Supporting Information For

Cleavage of C–C σ bond between two phenyl groups under mild conditions during the construction of Zn(II) organic frameworks

Bo Liu,^{a,b} Hui-Fang Zhou,^a Zheng-Hui Guan,^a Lei Hou,^a Bin Cui,^a Yao-Yu Wang*^a

^aKey Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China ^bCollege of Science, Northwest A&F University, Yangling, 712100, P. R. China

EXPERIMENTAL SECTION

Materials and Measurements. All reagents and solvents were commercially available and were used without further purification. Infrared spectra were obtained in KBr discs on a Nicolet Avatar 360 FTIR spectrometer in the 400-4000 cm⁻¹ region. Elemental analyses (C, H and N) were performed with a PerkinElmer 2400C Elemental Analyzer. 1 H NMR spectra were recorded on Varian instrument (400 MHz) and (100 MHz). Thermal gravimetric analyses (TGA) were carried out in nitrogen stream using a Netzsch TG209F3 equipment at a heating rate of 5 °C/min. Powder X-ray diffraction (PXRD) data were recorded on a Bruker D8 ADVANCE X-ray powder diffractometer (Cu K α ,1.5418 Å). All the gas sorption isotherms were measured by using a ASAP 2020M adsorption equipment.

Synthesis of [Zn(dbba)(Hbpe)]·H₂O (1). A mixture of Zn(NO₃)₂·6H₂O (59.5 mg, 0.2 mmol), H₃dbba (26.2 mg, 0.1 mmol), and bpe (18.2 mg, 0.1 mmol) in H₂O/DMF (4/1, v/v 5 mL) was placed in a screw-capped vial in an oven at 105 °C for 72 h, and then cooled to room temperature at a rate of 0.5 °C min⁻¹. The resulting colorless block crystals of **1** were isolated by washing with H₂O/DMF, and dried in air. The yield was *ca*. 20.2 mg (67.6%). Anal. Calcd for C₂₇H₂₀ZnN₂O₇: C, 58.98; H, 3.67; N, 5.10%. Found: C, 59.06; H, 3.55; N, 5.02%.

Synthesis of $[Zn(bdc)(bpe)_{0.5}] \cdot H_2O \cdot DMF$ (2). A mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (59.5 mg, 0.2 mmol), H_3dbba (26.2 mg, 0.1 mmol), and bpe (18.2 mg, 0.1 mmol) in DMF (5 mL) was placed in a screw-capped vial in an oven at 105 °C for 48 h, and then cooled to room temperature at a rate of 0.5 °C min⁻¹. The resulting colorless block crystals of **2** were isolated by washing with DMF, and dried in air. The yield was *ca*. 28.5 mg (86.4%). Anal. Calcd for $C_{17}H_{18}ZnN_2O_6$: C, 49.59; H, 4.41; N, 6.80%. Found: C, 49.68; H, 4.30; N, 6.69%.

Crystallography

Diffraction data were collected at 296(2) K with a Mo K α radiation ($\lambda = 0.71073$ Å) on a Bruker-AXS SMART CCD area detector diffractometer. Absorption corrections were carried out utilizing SADABS routine.¹ The structures were solved by the direct methods and refined using the SHELXTL program package.² All non-hydrogen atoms were refined anisotropically with the hydrogen atoms added to their geometrically ideal positions and refined isotropically. The contribution of the disordered solvent molecules in **2** was subtracted from the reflection data by the SQUEEZE method as implemented in PLATON program.³ The final formulas of **1** and **2** were determined by combining the single-crystal structures, elemental microanalyses and TGA data. Selected crystallographic data and structure refinement results are listed in Table S5.

- 1 Bruker. SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconson, USA, 2002.
- 2 Sheldrick, G. M. *SHELXL-97, program for the refinement of the crystal structures*. University of Göttingen, Germany, 1997.

3 Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7-13.

Figure S1. (a) The 2D layer formed by $dbba^{3-}$ and Zn(II) atoms, and (b) the 2D structure of 1 with the Hbpe⁺ ligands are lined in both sides of the layer.

Figure S2. (a, b) View of the four-fold interpenetrated structure along a-axis b-axis, and (c) the 2-fold right-handed 2_1 helical chains and its expand layer are formed by interlayer hydrogen bonds along a-axis. The dotted lines represent the hydrogen bonds.

