Electronic Supplementary Information

Supramolecular ensemble of PBI derivative and copper nanoparticles: A light harvesting antenna for photocatalytic C(sp²)-H functionalization

Sandeep Kaur, Manoj Kumar and Vandana Bhalla*

Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India

vanmanan@yahoo.co.in

S4 Comparison of present method over other reported procedure in literature for the preparation of CuNPs. Comparison of catalytic activity of CuNPs in C(sp²)-H alkynylation of arenes **S5** over other reported methods. **S6** Comparison of photocatalytic activity of CuNPs for C(sp²)-H amination reaction over other reported methods. Comparison of photocatalytic activity in $C(sp^2)$ -H activation over other **S7** photocatalytic systems. **S8** Absorption and fluorescence spectra of derivative 3 (5 µM) in different fraction of H₂O/THF mixture. **S9** Concentration dependent ¹H NMR spectrum of derivative **3** in CDCl₃ and SEM image of derivative **3** in H_2O/THF mixture (6:4, v/v). **S10** UV-vis spectra of compound 3 upon additions of various metal ions as their chloride and perchlorate salt in H_2O/THF (6:4, v/v). UV-Vis spectra of compound 3 (5 μ M) in presence of Cu²⁺ ion in THF and UV-**S11** vis spectroelectrochemical studies of PBI derivative 3 in presence of Cu²⁺ ions. **S12** Detection limit of Cu^{2+} by using derivative **3** in H₂O/THF (6:4, v/v). **S13** Competitive and selectivity graph of derivative 3 towards various metal ions as their chloride and perchlorate salt in H_2O/THF (6:4, v/v). **S14** XRD diffraction patterns of CuNPs prepared by derivative 3 and DLS studies showing the variation in particle size of CuNPs by varying concentration of aggregates of derivative **3** and Cu^{2+} ions in H₂O/THF (6:4, v/v). Normalized LSPR band of CuNPs. Fluorescence spectra of derivative 3 and Cu²⁺ **S15** ions in H_2O/THF (6:4, v/v) by mixing in different ratio. **S16** Overlay of ¹H NMR spectra of **3** and $CuCl_2$ after filtration with THF. **S17** Overlay of NMR spectra of oxidized species 4 and derivative 3. **S18** FT-IR spectra and ESI-MS mass spectra of oxidized species 4.

S19 Fluorescence spectrum of oxidised derivative 4 and spectral overlap of absorption spectrum of CuNPs and emission spectrum of oxidized species of 4. S20 Fluorescence spectrum of oxidised derivative 4 in presence of bare CuNPs and Cu²⁺ ions. Time resolved fluorescence studies of derivative 4 in presence of CuNPs in **S21** H_2O/THF (6:4, v/v). S22 UV-Vis spectra of compound 3 (5 μ M) showing the response to the Cu²⁺ ion (0-15 equiv.) in H₂O/THF (6:4, v/v) mixture. Catalytic efficiency of supramolecular ensemble 4:CuNPs for photocatalytic C-H activation of oxazoline substituted benzamide (5) and phenyl acetylene (6a). S23 Atomic absorption Studies (AAS) showed the leaching of CuNPs (8-20 nm) after 4th catalytic cycle. Catalytic efficiency of supramolecular ensemble 4:CuNPs using 10 µM of **S24** derivative 3 and 30 equiv. Cu²⁺ ions for photocatalytic C-H activation reaction of 5 with 6a. AAS studies showed the leaching of CuNPs (5-8 nm) after 4th catalytic cycle. **S25** Recyclability and catalytic efficiency of supramolecular ensemble 4:CuNPs for photocatalytic C-H activation of oxazoline substituted benzamides (5) and *p*-nitro aniline (9a). S26 ¹H NMR of spectrum of derivative **3**. **S27** ¹³C NMR of spectrum of derivative **3**. **S28** MALDI-TOF spectrum of derivative 3. FT-IR spectra of derivative **3**. S29 **S30** ¹H NMR of spectrum of derivative 7a and 7b. ¹³C NMR and ESI-MS spectrum of derivative **7b**. **S31** ¹H and ¹³C NMR of spectrum of derivative 7c. **S32 S33** ESI-MS spectrum of derivative 7c. ¹H and ¹³C NMR of spectrum of derivative **7d**. **S34 S35** ESI-MS spectrum of derivative 7d. ¹H and ¹³C NMR spectrum of derivative 7e. **S36 S37** ESI-MS spectrum of derivative 7e. ¹H and ¹³C NMR spectrum of derivative **7f**. **S38 S39** ESI-MS spectrum of derivative 7f. **S40** ¹H NMR spectrum of derivative 7g and 7h. **S2**

