Fructose production via extraction-assisted isomerization of glucose catalyzed

by phosphates

Irina Delidovich and Regina Palkovits*

Chair of Heterogeneous Catalysis and Chemical Technology, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany, E-mail: Palkovits@itmc.rwth-aachen.de

Scheme 1S. Interconversion of boronic acids and boronates upon pH changes and complexation of a saccharide with a boronate anion.

Figure 1S. pH of the reaction mixture obtained after isomerization of glucose in the presence of $NaH_2PO_4+Na_2HPO_4$ with pH₀ 7.5 at different concentrations of the catalyst. Reaction conditions: 10wt.% aqueous glucose solution, 110°C, 750 rpm.

Figure 2S. Dependency of fructose yield or initial reaction rate on concentration of OH⁻ and phosphates. Reaction conditions: 10wt.% aqueous glucose solution, 110°C, 750 rpm, 20 min. Catalysts for (a) and (c): 0.7M NaH₂PO₄+Na₂HPO₄ with a respective pH₀. Catalysts for (b) and (d): NaH₂PO₄+Na₂HPO₄ with a corresponding concentration of phosphates and pH₀ 7.5.

According to our results, the isomerization in the presence of $NaH_2PO_4 + Na_2HPO_4$ takes place via a proton abstraction leading to formation of an enediol anion. In our opinion, both HPO_4^{2-} and OH⁻ can serve as bases at the first step of the mechanism (Scheme 1 in the manuscript). According to ¹³C NMR studies of de Wit et al., deprotonation of glucose (step 1) readily occurs in aqueous alkaline solutions, giving Glu⁻ in quasi-equilibrium concentration.¹

$$Glu + OH^{-} \xrightarrow{k_{1}^{OH}}_{k_{-1}^{OH}} Glu^{-} \qquad K_{b \ Glu}^{OH} = [Glu^{-}]/[Glu][OH^{-}]$$
(1S)

$$Glu + HPO_{4}^{2^{-}} \xrightarrow{k_{1}^{Phos}}_{k_{-1}^{Phos}} Glu^{-} + H_{2}PO_{4}^{-} \qquad K_{b \ Glu}^{Phos} = [Glu^{-}][H_{2}PO_{4}^{-}]/[Glu][HPO_{4}^{2^{-}}]$$
(2S)

However, it is difficult to reveal real active basic species which are responsible for ionization of glucose molecule since percentage of HPO_4^{2-} and $H_2PO_4^{-}$ species depends on concentration of OH^{-} ions:

$$H_2PO_4^- + OH^- \iff HPO_4^- + H_2O$$
(3S)

As a result, concentration of [Glu⁻] can be expressed as [Glu⁻]=K_{b Glu}^{OH}[Glu][OH⁻]

$$[Glu^{-}] = K_{b Glu}^{OH} [Glu] [OH^{-}]$$
(4S)

no matter which basic species lead to the ionisation.

Figure 3S. Arrhenius plot for the isomerization. Reaction conditions: 10wt.% aqueous glucose solution, 0.5M NaH₂PO₄+Na₂HPO₄, 80-110°C, 750 rpm.

Table 1S. Extraction of fructose and glucose using various boronic acids. Extraction conditions: 4 mL of 0.5M NaH₂PO₄+Na₂HPO₄ containing fructose and glucose (aqueous phase); 4 mL of 0.04 M boronic acid, 0.04 M Aliquat[®] 336, octanol-1, (organic phase), stirring at 750 rpm for 1 h at room temperature.

Entry	Boronic	[Fructose] ₀ ,	[Glucose] ₀ ,	Extracted	Extracted	Selectivity for fructose
	acid	wt.%	wt.%	fructose, %	glucose, %	extraction, %
1	PBA	0.3	-	10	-	-
2	PBA	0.3	0.7	9	0	100
3	нмрва	0.3	-	26	-	-
4	нмрва	0.3	0.7	25	1	96
5	NPBA	0.3	-	1	-	-
6	NPBA	0.3	0.7	1	0	100

Figure 4S. Extraction of fructose depending on amount of OH⁻ anions transferred from the aqueous to the organic phase.

