBS	Ectomycorrhiza-regulated small secreted protein	Laccaria bicolor	0.37	22.56	10	5	YES
M2PP67_CERS8	CsMn38	Ceriporiopsis subvermispora	1E-32	52.67	10	6	YES
G4THH4_PIRID	Related to TY3B-TY3B protein	Piriformospora indica	0.73	27.27	10	1	NO
V2WRU0_MONRO	Putative actin filament organization protein App1- like	Moniliophthora roreri	1E-115	51.08	9	0	YES

B0E0N3_LACBS	NADP-dependent mannitol dehydrogenase MtDH	Laccaria bicolor	7E-151	78.24	9	4	NO
A0A0C3FTH1_9HOMO	Glucooligosaccharide oxidase	Rhizoctonia solani	6E-158	54.77	9	1	YES
V2WRN7_MONRO	Macrofage activating glycoprotein	Moniliophthora roreri	7E-148	59.83	9	1	YES
A0A067NZL3_PLEOS	Transaldolase	Pleurotus ostreatus	0	98.77	8	1	NO
V2XDY3_MONRO	D-lactonohydrolase-like protein	Moniliophthora roreri	0	74.39	8	3	NO
A0A074RKL3_9HOMO	Ferritin-like protein	Rhizoctonia solani	1E-18	36.9	8	3	NO
A0A067NUP7_PLEOS	Aspartate aminotransferase	Pleurotus ostreatus	0	99.06	8	1	NO
L8WU55_THACA	SKG6 domain-containing protein	Thanatephorus cucumeris	7E-47	37.74	8	2	YES
A0A067NKD5_PLEOS	Peptidyl-prolyl cis-trans isomerase	Pleurotus ostreatus	8E-87	93.94	8	1	NO
A0A0A8L9E4_9SACH	Coatomer subunit alpha	Kluyveromyces dobzhanskii	5.7	31.08	8	1	NO
A0A074RTR7_9HOMO	Protein transporter Sec23	Rhizoctonia solani	1E-51	40.43	8	1	NO
V2XK68_MONRO	Dj-1 family protein	Moniliophthora roreri	2E-97	65.12	8	1	YES
X8IX14_9HOMO	Ferritin-like protein	Rhizoctonia solani	0.000006	32.09	8	2	NO
V2YID8_MONRO	Vacuolar protein	Moniliophthora roreri	0	65.38	7	3	YES
A0A067NH04_PLEOS	Profilin	Pleurotus ostreatus	2E-74	90.48	7	1	NO
B6HJZ8_PENCW	Pc21g02480 protein	Penicillium chrysogenum	8E-12	35.9	7	1	YES
D2JY76_PLEOS	Superoxide dismutase	Pleurotus ostreatus	8E-118	97.24	7	5	NO
M5G747_DACSP	DUTP diphosphatase	Dacryopinax sp.	2E-86	91.97	7	4	NO
V2WRN7_MONRO	Macrofage activating glycoprotein	Moniliophthora roreri	7E-148	59.83	7	1	YES
A0A074S4Z0_9HOMO	Putative Ran-binding protein	Rhizoctonia solani	2E-94	66.05	7	2	YES
G7XH64_ASPKW	Similar to An15g00620	Aspergillus kawachii	5E-09	31.43	7	2	NO
A0A0B4GK80_9HYPO	FAD binding domain-containing protein	Metarhizium brunneum	2.6	30.28	7	1	NO
S7RVM0_GLOTA	Phytase	Gloeophyllum trabeum	0	62.78	7	1	NO
A0A0D1E1U3_USTMA	Chromosome 5, whole genome shotgun sequence	Ustilago maydis	1E-10	28.57	6	4	YES
gi 597971127 ref XP_007360861.1	Cofactor-independent phosphoglycerate mutase	Dichomitus squalens	0	80.46	6	3	NO
V2Y6M8_MONRO	Ornithine aminotransferase	Moniliophthora roreri	0	80.09	6	1	NO
A8NV50_COPC7	WSC domain-containing protein	Coprinopsis cinerea (8E-162	60.7	6	1	YES
V2WGW3_MONRO	Aldolase citrate lyase family protein	Moniliophthora roreri	6E-117	64.55	6	2	NO
gi 599112879 ref XP_007385021.1	Eliciting plant response-like protein	Punctularia strigosozonata	4E-40	60.19	6	1	NO