S41	¹ H NMR spectrum of derivative 7i .
S42	¹ H and ¹³ C NMR spectrum of derivative 7j.
S43	ESI-MS spectrum of derivative 7j and ¹ H NMR spectrum of derivative 7k.
S44	¹ H and ¹³ C NMR NMR spectrum of derivative 7 I.
S45	ESI-MS spectrum of derivative 71.
S46	¹ H and ¹³ C NMR spectrum of derivative 7m .
S47	ESI-MS spectrum of derivative 7m.
S48	¹ H and ¹³ C NMR spectrum of derivative 6n .
S49	ESI-MS spectrum of derivative 6n.
S50	¹ H and ¹³ C NMR spectrum of derivative 7n .
S51	ESI-MS spectrum of derivative 7n.
S52	¹ H NMR spectrum of derivative 10a and 10b
S53	¹ H NMR spectrum of derivative 10c and 10d .
S54	¹ H and ¹³ C NMR spectrum of derivative 10e .
S55	ESI-MS spectrum of derivative 10e.
S56	¹ H and ¹³ C NMR spectrum of derivative 10f .
S57	ESI-MS spectrum of derivative 10f.
S58	¹ H and ¹³ C NMR spectrum of derivative 10g
S59	ESI-MS spectrum of derivative 10g .
S60	¹ H and ¹³ C NMR spectrum of derivative 10h .
S61	ESI-MS spectrum of derivative 10h.
S62	¹ H and ¹³ C NMR spectrum of derivative 10i.
S63	ESI-MS spectrum of derivative 10i.
S64	¹ H and ¹³ C NMR spectrum of derivative 10 j
S65	ESI-MS spectrum of derivative 10j.
S66	¹ H and ¹³ C NMR spectrum of derivative 10k .
S67	ESI-MS spectrum of derivative 10k.
S68	¹ H and ¹³ C NMR spectrum of derivative 10 l.
S69	ESI-MS spectrum of derivative 10l.
S70	¹ H and ¹³ C NMR spectrum of derivative 11
S71	¹ H and ¹³ C NMR spectrum of derivative 12

<u> </u>	<u>idle 51. Col</u>	nparison or p	resent method over other	reported	procedure m	interature for	the prepar	<u>ation of Ci</u>	<u>inrs.</u>
Sr N 0.	Publication	Method of formation of CuNPs	Reagent Used	Reducing agent Used	Reaction time to prepare CuNPs	Temp. (°C)	Shape of Cu(0)NPs	Size	Reusability of CuNPs after reaction
1	Present manuscript	Wet Chemical Method	Compound 3 in Water/THF (6:4) and CuCl ₂	No	30 min	Room Temperature	Spherical	8-20 nm	Yes
2	<i>ACS Nano,</i> 2015, 9 , 12104-12114	Hydrothermal	$Cu(NO_3)_2$, propylene glycol and ethylene glycol , PVP	propylene glycol and ethylene glycol	60 min	150	spherical	360 (12 nm	No
3	ACS Appl. Mater. Interfaces, 2015, 7, 19382-19389	Solution synthesis, low- temperature sintering,	Ethylene Glycol, Cu(OAc) ₂ , 3- amino-1-propanol, hydrazine monohydrate	hydrazine monohydrat e	24 h	stirring at 1100 rpm and at room temperature	Spherical	3-10 nm	No
4	<i>Sci. Rep.,</i> 2015, 5 , 8294	Hydrothermal condition	Cu(acac) ₂ ,phenol formaldehyde resin and triblock copolymer Pluronic-F127, N ₂ H ₄ .H ₂ O	N ₂ H ₄ .H ₂ O	24 h	100	Spherical	9.8-14.3 nm	Yes
5	<i>Catal. Sci.</i> <i>Technol.</i> , 2015, 5 , 1251- 1260	Simple one-pot method	Graphite powder, sulfuric acid, H ₂ O ₂ , potassium permanganate, ascorbic Acid, Cu(CH ₃ COO) ₂ H ₂ O,	ascorbic acid	1 h	80	Spherical	10-20 nm	Yes
6	<i>Faraday</i> <i>Discuss.,</i> 2015, 181 , 383–401	Feld-stimulated assembly of copper nanoparticles	L-ascorbic acid, CTAB, CuCl ₂ .2H ₂ O	L-ascorbic acid	42 h	45°C, centrifugation at 10000 rpm	Film	3.2 ± 0.74 nm	No
7	Angew. Chem., 2014, 126 , 2004 – 2008	Reduction	Graphene oxide and copper Acetate, absolute ethanol, diethylene glycol, H ₂ (5 vol%) and Ar at 500°C	H ₂ (5 vol%)	2 h	180/500	Spherical	15 nm	No
8	ACS Appl. Mater. Interfaces, 2014, 6 , 560–567	Solvothermal	Cu(OH) ₂ , PEG-2000, L-ascorbic acid, ethylene glycol butyl ether, methylcellulose,	L-ascorbic acid	30 min	80	Spherical	90-180 nm	No
9	ACS Sustainable Chem. Eng., 2014, 2 , 2658–2665	Agarose- Supported Copper Catalyst	Agarose, CuBr, NaBH ₄ ,	NaBH4	24 h	80	Spherical	4-8 nm	No
10	ACS Sustainable Chem. Eng., 2014, 2 , 1933–1939	Plant Tea Reducing Agent	CuSO ₄ · 5H ₂ O, lemongrass tea, deionized water	lemongrass tea	2 weeks	Room Temperature	Spherical	2.90 ± 0.64 nm,	No
11	<i>RSC Adv.,</i> 2014, 4 , 25155–25159	Through T- shaped microfluidic chip	CuSO ₄ .5H ₂ O, NaBH ₄ , polyvinylpyrrolidone, NH ₄ OH, NaOH, polydimethylsiloxane	NaBH ₄	2 days	Room temp	Spherical	8.95 nm	No
12	<i>RSC Adv.,</i> 2014, 4 , 27381–27388	Photoreduction	CuCl ₂ , photoinitiator 184, diethanol amine, and ethanol, PEI, PVP, dark and Oxygen free environment	photoinitiat or 184	30 min	Room Temp	Spherical	10-200 nm	No
13	ACS Appl. Mater. Interfaces, 2013, 5 , 3839–3846	Chemical reduction of copper ions in aqueous solution	Copper(II) acetate monohydrate, hydrazine hydrate solution (50%), lactic acid, glycolic acid, acetic acid, citric acid, glycine, alanine, and ammonia–water	hydrazine hydrate	3 h	40°C for 3 h in an inert atmosphere and 11000 rpm for 15 min	Spherical /Film	9.2 ± 1.5 Mm	No
14	J. Mater. Chem., 2012, 22 , 987–993	Reduction	Copper(II) chloride dehydrate, sodium borohydride, trisodium citrate dehydrate, diethylene glycol, ethanol, isopropanol	NaBH ₄	12 h	100	Irregular	15–45 nm	No
15	<i>Green Chem.,</i> 2012, 14 , 1589-1592	Cooperative assembly	$CuSO_4 \cdot 5H_2O$, SDS and ascorbic acid, $NaBH_4$ (or N_2H_4)	NaBH ₄ (or N ₂ H ₄)	4 h	60	Spherical	20 nm	No