Table 2S. Recycling of the organic phases for extraction of saccharides. Extraction conditions: 4 mL of $0.5M \text{ NaH}_2\text{PO}_4 + \text{Na}_2\text{HPO}_4$ containing fructose and glucose (aqueous phase); 4 mL of 0.4 M boronic acid, 0.4 M Aliquat[®] 336, octanol-1 (organic phase), stirring at 750 rpm for 1 h at room temperature. Back-extraction conditions: aqueous phase (4 mL of $0.25M \text{ H}_2\text{SO}_4$) and organic phase (obtained after the 1st extraction) were stirred at 750 rpm for 1 h at room temperature. The organic phase after back-extraction was used directly for the 2nd extraction without pretreatment of the organic phase.

Enrtry	Boronic acid	Content of monosaccharides		1 st extraction		Back-extraction		2 nd extraction	
		in aqueous phase, mmol		Amount of extracted		Amount of back-extracted		Amount of extracted	
				saccharides, mmol		saccharides, mmol		saccharides, mmol	
		Fructose	Glucose	Fructose	Glucose	Fructose	Glucose	Fructose	Glucose
1	НМРВА	0.67	1.56	0.31	0.09	0.25	0.08	0.30	0.08
2	PBA	0.67	1.56	0.21	0.05	0.19	0.04	0.2	0.02

Figure 5S. ¹¹B NMR spectra of HMPBA in C_6D_6 before and after pretreatment with phosphate buffer and a spectrum of the organic phase obtained after extraction of fructose with HMPBA.

Figure 6S. Mass spectra of the organic phases obtained after extraction of fructose with PBA (up) and HMPBA (down).

Disaccharide	αPa	βΡ ^ь	αF ^c	βF ^d	
Lactulose	0	61.5	7.6	29.3	
Palatinose	0	0	28.6	71.4	
Sucrose	0	0	0	100	
Turanose	<4	39	20	41	

Table 3S. Percentage of cyclic forms for model disaccharides²

^a α P denotes α -pyranoside

 ${}^{b}\beta P$ denotes β -pyranoside

 $^{c}\alpha F$ denotes α -furanoside

 ${}^{d}\beta F$ denotes β -furanoside

Figure 8S. ¹³C APT NMR spectra of an organic phase obtained by extraction with HMPBA in C_6D_6 ; aqueous phase is a phosphate buffer prepared using D_2O containing (a) D-fructose-1-¹³C; (b) D-fructose; the resonances are provided for Complex-1 (1) and Complex-2 (2).

Figure 9S. ¹H NMR spectra of organic phases obtained after extraction of fructose with HMPBA in (a) $CDCI_3$, (b) C_6D_6 .

NMR data

Aliquat[®] **336**: ¹H NMR (400 MHz, C₆D₆) δ 3.58 (s, 3H, N-CH₃), 3.30-3.45 (m, 6H, N-CH₂-), 1.61 (s, 6H) 1.23-1.43 (m, 38H,-(CH₂)_n-CH₃), 0.83-1.00 (m, 9H ,-(CH₂)_n-CH₃). ¹H NMR (400 MHz, CDCl₃) δ 3.10-3.24 (m, 6H, N-CH₂-), 3.03 (s, 3H, N-CH₃), 1.36-1.52 (m, 6H), 0.92-1.20 (s, 38H,-(CH₂)_n-CH₃), 0.54-0.68 (m, 9H ,-(CH₂)_n-CH₃). δ ¹³C NMR (101 MHz, C₆D₆) δ 128.1, 127.82, 127.6, 61.9, 60.9, 49.5, 33.7, 32.2, 32.1, 30.1, 30.0, 29.8, 29.73, 29.6, 29.6, 29.5, 26.7, 26.7, 23.0, 23.0, 22.9, 22.5, 14.2, 14.2. δ ¹³C NMR (101 MHz, CDCl₃) δ 77.8, 77.5, 77.2, 62.1, 61.4, 48.8, 32.8, 31.8, 31.7, 31.5, 29.5, 29.3, 29.3, 29.1, 29.1, 29.0, 28.9, 26.2, 25.9, 22.5, 22.5, 22.5, 22.3, 14.0, 13.9.