V2XHB5_MONRO	Hesp-379-like protein	Moniliophthora roreri	5E-41	45.24	6	2	YES
gi 595786154 ref XP_007271620.1	PEBP-like protein	Fomitiporia mediterranea	9E-67	56.44	6	4	YES
V2XD50_MONRO	Short-chain dehydrogenase reductase sdr	Moniliophthora roreri	2E-120	68.38	6	1	NO
V2W6S8_MONRO	Epoxide hydrolase	Moniliophthora roreri	4E-116	50.61	6	2	NO
H1AFL5_PLEOS	Glyceraldehyde-3-phosphate dehydrogenase	Pleurotus ostreatus	0	98.98	5	3	NO
V2YGF9_MONRO	Chitin binding	Moniliophthora roreri	2E-77	63.01	5	0	YES
A0A0D7BAF1_9HOMO	Inorganic diphosphatase	Cylindrobasidium torrendii	0	88.18	5	0	NO
L8WD12_THACA	GPI-anchored domain-containing protein	Rhizoctonia solani	2E-27	46.4	5	1	YES
A0A0B2X373_9HYPO	Extracellular serine-rich protein	Metarhizium album	2E-20	44.6	5	0	YES
gi 628838035 ref XP_007769308.1	Heat shock protein	Coniophora puteana	0	89.32	5	2	NO
V2X3A6_MONRO	Serine-threonine protein phosphatase	Moniliophthora roreri	6E-178	72.98	5	1	YES
gi 636620133 ref XP_008041201.1	D-lactonohydrolase-like protein	Trametes versicolor	2E-142	54.93	5	1	YES
A0A0A1ULS1_9HOMO	Ricin-type beta-trefoil lectin domain protein	Rhizoctonia solani	3.1	27.68	5	1	NO
B0CU00_LACBS	Phosphoglucomutase	Laccaria bicolor	0	84.42	5	1	NO
S7Q8D4_GLOTA	Sure-like protein	Gloeophyllum trabeum	5E-116	59.79	5	4	YES
A0A0H2STW2_9HOMO	Cupredoxin	Schizopora paradoxa	2E-95	43.38	5	1	YES
gi 597907694 ref XP_007301146.1	Heat shock protein 70	Stereum hirsutum	0	94.27	4	3	NO
A0A067N5Y3_PLEOS	Dihydrolipoyl dehydrogenase	Pleurotus ostreatus	0	98.23	4	1	NO
V2XB56_MONRO	Neutral ceramidase	Moniliophthora roreri	0	70.99	4	0	YES
V2X4R1_MONRO	Stomatin family protein	Moniliophthora roreri	0	80.74	4	1	NO

gi 595777092 ref XP_007267089.1	Alpha/beta-hydrolase	Fomitiporia mediterranea	3E-69	44.33	4	3	YES
gi 628829085 ref XP_007764846.1	FAS1 domain-containing protein	Coniophora puteana	5E-81	35.28	4	0	YES
V2YHR5_MONRO	Abhydrolase domain-containing protein 12	Moniliophthora roreri	5E-129	49.23	4	1	NO
A0A0D7AGU2_9AGAR	Arginase/deacetylase	Fistulina hepatica	0	78.12	4	0	YES
A0A099P3U9_PICKU	Serine/threonine-protein kinase	Pichia kudriavzevii	2.8	28.3	4	3	NO
R7S5S7_PUNST	GroES-like protein	Punctularia strigosozonata	0.46	31.36	4		NO
B6GW49_PENCW	Pc06g01100 protein	Penicillium chrysogenum	2E-22	34.8	4		NO
V2XJA5_MONRO	Cellular morphogenesis protein	Moniliophthora roreri	0	57.77	4	1	YES
V2XIT2_MONRO	Glutamyl-trna amidotransferase subunit a	Moniliophthora roreri	0	72.69	4		NO
V2WVC1_MONRO	Phosphatidylserine decarboxylase	Moniliophthora roreri	0	72.85	4	2	NO
A0A067NS53_PLEOS	Pyruvate carboxylase	Pleurotus ostreatus	0	99	4	2	NO
A0A067NYN3_PLEOS	6,7-dimethyl-8-ribityllumazine synthase	Pleurotus ostreatus	2E-151	98.58	4	2	NO
X8JFM1_9HOMO	Transmembrane protein, putative	Rhizoctonia solani	5E-42	30.1	4	1	NO
V2XHI8_MONRO	Phospholipase C/P1 nuclease	Moniliophthora roreri	5E-149	54	4	1	YES