Table S1: Comparison of present method over other reported procedure in literature for the preparation of CuNPs

						1			
Seri al No.	Publication	Catalyst used	Reagent used	Base used	Solvent used	Reusabl e	Reaction time	Photocatalytic/Th ermal condition required	Isolated Yield (Product, %)
1	Present manuscript C(sp²)-H activation	CuNPs (1 mol %)	Benzamides with Terminal alkynes	K ₂ CO ₃	DMSO	Yes	6h	Photochemical (60 W tungsten bulb, r.t.)	78
2	<i>Org. Lett.</i> , 2016, 18 , 1064–1067	[RhCl(COD)] ₂ (1.5 mol %), Cu(OAc)2·H2O	2H- [1,2'-bipyridin]-2- ones with propargyl alcohols	-	Toluene	No	4 h	125°C	62
3	Catal. Sci. Technol., 2016, 6 , 1946-1951	Ni(OTf) ₂ (5 mol %) 10 mol % of benzoic acid	N-(quinolin-8- yl)benzamide with (triisopropylsilyl)eth ynyl bromide Na ₂ CO ₃ Toluene No		No	24 h	110°C	75	
4	Angew. Chem. Int. Ed., 2015, 54 , 10012- 10015	CoC ₂ O ₄ ·4H ₂ O AgOAc	2-benzamidopyridine 1-oxide (1a) with phenylacetylene	NaOAc	DMSO	No	12 h	100°C	85
5	<i>Org. Lett.</i> , 2015, 17 , 5316-5319	$[Cp*CoI_2]_2 \\ AgSbF_6$	Indole and silylated bromoalkynes	K ₂ CO ₃	TFE	No	16 h	80°C	96
6	<i>Chem. Commun.</i> , 2015, 51 , 6388-6391	Ni(OTf) ₂	benzamides and bromoalkynes	NaHCO ₃	Pivalonitril e	No	12 h	150°C	81
7	Chem. Commun., 2015, 51 , 14497- 14500	-	C(sp ²)-H oxidative alkynylation of aldehydes with ethynyl benziodoxolones (EBX)	ТВНР	PhCl	No	3 h	120°C	68
8	J. Am. Chem. Soc., 2014, 136 , 11590- 11593	Cu(OAc) ₂ (0.1 Mmol)	(Hetero)Arenes with Terminal Alkynes	NaOAc	DMSO	No	12 h	60° C	85
9	<i>Org. Lett.</i> , 2014, 16 , 2884-2887	Cu(OAc) ₂	N-(quinolin-8- yl)benzamide with Terminal Alkynes		t-AmylOH		24 h	140 °C under an N ₂ atmosphere	91
10	Org. Lett., 2012, 14 , 2948-2951	Pd(OAc) ₂ , oPBA	R-substituted benzylamine With TIPS protected acetylenic bromide	KHCO3	DCE	No	24 h	100° C	90
11	Org. Lett., 2011, 13 , 1474-1477	Pd(PPh ₃) ₄	5-Methylbenzoxazole and phenylacetylene	LiOtBu	Toluene	No	12 h	100°C	67
12	J. Org. Chem., 2010, 75 , 1764-1766	[CuI]:[phen]	1,3,4-oxadiazoles with alkynyl bromides	LiO-t-Bu	Toluene	No	1 h	r.t.	70