HMPBA+Aliquat® 336: ¹H NMR (400 MHz, C₆D₆) δ 8.59 (d, 1H, *J* = 7.19 Hz) 7.30 (t, 1H, *J* = 7.24 Hz), 7.22 (t, 1H, *J* = 7.40 Hz), 7.00 (d, 1H, *J* = 7.52 Hz), 4.90 (s, 2H), 3.17-3.35 (m, Aliquat® 336), 1.55 (s, Aliquat® 336), 1.13-1.37 (m, Aliquat® 336), 0.82-0.95 (m, Aliquat® 336). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, 1H, *J* = 7.45 Hz) 7.33-7.41 (m, 1H), 7.20-7.29 (m, 2H), 4.98 (s, 2H), 3.52-3.42 (m, Aliquat® 336), 3.19 (s, Aliquat® 336), 1.56-1.58 (m, Aliquat® 336), 1.08-1.35 (m, Aliquat® 336), 0.74-0.90 (m, Aliquat® 336). ¹³C NMR (101 MHz, C₆D₆) δ 154.0, 132.7, 130.6, 130.3, 127.8, 127.6, 127.020, 120.7, 70.5, 62.2, 61.3, 49.1, 33.3, 32.2, 32.0, 29.9, 29.8, 29.7, 29.5, 29.5, 29.4, 26.5, 26.4, 22.9, 22.4, 14.2. ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 131.3, 130.1, 129.8, 126.3, 120.5, 120.1, 77.2, 76.8, 76.5, 70.6, 70.0, 64.6, 61.8, 61.0, 48.3, 32.1, 31.2, 31.0, 28.8, 28.8, 28.6, 28.5, 28.5, 28.4, 25.7, 25.3, 22.0, 21.9, 21.7, 13.5, 13.4.

¹¹B NMR (96 MHz, C_6D_6 , no pretreatment) δ 32.0.

Fructose+HMPBA+Aliquat® 336: ¹H NMR (400 MHz, C₆D₆) δ 7.10-7.37 (m), 7.0 (d, *J* = 7.4 Hz), 4.93-5.18 (m, 5H, Ph-CH₂-O-Complex-1, Ph-CH₂-O-Complex-2, and H-4-Complex-2), 4.88-4.93 (m, 3H, HMPBA and H^α-6-Complex-2), 4.77 (s, 1H, H-5-Complex-1), 4.71 (s, 1H, H-5-Complex-2), 4.63 (d, 1H, *J* = 6.45 Hz, H-3-Complex-2), 4.56 (s, 1H, H-4-Complex-1), 4.36-4.45 (m, 1H, H-3-Complex-1), 3.91-4.31 (m, 7H, H^{α,β}-1-Complex-1, H^{α,β}-6-Complex-1, H^β-6-Complex-2, H^{α,β}-1-Complex-2), 3.16 (s, Aliquat[®] 336), 2.82-3.03 (m, Aliquat[®] 336), 1.15-1.54 (m, Aliquat[®] 336), 0.83-1.03 (m, Aliquat[®] 336).