V2X5R0_MONRO	Immunomodulatory protein	Pleurotus ostreatus	8E-09	26.78	4	1	YES
A0A067N4P4_PLEOS	OPT superfamily	Pleurotus ostreatus	0	97.58	4	1	NO
V2XPL7_MONRO	Fumarylacetoacetate hydrolase	Moniliophthora roreri	5E-165	74.34	4	1	NO
A0A067N7N9_PLEOS	Fet3 ferroxidase	Pleurotus ostreatus	0	98.73	4	1	YES
V2YRZ7_MONRO	Gpi-anchored small secreted protein	Moniliophthora roreri	6E-26	41.13	4	1	YES
V2XAL1_MONRO	Guanine nucleotide binding protein beta subunit 2	Moniliophthora roreri	0	96.29	3	0	NO
V2XDS5_MONRO	Fumarate reductase	Moniliophthora roreri	0	84.3	3		NO
A0A0D7B1T3_9HOMO	1-Cys peroxiredoxin isozyme	Cylindrobasidium torrendii	8E-93	78.36	3		NO
V2X374_MONRO	Sub60s ribosomal protein	Moniliophthora roreri	7E-117	90.32	3		NO
S7QCY4_GLOTA	Sm-like ribonucleo protein	Gloeophyllum trabeum	1E-79	95.31	3		NO
A0A067NV87_PLEOS	Glucose-6-phosphate isomerase	Pleurotus ostreatus	0	99.09	3		NO
A0A067TDZ6_9AGAR	3,4-dihydroxy-2-butanone 4-phosphate synthase	Galerina marginata	1E-121	66.27	3		NO
V2XER0_MONRO	Alpha beta hydrolase fold family	Moniliophthora roreri	7E-155	52.53	3	0	YES
X8IZK9_9HOMO	Allergen protein	Rhizoctonia solani	3E-81	72.62	3	0	YES
A0A0C3G6Z6_9HOMO	Imidazoleglycerol-phosphate dehydratase	Piloderma croceum	8E-135	91.54	3	0	NO
W4JRY9_9HOMO	Lep6-lignin expressed protein 6	Heterobasidion irregulare	5E-28	27.58	3	0	NO
V2WWY6_MONRO	Hydrophobic surface binding protein	Moniliophthora roreri	4E-48	52.46	3	3	YES
A0A074S8Y2_9HOMO	Putative transmembrane protein	Rhizoctonia solani	1E-76	43.57	3	3	YES
A0A0H2S0W7_9HOMO	Gamma-glutamyltranspeptidase	Schizopora paradoxa	0	69.31	3		NO
V2XWZ3_MONRO	Putative aminotransferase	Moniliophthora roreri	0	69.04	3		NO
E4ZP67_LEPMJ	Similar to stress responsive alpha-beta barrel domain-containing protein	Leptosphaeria maculans	0.00009	29.25	3	1	NO
gi 597976059 ref XP_007362138.1	4-carboxymuconolactone decarboxylase	Dichomitus saualens	2E-83	65.97	3	0	YES
V2XVV7 MONRO	Er to golgi transport-related protein	Moniliophthora roreri	4E-60	39.41	3	1	NO
Q96TU2_PLEOS	Cap64 protein	Pleurotus ostreatus	0	97.85	3		NO
A0A0H2RUN5_9HOMO	Short-chain dehydrogenase	Schizopora paradoxa	4E-168	82.69	3		NO
V2Y1X1_MONRO	Mitochondrial protein	Moniliophthora roreri	8E-108	65.15	3	1	NO
gi 636607613 ref XP_008034941.1	Ribosomal protein S25 [Trametes versicolor FP- 101664 SS1]	Trametes versicolor	7E-41	84.31	3	1	NO
Q6L660_PLEOS	Ribonuclease T2	Pleurotus ostreatus	0	95.42	3	2	YES
K9I1K6_AGABB	XCL-like lectin	Agaricus bisporus var. bisporus	2E-22	40.56	3	1	NO
gi 597903154 ref XP_007298876.1	metal-dependent protein hydrolase	Stereum hirsutum	1E-179	73.17	3	1	NO
A0A0D7AQF0_9AGAR	Flavocytochrome c	Fistulina hepatica	0	63.97	3	2	NO

A0A0H2R6D9_9HOMO	PEBP-like protein	Schizopora paradoxa	3E-79	56.7	3	1	YES