Table S2: Comparison of catalytic activity of CuNPs for C(sp²)-H alkynylation reaction over other reported methods:

meth	ods: Publication	Catalyst used	Pongont used	Additives/Base	Salvant	Dousablo	Deaction	Photocatalytic/Th	Isolatod
al No.	rubication	Catalyst useu	Keagent useu	Additives/ base	used	Keusable	time	ermal condition required	Yield (Product, %)
1	Present manuscript C(sp ²)-H activation	CuNPs (5 mol %)	Benzamides with amines	K ₂ CO ₃	DMSO	Yes	4h	Photochemical (60 W tungsten bulb, r.t.)	86
2	J. Am. Chem. Soc., 2016, 138 , 4601	Cu(OAc) ₂ (30 mol %)	8-aminoquinoline benzamide with morpholine	Pyridine	Pyridine	No	6 h	80-110°C	92
3	Angew. Chem. Int. Ed., 2016, 55 , 1519–1522	Bu ₄ N[Fe(CO) ₃ (N O)] (TBA[Fe]) (5 mol%)	α-azidobiaryls and (azidoaryl)alkenes	microwave irradiation (200 W, 1008C	1,2- dichloro ethane	No	68 h	100°C	79
4	ACS Catal., 2016, 6 , 2341–2351	Cu(OAc) ₂ (20 mol%), 1,10- phenanthroline	ortho-alkynylanilines to react with oxadiazoles	K ₂ CO ₃	Toluene	No	10 h	120°C	85
5	<i>Org. Lett.</i> , 2016, 18 , 1318–1321	Co(OAc) ₂ ·4H ₂ O, AgTFA,	2-benzamidopyridine 1-oxide (1a) and morpholine	NaOAc	p-xylene	No	12 h	120°C	82
6	Adv. Synth. Catal., 2015, 357 , 3868–3874	I_2 (2.5), FeCl ₃ ·6H ₂ O (10),	Chalcone and N- phenylbenzimidamid e	1,10-phen (ligand)	1,2-DCB	No	24 h	120°C	92
7	ACS Catal., 2015, 5 , 7008–7014	Cu(MeCN) ₄ BF ₄ , (10 mol%)	carbocyclic arenes followed by diaryl- λ3-iodanes	-	MeCN/ DMSO, 1:4	No	40 h	40 °C	68
8	Angew. Chem. Int. Ed., 2015, 54 , 11809 – 11812	TiCl ₃ , HCL	o-nitrostyrenes	-	Acetone	No	8 h	R. T.	90
9	<i>Org. Lett.</i> , 2015, 17 , 2748–2751	(PhSe) ₂	ortho-vinyl anilines and vinylated aminopyridines	4 Å molecular Sieves	Toluene	No	16 h	100°C	71
10	<i>Org. Lett.</i> , 2015, 17 , 2482–2485	Ni(OAc) ₂	8- aminoquinoline benzamide and morpholine	Ag ₂ CO ₃ , N ₂ , Na ₂ CO ₃	Toluene	No	10 h	140°C	66
11	J. Am. Chem. Soc., 2015, 137 , 4924–4927	NiI ₂ (10 mol %), Cu(acac) ₂ (20 mol %),	N- (quinolin-8- yl)benzamide	THAB (1.0 equiv), O_2 (1 atm), Li_2CO_3 (0.4 equiv),	DMF	No	24 h	160°C	85
12	Angew. Chem. Int. Ed., 2014, 53 , 9884–9888	Pd(OAc) ₂ (0.05 equiv),	phenylpropylamine	PhI(OAc) ₂ (2 equiv), Ar	toluene or (HFIP)	No	24 h	100°C	83
13	Chem. Sci., 2014, 5 , 2422-2427	3 mol % [Co(Por)]	aldehyde (0.2 M) and 1.2 equiv. of azide	4 Å MS	PhCl	No	24 h	80°C	77
14	<i>Chem. Eur. J.</i> , 2014, 20 , 4474–4480	[RhCl ₂ (Cp*)] ₂ (3 mol %),	benzoic acids with N- chlorocarbamates/N- chloromorpholines	AgOAc (1.5), N ₂ Atmosphere	DCE	No	12 h	60ºC	86
15	<i>Journal of Catalysis,</i> 2014, 320 , 9–15	Cu(BTC)	N-benzoyl-8- aminoquinoline, morpholine	AgOAc (25 mol%), NMO (2 equiv., 117 mg)	NMP	No	6 h	90°C	65
16	J. Am. Chem. Soc., 2014, 136, 3354–3357	Cu(OAc) ₂	Benzamides with amines	Na ₂ CO ₃	DMSO	No	6h	80 °C	94

Table S3:	Comparison	of catalytic	activity of	CuNPs for	C(sp ²)-H	amination	reaction over	t other	reported
-----------	------------	--------------	-------------	-----------	-----------------------	-----------	---------------	---------	----------

Table S4: Comparison of photocatalytic activity $C(sp^2)$ -H activation reaction over other reported photocatalyticsystems:

Seri al No.	Publication	Photocatalytic condition (Light Source)	Photocatalyst	Reagent used	Reaction Temperat ure and atm.	Base used	Solvent used	Reusa bility	Reactio n time	Isolated Yield (Product %)
1	Present manuscript C(sp ²)-H activation)	60 W tungsten bulb	4:CuNPs(1/5 mol %)	Benzamides with Terminal alkynes/aryl amines	R.T./ Aerial	K ₂ CO ₃	DMSO	Yes	4/6	78/86
2	Angew. Chem. Int. Ed., 2016, 55 , 1–5	blue LEDs (450-500 nm)	CuI, Me ₂ NCH ₂ COOH	Azole and aryl halide	R.T./N ₂ atm.	LiOtBu	Et ₂ O	No	16 h	80
3	Chem. Eur. J., 2016, 22 , 2236–2242	1.5 W blue LED	Pd(TFA) ₂ (0.01 mmol), and 9- mesityl-10- methylacridinium perchlorate (PC- A, Photoredox catalyst)	Azobenzene (36.4 mg, 0.20 mmol), 2-oxo-2- phenylacetic Acid	R.T./ Aerial	-	Toluene	No	16 h	84-52

Fig. S1 Absorption spectra of derivative 3 (5 μ M) showing the variation of absorption intensity in different H₂O/THF fractions.