S13

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 5.97, 4.4H), 7.49-7.56 (m, 0.9H), 7.29-7.43 (m, 2.1H), 7.18-7.28 (m, 5.7 H), 7.05-7.18 (m, 10.6 H), 6.88-6.97 (m, 7.7H), 6.78-6.88 (m, 3.6H), 4.83 (s, 10.5 H,Ph-CH₂-O -HMPBA), 4.55-4.72 (m, 7.2 H, Ph-CH₂-O – Complexes 1 and 2), 4.49 (dd, *J* = 7.1, 2.0 Hz, 1H, H-4-Complex-2), 4.41 (d, *J* = 10.6, 1H, H^{α}-6-Complex-2), 4.23 (s, 1H, H-5-Complex-1), 4.21 (d, 1H, H-5-Complex-2), 4.13 (d, *J* = 7.6, 1H, H-3-Complex-2), 4.07 (s, 1H, H-4-Complex-1), 3.84-3.92 (m, 1H, H-3-Complex-1), 3.72-3.81 (m, 1H, H^{α}-6-Complex-1), 3.66 (s, 1H, H^{β}-6-Complex-1), 3.55-3.61 (m, 4H, H^{α , β -1-Complex-1, H^{β}-1-Complex-2, H^{α}-6-Complex-2), 3.47 (d, *J* = 10.2, 1H, H^{β}-1-Complex-2), 3.31-3.43 (m, Aliquat[®] 336), 3.18 (s, Aliquat[®] 336), 2.91-3.06 (m, Aliquat[®] 336), 2.86 (s, Aliquat[®] 336).}

¹³C NMR (101 MHz, C₆D₆) 133.0, 130.7, 130.3, 128.2, 127.1, 120.7, 86.9 (C-3-Complex-1), 85.3 (C-5-Complex-1), 78.5 (C-4-Complex-1), 74.4 (C-5-Complex-2), 71.7 (C-4-Complex-2), 70.6 (Ph-CH₂-O - HMPBA), 70.0 (C-3-Complex-2), 68.2 (C-1-Complex-2), 68.0 (Ph-CH₂-O –Complexes 1 and 2), 65.9 (C-1-Complex-1), 64.7 (C-6-Complex-2), 63.5 (C-6-Complex-1), 62.2, 61.3, 49.3, 33.4, 32.3, 32.1, 30.0, 29.8, 29.6, 29.5, 23.0, 22.5, 14.3, 14.2.

¹³C NMR (101 MHz, CDCl₃) δ 131.3, 129.8, 126.4, 125.5, 125.1, 125.5, 120.4, 119.77, 86.4 (C-3-Complex-1), 84.6 (C-5-Complex-1), 77.2, 77.1 (C-4-Complex-1), 73.7 (C-5-Complex-2), 71.0 (C-4-Complex-2), 70.0 (Ph-CH₂-O -HMPBA), 69.5 (C-3-Complex-2), 67.5 (Ph-CH₂-O -Complexes 1 and 2), 67.1 (C-1-Complex-2), 65.2 (C-1-Complex-1), 63.5 (C-6-Complex-2), 62.3 (C-6-Complex-1), 48.3, 32.2, 31.4, 31.2, 31.1, 29.1, 29.0, 29.0, 28.9, 28.8, 28.7, 28.6, 28.6, 28.5, 25.7, 25.44, 22.2, 22.1, 21.9, 21.7, 13.6, 13.6, 13.5.

¹¹B NMR (96 MHz, C₆D₆) δ 33.0, 12.1.

S14

Table 4S. Results of extraction-assisted isomerization of glucose into fructose. Reaction conditions of the 1^{st} experiment: isomerization over 0.5M NaH₂PO₄+Na₂HPO₄, 110 °C, 70 min, 750 rpm; extraction was repeated twice at room temperature for 1 h, 750 rpm using 0.4 M HMPBA, 0.4 M Aliquat[®] 336 in octanol-1 as organic phase, reaction mixture after the isomerization was used as aqueous phase. The conditions of the 2^{nd} experiment were like that of the 1^{st} experiment, but concentrations of HMPBA were 0.2 and 0.09 M for the first and the second extractions, respectively.