V2XRT0_MONRO	Serine-threonine rich	Moniliophthora roreri	8E-43	64.41	3	1	YES
A0A0D7B8B9_9HOMO	Acetamidase/Formamidase	Cylindrobasidium torrendii	0	86.97	3	1	NO
S4S6Z0_HEBCY	L-amino acid oxidase	Hebeloma cylindrosporum	3E-175	50.46	3	1	NO
gi 599094462 ref XP_007378965.1	heparinase II/III family protein	Punctularia strigosozonata	0	64.8	3	2	NO
X8IZK9_9HOMO	Allergen protein	Rhizoctonia solani	3E-81	72.62	3	1	YES
S7QKA7_GLOTA	Ribosomal protein S4	Gloeophyllum trabeum	1E-122	97.81	2		NO
A0A067NHP6_PLEOS	40S ribosomal protein S0	Pleurotus ostreatus	0	96.96	2		NO
A0A0D7A525_9AGAR	Nucleic acid-binding protein	Fistulina hepatica	3E-63	60.81	2		NO
NNRD_COPC7	ATP-dependent (S)-NAD(P)H-hydrate dehydratase	Coprinopsis cinerea	0	72.43	2		NO
A0A067NQ58_PLEOS	Proteasome subunit beta type	Pleurotus ostreatus	8E-178	99.59	2	0	NO
R7S4L7_PUNST	NAD(P)-binding protein	Punctularia strigosozonata	2E-108	71.08	2		NO
A0A0C2ZFM7_9HOMO	Transcription elongation factor	Scleroderma citrinum	0.52	26.39	2	0	NO
V2XWI1_MONRO	NAD-P-binding protein	Moniliophthora roreri	4E-120	53.17	2		NO
S7RD10_GLOTA	Dioxygenase family protein	Gloeophyllum trabeum	3E-154	68.21	2	0	NO
S7QCY7_GLOTA	Nonaspanin	Gloeophyllum trabeum	0	81.86	2	0	YES
	Putative transmembrane protein	Rhizoctonia solani	1	25.88	2		NO
X8JNF1_9HOMO	Mucoidy inhibitor A, putative	Rhizoctonia solani	1E-54	26.93	2		NO
T2HUL2 PLEER	Pe.pleurotolysin A	Pleurotus eryngii	1E-96	100	2		NO
X8JCL8 9HOMO	Retrotransposon gag protein	Rhizoctonia solani	0.4	24.21	2	1	NO
	ABC transporter	Heterobasidion irregulare	0	63.43	2		NO
V2YXX7 MONRO	Prenylated rab acceptor 1	Moniliophthora roreri	3E-86	73.78	2	0	NO
R7T2T7 DICSQ	Small GTPase-binding protein	Dichomitus squalens	1E-134	94.85	2	0	NO
V2XST8_MONRO	Fad binding domain protein	Moniliophthora roreri	0	55.74	2	1	YES
L8WS14_THACA	KapM protein	Thanatephorus cucumeris	5E-16	34.07	2		YES
R7SSC4_DICSQ	Anthranilate phosphoribosyltransferase	Dichomitus squalens	2E-29	59.48	2		YES
V2WVC8_MONRO	Aminoacylase 1-like protein 2	Moniliophthora roreri	0	59.92	2		NO
B6HJZ8_PENCW	Pc21g02480 protein	Penicillium chrysogenum	8E-12	35.9	2		YES
S7QJ37_GLOTA	Multidrug efflux transporter AcrB transmembrane domain-containing protein	Gloeophyllum trabeum	0	71.6	2		NO
A8NPZ1_COPC7	YjgH family protein	Coprinopsis cinerea	5E-50	67.86	2		NO
gi 636608055 ref XP_008035162.1	aflatoxin-detoxifizyme	Trametes versicolor	0	77.97	2		NO
A0A067P0D5_PLEOS	Glycosyltransferase family 2 protein	Pleurotus ostreatus	0	96.74	2		NO
gi 597912997 ref XP_007303797.1	WD40 repeat-like protein	Stereum hirsutum	0	61.21	2		NO
gi 628827991 ref XP_007764299.1	Carbon-nitrogen hydrolase	Coniophora puteana	1E-171	72.85	2		NO
B0DW71_LACBS	Ectomycorrhiza-regulated small secreted protein	Laccaria bicolor	6E-27	43.97	2		YES
V2XHI7_MONRO	2-nitro propane dioxygenase	Moniliophthora roreri	4E-112	50	2		NO