Fig. S2 Fluorescence spectrum of derivative 3 (5 μ M) showing the variation of fluorescence intensity in H₂O/THF mixtures; $\lambda_{ex} = 485$ nm.

Fig. S3 Concentration dependent ¹H NMR spectrum of compound **3**, (a) 3 mg (b) 5 mg and (c) 8 mg each in 0.6 ml CDCl₃. NMR frequency 300 MHz.

Fig. S4 SEM image of derivative 3 showing the formation of spherical aggregates (H₂O/THF, 6:4, v/v). Scale bar 1 μ m.

Fig. S5A UV-vis spectra of derivative 3 (5 μ M) upon additions of 30 equiv. of various metal ions as their chloride salt in H₂O/THF (6:4, v/v) mixture.

Fig. S5B UV-vis spectra of derivative 3 (5 μ M) upon additions of 30 equiv. of various metal ions as their perchlorate salt in H₂O/THF (6:4, v/v) mixture.

Fig. S6 UV-Vis spectra of compound 3 (5 μ M) in pure THF showing the response in presence of Cu²⁺ ion (0-55 equiv.).

Fig. S7 (A) UV-vis spectroelectrochemical studies of PBI derivative **3** in H₂O:CH₃CN (1:9) containing 0.1 M TBAPF₆ (supporting electrolyte) and Ag/AgCl (reference electrode) showing the change in the electronic absorption spectra observed during application of controlled potential -0.45 eV; (B) Cyclic voltammogram of the electrochemical analysis of compound **3** with Cu²⁺ ions.

Fig. S8 (a) Showing the fluorescence intensity of compound 3 and (b) Calibrated curve showing the fluorescence intensity of compound 3 at 537 nm as a function of Cu²⁺ ions concentration (equiv.) in H₂O/THF (4:6, v/v) buffered with HEPES, pH =7.05, λ_{ex} = 485nm.

```
Multiple R = 0.986075,

R<sup>2</sup> = 0.972344,

Standard deviation = 0.008,

Observation = 10,

Intercept = 336.4618,

Slope = 647167
```

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of receptor **3** without Cu^{2+} was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit is then calculated with the following equation:

 $DL = 3 \times SD/S$

Where SD is the standard deviation of the blank solution measured by 10 times; S is the slope of the calibration curve.

From the graph we get slope

S = 647167, and SD value is 0.008

Thus using the formula we get the Detection Limit (DL) = $3 \times 0.008/647167 = 3.7 \times 10^{-8}$ M = 37 nM

Metal lons

Fig. S9A Fluorescence response of 3 (5.0 μ M) to various metal ions of chloride salts (30 equiv.) in H₂O/THF (6:4, v/v) mixture buffered with HEPES; pH = 7.05; λ_{ex} = 485 nm. Bars represent the emission intensity ratio (I₀-I)/I₀×100 (I₀ and I are the initial and final fluorescence intensity at 537 nm before and after the addition of metal ions). (Series 1) Sky blue bars represent selectivity of 3 upon addition of different metal ions. (Series 2) Red bars represent competitive selectivity of derivative 3 toward Cu²⁺ ions (30 equiv.) in the presence of other metal ions (60 equiv.).

Fig. S9B Fluorescence response of **3** (5.0 μ M) to various metal ions of **perchlorate salts** (30 equiv.) in H₂O/THF (6:4, v/v) mixture buffered with HEPES; pH = 7.05; $\lambda_{ex} = 485$ nm. Bars represent the emission intensity ratio (I₀-I)/I₀×100 (I₀ and I are the initial and final fluorescence intensity at 537 nm before and after the addition of metal ions). (Series 1) Sky blue bars represent selectivity of **3** upon addition of different metal ions. (Series 2) pink bars represent competitive selectivity of derivative **3** toward Cu²⁺ ions (30 equiv.) in the presence of other metal ions (60 equiv.).

Fig. S10 Representative XRD diffraction patterns of CuNPs prepared by derivative 3.

Fig. S11 DLS studies showed the variation in particle size of CuNPs by mixing aggregates of derivative **3** in H_2O/THF (6:4, v/v) and Cu²⁺ ions in different ratio.

Fig. S12 Normalized UV-vis spectra showing the shifting of LSPR band of CuNPs by mixing aggregates of derivative **3** in H₂O/THF (6:4, v/v) and Cu²⁺ ions in different ratio.

Fig. S13 Fluorescence studies showed the quenching in emission intensity with the variation in particle size of CuNPs by mixing aggregates of derivative **3** in H₂O/THF (6:4, v/v) and Cu²⁺ ions in different ratio: (A) 97% quenching: **10** μ M of **3**:30 equiv. Cu²⁺, (B) 92% quenching: **5** μ M of **3**:30 equiv. Cu²⁺; (C) 80% quenching: **2.5** μ M of **3**:30 equiv. Cu²⁺

Fig. S14 Overlay ¹H NMR spectra of (a) compound 3 and (b) compound $3 + CuCl_2$ after filtration with THF in CDCl₃.