Run			Isomerizat	ion		Extraction					
	[Glu] ₀ ,ª	[Fru] ₀ ,ª	[Glu] _{fin} ,	[Fru] _{fin} , ^b	Glucose	[Glu] _{extr} , ^c	[Fru] _{extr} ,c	Extracted Glu,	Extracted Fru,	Selectivity for Fru	yield, %
	М	M	^b M	M	conversion,	М	M	%	%	extraction, %	
					%						
						The	1 st experime	nt			
1	0.56	0	0.47	0.09	16	0.4	0.03	14	72	50	16
2	0.5	0.01	0.43	0.08	24	0.37	0.02	13	75	52	24
3	0.49	0.01	0.39	0.09	33	0.35	0.03	10	69	62	31
4	0.47	0.02	0.38	0.09	39	0.34	0.02	11	72	60	34
5	0.46	0.01	0.37	0.10	43	0.32	0.03	15	68	54	39
6	0.47	0.02	0.37	0.09	46	0.33	0.03	13	70	58	40
7	0.47	0.01	0.39	0.09	47	0.34	0.03	12	67	55	42
8	0.49	0.01	0.39	0.09	49	0.35	0.03	10	70	62	43
9	0.48	0.01	0.39	0.09	51	0.34	0.03	13	68	55	45
						The	2 nd experime	nt			
1	0.53	0	0.45	0.08	15	0.44	0.04	4	55	67	15
2	0.51	0.02	0.41	0.10	30	0.4	0.06	4	44	80	27
3	0.48	0.03	0.43	0.08	34	0.38	0.05	5	51	60	34
4	0.48	0.03	0.38	0.12	42	0.38	0.07	2	40	87	41
5	0.47	0.04	0.37	0.11	49	0.35	0.07	5	39	67	45
6	0.46	0.04	0.38	0.11	52	0.36	0.06	6	40	71	47
7	0.49	0.03	0.37	0.11	57	0.36	0.07	4	41	80	49
8	0.46	0.04	0.36	0.10	60	0.35	0.06	4	41	80	50
9	0.49	0.03	0.38	0.10	62	0.38	0.06	5	40	86	51

^a[Glu]₀ and [Fru]₀ are concentrations of glucose and fructose in the reaction mixture prior to isomerization

^b[Glu]_{fin} and [Fru]_{fin} are concentrations of glucose and fructose in the reaction mixture after isomerization

^c[Glu]_{extr} and [Fru]_{extr} are concentrations of glucose and fructose in aqueous phase after extraction

Calculation of conversion, selectivity, and yield for the reaction-assisted isomerization

Glucose conversion was calculated as follows

$$Glu \cos e \text{ conversion} = \frac{\sum_{i} ([Glu]_{0,i} - [Glu]_{fin,i})}{\sum_{i} ([Glu]_{0,i} - [Glu]_{extr,i-1})}$$
(5S)

Fructose yield was calculated for the total amount of formed fructose according to the formula:

Fructose yield =
$$\frac{\sum_{i} ([Fru]_{fin,i} - [Fru]_{0,i})}{\sum_{i} ([Glu]_{0,i} - [Glu]_{extr,i-1})}$$
(6S)

Used for Equations 5S and 6S parameter i denotes a number of run, whereas [Glu]₀, [Fru]₀, [Glu]_{fin}, [Fru]_{fin}, [Glu]_{extr}, and [Fru]_{extr} denote concentrations of glucose and fructose provided in Table 4S.

References

- 1 de Wit, G., Kieboom, A. P. G. & van Bekkum, H. Ionization and mutarotation of hexoses in aqueous alkaline solution as studied by ¹³C-NMR spectroscopy. *Tetrahedron Lett.* **16**, 3943-3946 (1975).
- 2 Lambert, J. B., Lu, G., Singer, S. R. & Kolb, V. M. Silicate Complexes of Sugars in Aqueous Solution. *J. Am. Chem. Soc.* **126**, 9611-9625 (2004).