A0A067NUG5_PLEOS	Non-specific serine/threonine protein kinase	Pleurotus ostreatus	0	95.03	2		NO
A0A066XCF5_COLSU	Putative RhoGEF domain-containing protein	Colletotrichum sublineola	0.32	35.09	2		NO
V2WUN4_MONRO	TPR-likeprotein	Moniliophthora roreri	7E-87	33.52	2		NO
A0A067NN37_PLEOS	Plant-expansin-like protein	Pleurotus ostreatus	1E-91	99.22	2		YES
S9Q159_SCHOY	BRCT domain-containing protein Brc1	Schizosaccharomyces octosporus	0.49	29.85	2		NO
V2WU96_MONRO	F-box domain protein	Moniliophthora roreri	5E-66	31.31	2		NO
A0A0B1PAT4_UNCNE	Putative cyclin-like f-box protein	Uncinula necator	3E-86	48.6	2	1	NO
V2XG03_MONRO	Short chain type	Moniliophthora roreri	2E-72	49.79	2	1	NO

(F) UNKNOWN FUNCTION							
Best BLAST non-hypothetical		E-value	Identity (%)	Spectral mass counts		Signal peptide	
Access number	Protein description	Fungi			Average	Error	
D8PY21_SCHCM	Expressed protein	Schizophyllum commune	2E-11	35	152	31	NO
V2X669_MONRO	Secreted protein	Moniliophthora roreri	2E-32	45.56	55	7	YES
D8Q129_SCHCM	Expressed protein	Schizophyllum commune	2E-17	32.81	52	6	YES
A0A067NYR7_PLEOS	Evidence of expression at protein level	Pleurotus ostreatus	0	95.16	38	3	NO
D8PY21_SCHCM	Expressed protein	Schizophyllum commune	2E-11	35	36	3	YES
D8PXC2_SCHCM	Expressed protein	Schizophyllum commune	0.004	24.02	29	1	YES
B0CXV6_LACBS	GPI-anchored small secreted protein	Laccaria bicolor	1E-38	53.47	25	1	YES
A0A074SC17_9HOMO	DUF4243 family protein 123E	Rhizoctonia solani	1E-108	42.58	15	1	NO
J4UG46_BEAB2	Putative secreted protein	Beauveria bassiana	0.000005	26.35	14	4	NO
gi 595769286 ref XP_007263186.1	DUF427-domain-containing protein [MF3/22]	Fomitiporia mediterranea	3E-109	66.12	12	0	NO
gi 636618993 ref XP_008040631.1	Sure-like protein	Trametes versicolor	2E-106	54.9	9	1	YES
D8QIL5_SCHCM	Expressed protein	Schizophyllum commune	6E-12	33.62	9	3	YES
D8Q6X5_SCHCM	Expressed protein	Schizophyllum commune	2E-84	77.33	8	1	YES
D8Q1J2_SCHCM	Expressed protein	Schizophyllum commune	8E-33	36.29	8	0	NO
D8QD03_SCHCM	Expressed protein	Schizophyllum commune	2E-07	38.24	6	0	YES
K9I8U3_AGABB	Secreted protein	Agaricus bisporus var. bisporus	5E-92	47.19	6	2	YES
JOWWW8_AURDE	DUF427-domain-containing protein	Auricularia delicata	3E-43	69.89	4	0	NO
V2XTV0_MONRO	Secreted protein	Moniliophthora roreri	1E-75	52.28	3	0	NO
W6MS03_9ASCO	Genomic scaffold	Kuraishia capsulata	0.00006	25.61	3	0	YES
X8JBR9_9HOMO	CHCH domain protein	Rhizoctonia solani	2E-56	31.12	3	0	NO
W6QVQ8_PENRO	Genomic scaffold, ProqFM164S03	Penicillium roqueforti	7E-28	42.86	3	1	YES
D8Q6X5_SCHCM	Expressed protein	Schizophyllum commune	2E-84	77.33	2	1	YES
D8PZF9_SCHCM	Expressed protein	Schizophyllum commune	4E-54	54.38	2	1	NO
D8PNW9_SCHCM	Expressed protein	Schizophyllum commune	7E-164	53.75	2	1	YES