(a) Compound 3	(b) Compound $3 + Cu^{2+}$, after	$\Delta \delta = \delta_1 - \delta_2$
(δ_1, ppm)	filtration by THF	
	(δ ₂ , ppm)	
8.55 (d, aromatic)	8.48	0.07
8.13 (d, aromatic)	8.08	0.05
7.81 (t, aromatic)	7.76	0.05
7.75 (s, aromatic)	7.70	0.05
7.68 (t, aromatic)	7.62	0.06
★ 7.47 (s, Triazole C-H)	★ 8.06	-0.59 (downfield)
7.06 (d, aromatic)	7.02	0.04
★ 5.38 (s, O- <u>CH₂</u> -)	★ 5.44	-0.06 (downfield)
4.40 (t, triazole-N- <u>CH₂</u> -)	4.44	-0.04 (downfield)

Table S5: Change in chemical shift (δ) value of ¹H NMR spectra of derivative **3** in CDCl₃ and oxidized species of derivative **3** after reaction of derivative **3** and CuCl₂.

Fig. S15 Overlay ¹H NMR spectra of (a) compound 3 and (b) Oxidised derivative 4 in CDCl₃.

(a) Compound3	(b) Oxidised derivative 4	$\Delta \delta = \delta_1 - \delta_2$
(δ_1, ppm)	(δ_2, ppm)	
8.55 (d, aromatic)	8.46	0.09
8.13 (d, aromatic)	8.07	0.06
7.81 (t, aromatic)	7.75	0.06
7.75 (s, aromatic)	7.68	0.07
7.68 (t, aromatic)	7.60	0.08
★ 7.47 (s, Triazole C-H)	★ 8.08	-0.61 (downfield)
7.06 (d, aromatic)	7.00	0.06
★ 5.38 (s, $O-\underline{CH_2}$ -)	★ 5.45	-0.07 (downfield)
4.40 (t, triazole-N- <u>CH₂</u> -)	4.46	-0.06 (downfield)

Table S6: Change in chemical shift (δ) value of ¹H NMR spectra of derivative **3** in CDCl₃ and Oxidised species **4**.

Fig. S16 FT-IR spectrum of oxidized species **4** showed stretching band at around 1170 cm⁻¹ corresponding to N⁺-O⁻ stretching frequency.

Fig. S17 ESI-MS mass spectrum of residue obtained showed a parent ion peak, m/z = 1668.98 of oxidized species 4.

Fig. S18 Fluorescence spectrum of oxidized species 4 (5 μ M) in H₂O/THF (6:4, v/v) mixture.

Fig. S19 Spectral overlap of emission spectrum of oxidized species **4** and absorption spectrum of CuNPs.

Fig. S20 Fluorescence spectrum of oxidized species **4** (5 μ M) in H₂O/THF (6:4, v/v) mixture upon gradual addition of CuNPs up to 100 μ L of 0.01 (M).

Fig. S21 Fluorescence spectrum of oxidized species 4 (5 μ M) in H₂O/THF (6:4, v/v) in presence of 30 (Equiv.) Cu²⁺ ions.

Fig. S22 Exponential fluorescence decays of oxidised species 4 on addition of CuNPs measured at 540 nm. Spectra were acquired in H₂O/THF (6:4, v/v) mixture buffered with HEPES; pH = 7.05; $\lambda_{ex} = 486$ nm.

Entry	Quantum	A ₁ /A ₂]	Life time	k _f	k _{nr}	
	Yield		$ au_1$	$ au_2$	$ au_{avg}$	(10 ⁹ S ⁻¹)	(10 ⁹ S ⁻¹)
Oxidized species 4 (4:6, THF/Water)	0.21	40/60	0.95	3.96	2.98	0.070	0.265
Oxidized species 4 + CuNPs	0.06	10/90	0.71	1.26	0.16	0.37	5.87

Table S7 Fluorescence lifetime of oxidised species 4 in H₂O/THF (6:4, v/v) and in the presence of CuNPs for the emission at 540 nm. A₁, A₂: fractional amount of molecules in each environment. τ_{I} , τ_{2} and τ_{avg} : mono, bi-exponential and average life time of aggregates in 60 vol% of water in THF; k_{f} : radiative rate constant ($k_{f} = \Phi_{f}/\tau_{avg}$); k_{nr} : non-radiative rate constant ($k_{rr} = (1 - \Phi_{f})/\tau_{avg}$); $\lambda_{ex} = 486$ nm.

Fig. S23: UV-Vis spectra of compound **3** (5 μ M) showing the response to the Cu²⁺ ion (0-15 equiv.) in H₂O/THF (6:4, v/v) mixture.

Table S8: Catalytic efficiency of supramolecular ensemble **4**:CuNPs for photocatalytic C(sp²)-H alkynylation reaction of oxazoline substituted benzamide **(5)** with phenylacetylene **(6a)**.