(a)

Table S1. The results of some solvents used in the reaction system

Solvent	Result/Complex	Solvent	Result
H ₂ O	1	DMA	2
DMF	2	DEF	2

 Table S2. Using different zinc salts for preparing complex 2.

Zinc salt	Result	Notes
Zn(NO ₃) ₂ ·6H ₂ O	Pure and good quality, complex 2	H ₃ dbba (0.1 mmol)
		bpe (0.1 mmol)
$Zn(ClO_4)_2 \cdot 6H_2O$	Pure and good quality, complex 2	Zinc salt (0.2 mmol)
$Zn(Ac)_2 \cdot 2H_2O$	Pure and good quality, complex 2	in DMF
		T = 105 °C
ZnCl ₂	Large number of small crystal	reaction time = 72 h
ZnSO ₄ ·7H ₂ O	Large number of small crystal with small impurity	
5ZnO·2CO ₂ ·4H ₂ O	Large number of small crystal	

 Table S3. The effect of reaction temperatures for preparing complex 2.

Temperature/°C	Reaction time/h	Result
50	72	Light yellow solution
70	72	Orange yellow solution, small crystals
90	72	Yellow solution, large crystals
105	72	Yellow solution, very large crystals

 Table S4. The effect of reaction times for preparing complex 2.

Temperature/°C	Reaction time/h	Result
105	0	Colorless transparent liquid
105	2	Light yellow transparent liquid
105	6	Deep yellow transparent liquid
105	8	Yellow turbid liquid
105	10	Yellow transparent liquid
105	12	Yellow transparent liquid, crystals

Figure S3. Copies of 1 H spectra:

Figure S4. TGA plots for the as-synthesized **1**, **2** and the CH₂Cl₂-exchanged sample. For **1**, a total weight loss of 3.4% at 32–210 °C, corresponding to the loss of 1H₂O guest molecules per formula unit (calc. 3.3%). Then, the structure without the solvent molecules is maintained until 340 °C. For **2**, a total weight loss of 22.8 % at 25–200 °C, corresponding to the loss of 1DMF and 1H₂O guest molecules per formula unit (calc. 22.1%). Then, the desolvated framework is stable until 350 °C. For the CH₂Cl₂-changed sample [Zn(bdc)(bpe)_{0.5}]·H₂O, the initial weight loss of 5.2% from 25–90 °C should be attributed to the H₂O guest molecules per formula unit (calc. 5.6%), then followed by a plateau of stability from 90 to 350 °C.

Scheme S1 The other biphenylcarboxylic acids were used in the reaction.

Complex No.	1	2
Empirical formula	$C_{27}H_{20}N_2O_7Zn$	C ₁₄ H ₉ NO ₄ Zn
Formula mass	549.84	320.61
Temperature [K]	296(2)	296(2)
Crystal system	Orthohombic	Tetragonal
Space group	<i>P</i> 2 ₁ 2 ₁ 2	P_4/mmm
<i>a</i> [Å]	15.7341(18)	10.8088(15)
<i>b</i> [Å]	19.190(2)	10.8088(15)
<i>c</i> [Å]	8.3925(10)	16.283(5)
α [deg]	90.00	90.00
β [deg]	90.00	90.00
γ [deg]	90.00	90.00
<i>V</i> [Å ³]	2534.0(5)	1902.3(7)
Ζ	4	2
$D_{\text{calcd}}.[g \cdot \text{cm}^{-3}]$	1.436	0.560
$\mu \text{ [mm-1]}$	1.018	0.649
GOF on F ²	1.079	1.145
reflns collected/ unique	12774/4502	10471/1203
$R_{\rm int}$	0.0668	0.0841
R_1^{a}, wR_2^{b} [I>2 σ (I)]	0.0702, 0.1932	0.0863, 0.2481
R_1 , wR_2 (all data)	0.1014, 0.2214	0.0968, 0.2583

Table S5. Crystal data and structure refinements for 1 and 2

^{*a*} $R_1 = \Sigma ||F_0| - |F_c|) / \Sigma |F_0|; ^$ *b* $w R_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$