Entry	CuNPs	Time (hours)	Yield (%)	TON	TOF (h ⁻¹)
	(ppm)				
1	10000 (1 mol%)	8	72	7.2	0.9
2	5000 (0.5 mol%)	10	68	13.6	1.36
3	1000 (0.1 mol%)	10	65	65	6.5
4	100 (0.01 mol%)	15	60	600	40
5	10 (0.001 mol%)	20	50	5000	250
6	0 mol%	24	0	0	0

SpectrAA Repor	t.		15:21 02	2-04-201	6			Page 1 of
Analyst Date Started Worksheet Comment Methods Computer name Serial Number:	15:45 31-03-2016 GMT Sandeep31032016 Cu HP-PC	: 10:15 31-03	-2016					
	Method: Cu (Flame)							
Sample ID CAL ZERO		Conc mg/L 0.000		%RSD 7.8	SD 0.0001	Mean Ab 0.0012	S	
		Readings 0.0011	0.001 ISF	1	0.0013	;	31-03-2016	15:48:50
STANDARD 1		1.000 Readings	1.0000	1.2	0.0008	0.0711		
		0.0703	0.071 ISF	2	0.0719		31-03-2016	15:49:22
STANDARD 2		3.000 Readings	1.0000	0.6	0.0013	0.2223		
		0.2239	0.221 ISF	9	0.2213		31-03-2016	15:49:54
STANDARD 3		5.000 Readings	1.0000	0.5	0.0019	0.3516		
		0.3494	0.352 ISF 1.0000	25	0.3529		31-03-2016	15:50:26
Sample 001		0.558 Readings		1.6	0.0007	0.0400		
		0.0392	0.04 ISF 1.0000	04	0.0404		31-03-2016	15:57:20

Fig. S24 Atomic absorption studies (AAS) of the residual liquid left after the recycling (4th cycle) of the catalyst [prepared by mixing aggregates of derivative **3** (5 μ M) and Cu²⁺ ions (30 equiv.)] and found that only 0.558 mg/lit = 0.558 ppm of copper leached into the solution after 4th catalytic cycle.

Table S9: Catalytic efficiency of supramolecular ensemble 4:CuNPs prepared by mixing aggregates of derivative **3** (10 μ M) and Cu²⁺ ions (30 equiv.) for photocatalytic C-H alkynylation reaction of oxazoline substituted benzamide (**5**) with phenylacetylene (**6a**).

E	Entry	Supramolecular ensemble 4:CuNPs					Catalyt	ic	Time		Yield of 7a	
			(1 mol	!%)			cycle		(hours)		(%)	
	1	Pr	epared by mixing	derivat	ive 3 (1	0	1 st		11		69	
			μ M) and Cu ²⁺ io	ns (30 equiv.)								
	2	Pr	enared by mixing	a derivative 3 (10		0	∕th		12		62	
	-		μ M) and Cu ²⁺ io	ns (30 e	quiv.)	Ŭ	•		12		02	
			• •		- /							
	SpectrAA	Repo	rt.		17:04	01-06-20	16				Page 1 of 11	
	Analyst Date Started 16:11 31-05-2016 (Worksheet cu Comment Methods Cu Computer name HP-PC Serial Number:			: 10:41 31-	05-2016							
	Method: Cu (Flam											
	Sample ID CAL ZERO			Conc mg/L % 0.000 23 Readings			SD 0.0003	Mean A 0.0011	bs			
				0.0014	0.0 ISF 1.0000	010	0.0009		31-05-2016	16:32:2	26	
	STANDAR	D 1		1.000 Readings		2.5	0.0008	0.0327				
				0.0329	0.0 ISF 1.0000	318	0.0334		31-05-2016	16:33:0	96	
	STANDAR	D 2		3.000 Readings		1.5	0.0020	0.1398				
				0.1390	0.1 ISF 1.0000	382	0.1421		31-05-2016	16:33:4	14	
	STANDAR	D 3		5.000 Readings		1.1	0.0024	0.2230				
			0.2240 0.2247 ISF 1.0000		247	0.2202		31-05-2016	16:34:3	30		
	Sample 00	1		0.114 Readings		9.6	0.0005	0.0050)			
				0.0052	0.0	0053	0.0044		31-05-2016	16:55:	42	
					1.0000							

Fig. S25 Atomic absorption studies (AAS) of the residual liquid left after the recycling (4th cycle) of the catalyst [prepared by mixing aggregates of derivative **3** (10 μ M) and Cu²⁺ ions (30 equiv.)] and found that only 0.114 mg/lit = 0.114 ppm of copper leached into the solution after 4th catalytic cycle.

Fig.S26 Recyclability of supramolecular ensemble 4:CuNPs catalyst for $C(sp^2)$ -H amination reaction of oxazoline substituted benzamide (5) with *p*-nitro aniline (9a).

Entry	CuNPs	Time (hours)	Yield (%)	TON	TOF (h ⁻¹)
	(ppm)				
1	50000 (5 mol%)	4	86	1.72	0.43
2	10000 (1 mol%)	5	84	8.4	1.68
1	5000 (0.5 mol%)	7	75	15	2.14
2	1000 (0.1 mol%)	9	70	70	7.77
3	100 (0.01 mol%)	12	66	660	55
4	10 (0.001 mol%)	16	60	6000	375
5	0 mol%	24	0	0	0

Table S10: Catalytic efficiency of supramolecular ensemble **4**:CuNPs for photocatalytic C-H amination reaction of oxazoline substituted benzamide (**5**) with *p*-nitro aniline (**9a**).

¹H NMR spectrum of derivative **3** in CDCl₃

Fig. S27 ¹H NMR spectrum of derivative 3 in CDCl₃.

 ^{13}C NMR spectrum of derivative **3** in CDCl₃

Fig. S28 ¹³C NMR spectrum of derivative 3 in CDCl₃.

MALDI-TOF analysis of derivative 3:

Applied Biosystems MDS Analytical Technologies TOF/TOF™ Series Explorer™ 72027 TOF/TOF™ Reflector Spec #1 MC[BP = 1604.0, 8875]

Fig. S29 MALDI-TOF analysis of derivative 3.

Fig. S30 FT-IR spectrum of derivative 3.

Fig. S31 ¹H NMR spectrum of derivative 7a in CDCl₃

Fig. S33B ${\rm ^{13}C}$ NMR spectrum of derivative 7c in CDCl_3

Fig. S33C ESI-MS spectrum of derivative 7c

Fig. S34A ¹H NMR spectrum of derivative 7d in CDCl₃

Fig. S34B ¹³C NMR spectrum of derivative 7d in CDCl₃

Fig. S34C ESI-MS spectrum of derivative 7d

Fig. S35A ¹H NMR spectrum of derivative 7e in CDCl₃

Fig. S35B ¹³C NMR spectrum of derivative 7e in CDCl₃

Fig. S35C ESI-MS spectrum of derivative 7e

Fig. S36B ¹³C NMR spectrum of derivative 7f in CDCl₃

Fig. S36C ESI-MS spectrum of derivative 7f

Fig. S39 ¹H NMR spectrum of derivative 7i in CDCl₃

Fig. S40A ¹H NMR spectrum of derivative 7j in CDCl₃

Fig. S40B ¹³C NMR spectrum of derivative 7j in CDCl₃

Fig. S41 ¹H NMR spectrum of derivative 7k in CDCl₃

Fig. S40C ESI-MS spectrum of derivative 7j

Fig. S42A ¹H NMR spectrum of derivative 7l in CDCl₃

Fig. S42B ¹³C NMR spectrum of derivative 7l in CDCl₃

Fig. S42C ESI-MS spectrum of derivative 71

Fig. S43A ¹H NMR spectrum of derivative 7m in CDCl₃

Fig. S43B ¹³C NMR spectrum of derivative 7m in CDCl₃

Fig. S43C ESI-MS spectrum of derivative 7m

Fig. S44A ¹H NMR spectrum of derivative 6n in CDCl₃

Fig. S44B ¹³C NMR spectrum of derivative 6n in CDCl₃

Fig. S44C ESI-MS spectrum of derivative 6n

Fig. S45A ¹H NMR spectrum of derivative 7n in CDCl₃

Fig. S45B ¹H NMR spectrum of derivative 7n in CDCl₃

Fig. S45C ESI-MS spectrum of derivative 7n

Fig. S47 ¹H NMR spectrum of derivative 10b in CDCl₃

Fig. S49 ¹H NMR spectrum of derivative 10d in CDCl₃

Fig. S48 ¹H NMR spectrum of derivative 10c in CDCl₃

Fig. S50B ¹³C NMR spectrum of derivative 10e in CDCl₃

S54

Fig. S50C ESI-MS spectrum of derivative 10e

Fig. S51A ¹H NMR spectrum of derivative 10f in CDCl₃

Fig. S51B ¹³C NMR spectrum of derivative 10f in CDCl₃

Fig. S51C ESI-MS spectrum of derivative 10f

Fig. S52A ¹H NMR spectrum of derivative 10g in CDCl₃

Fig. S52B¹³C NMR spectrum of derivative 10g in CDCl₃

Fig. S52C ESI-MS spectrum of derivative 10g

Fig. S53A ¹H NMR spectrum of derivative 10h in CDCl₃

Fig. S53B ¹³C NMR spectrum of derivative 10h in CDCl₃

Fig. S53C ESI-MS spectrum of derivative 10h

Fig. S54A ¹H NMR spectrum of derivative 10i in CDCl₃

Fig. S54B ¹³C NMR spectrum of derivative 10i in CDCl₃

Fig. S54C ESI-MS spectrum of derivative 10i

Fig. S55A ¹H NMR spectrum of derivative 10j in CDCl₃

Fig. S55B¹³C NMR spectrum of derivative 10j in CDCl₃

Fig. S55C ESI-MS spectrum of derivative 10j

Fig. S56A ¹H NMR spectrum of derivative 10k in CDCl₃

Fig. S56B ¹³C NMR spectrum of derivative 10k in CDCl₃

Fig. S56C ESI-MS spectrum of derivative 10k

Fig. S57A ¹H NMR spectrum of derivative 10l in CDCl₃

Fig. S57B ¹³C NMR spectrum of derivative 10l in CDCl₃

Fig. S57C Mass spectrum (ESI-MS) of derivative 10l:

Fig. S58A ¹H NMR spectrum of derivative 11 in CDCl₃

Fig. S58B ¹³C NMR spectrum of derivative 11 in CDCl₃

Fig. S59A ¹H NMR spectrum of derivative 12 in CDCl₃

Fig. S59B ¹³C NMR spectrum of derivative 12 in CDCl₃

