# Facile aromatic nucleophilic substitution reactions (S<sub>N</sub>Ar) in ionic liquid: An electrophile-nucleophile dual activation by [Omim]Br for the reaction

Xiao Zhang, Guo-ping Lu\*, Chun Cai

Chemical Engineering College, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, P. R. China

\* Corresponding Author E-mail: <u>glu@njust.edu.cn</u>

| 1. Experimental                | 2  |
|--------------------------------|----|
| 2. Characterization Data       | 4  |
| 3. NMR Spectra of All Products | 17 |

## **1 Experimental**

General procedures for the synthesis of ionic liquids<sup>1</sup>: *N*-Methylimidazole or 1,2dimethyl-imidazole 40 mmol, 1-haloalkane 48 mmol and ethyl acetate 10 mL were heated under reflux for 24 h. The biphasic system obtained was separated and the upper organic phase discharged. The bottom product phase was washed with ethyl acetate ( $3 \times 10$  mL), and dried under vacuum to give 1-octyl-3-methylimidazolium bromide as a colourless liquid. [Omim]OAc and [Omim]HSO<sub>4</sub> are synthesized by exchanging the bromide ion of [Omim]Br with AcO<sup>-</sup> or HSO<sub>4</sub><sup>-</sup> in acid-base neutralization with NaOAc and NaHSO<sub>4</sub> respectively.



#### **Experimental Procedure for IR Studies**

**Figure S1** IR spectrum of (a) [Omim]Br, (b) 1-Fluoro-2-nitrobenzene 1a, (d) the mixing of 1a and [Omim]Br after 30 min.



**Figure S2** IR spectrum of (a) [Omim]Br, (c) 4-Tolyl mercaptan **2a**, (e) the mixing of **2a** and [Omim]Br after 30 min.



**Figure S3** IR spectrum of (a) [Omim]Br. (f) the mixing of **1a** and **2a** in [Omim]Br after 30 min. (g) the mixing of **1a** and **2a** in [Omim]Br after 2 h.

| characteristic<br>frequency    | chemical bond                                     | compound                |
|--------------------------------|---------------------------------------------------|-------------------------|
| 1170.0 cm <sup>-1</sup>        | C-N stretching imidazole ring                     |                         |
| 1461.2-1570.2 cm <sup>-1</sup> | skeleton vibration of imidazole ring              | [Omim]Dr                |
| 2853.6-2935.6 cm <sup>-1</sup> | saturated C-H stretching vibration                | [Omim]Br                |
| 3072.0 cm <sup>-1</sup>        | C-H stretching vibration of imidazole ring        |                         |
| 1238.5 cm <sup>-1</sup>        | C-F stretching vibration of benzene               | 1-fluoro-2-nitrobenzene |
| 1347.5-1525.8 cm <sup>-1</sup> | C-NO <sub>2</sub> stretching vibration of benzene | <b>1</b> a              |
| 628.1 cm <sup>-1</sup>         | C-S stretching vibration of benzene               | 4-tolyl mercaptan       |
| 2561.4 cm <sup>-1</sup>        | S-H stretching vibration                          | 2a                      |

 Table S1
 The characteristic frequency of compounds in IR

#### **Results and Conclusions:**

- (1) The formation of HB between the C-2 hydrogen of [Omim]Br and F atom of **1a** is evidenced by the facts that  $v_{C-H}$  of imidazole ring in [Omim]Br is shifted from 3072.0 to 3063.3 and  $v_{C-F}$  of **1a** is shifted from 1238.5 to 1240.9. (Figure S1)
- (2) The interaction between [Omim]Br and **2a** is evidenced by the facts that  $v_{C-H}$  of imidazole ring in [Omim]Br is shifted from 3072.0 to 3062.8 and  $v_{C-S}$  of **2a** is shifted from 628.1 to 619.0. (Figure S2)
- (3) The interaction between [Omim]Br and substrates (1a and 2a) is evidenced by the facts that  $v_{\text{C-H}}$  of imidazole ring in [Omim]Br is shifted from 3072.0 to 3078.7 (f) and 3080.2 (g). (Figure S3)

#### 2 Characterization Data



#### Chemical Formula: C<sub>13</sub>H<sub>11</sub>NO<sub>2</sub>S Mass: 245

(2-Nitrophenyl)(*p*-tolyl)sulfane **3a**,<sup>2</sup> yellow solid, mp: 87-88 °C (lit. 89-90 °C), yield 94%, 230.3 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.43 (s, 3H), 6.85 (d, *J* = 8.0 Hz, 1H), 7.19 (t, *J* = 8.0 Hz, 1H), 7.28-7.34 (m, 3H), 7.46 (d, *J* = 8.0 Hz, 2H), 8.22 (d, *J* = 8,5 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  21.5, 124.8, 125.9, 127.4, 128.3, 131.0, 133.5, 136.1, 140.2, 140.6, 145.0. MS (ESI) *m/z*: 245.



5-Nitro-2-(*p*-tolylthio)aniline **3b**,<sup>3</sup> yellow solid, 111-113 °C, yield 84%, 218.4 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 2.33 (s, 3H), 4.49 (s, 2H), 7.12-7.17 (m, 4H), 7.32 (d, *J* = 8.5 Hz, 1H), 7.49 (d, *J* = 8.5 Hz, 1H), 7.55 (s, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 21.3, 109.3, 113.1, 126.0, 129.5, 130.3, 130.5, 134.3, 137.9, 147.2, 148.6. MS (ESI) *m/z*: 260.



Chemical Formula: C<sub>13</sub>H<sub>10</sub>CINO<sub>2</sub>S Mass: 279

(2-Chloro-6-nitrophenyl)(*p*-tolyl)sulfane 3c,<sup>4</sup> yellow solid, mp: 72-74 °C (lit. 69-70 °C), yield 89%, 248.3 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.30 (s, 3H), 7.07 (d, J = 8.5 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 7.41 (t, J = 8.5 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  21.3, 122.3, 124.5, 127.7, 130.1, 130.3, 133.5, 136.0, 137.7, 141.5, 155.6. MS (ESI) *m/z*: 279.



(2-Fluoro-4-nitrophenyl)(*p*-tolyl)sulfane **3d**, pale yellow solid, mp: 91-93 °C, yield 97%, 255.1 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.28 (s, 3H), 6.97 (t, *J* = 8.0 Hz, 1H), 7.14 (t, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.67 (d, *J* = 8.5 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  21.5, 110.7-111.0 (d, *J* = 26 Hz, 1C), 119.7, 124.6, 127.4, 131.2, 135.6, 137.6, 140.8, 145.8, 156.4-158.4 (d, *J* = 248 Hz, 1C). MS (ESI) *m/z*: 263.0416. Anal. Calcd for C<sub>13</sub>H<sub>10</sub>FNO<sub>2</sub>S: C, 59.31%; H, 3.83%; N, 5.32%. Found: C, 59.17%; H, 4.12; N, 5.04%.



(4-Nitrophenyl)(*p*-tolyl)sulfane  $3e^2$  yellow solid, mp: 78-80 °C (lit. 81.5 °C), yield 90%, 220.5 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.42 (s, 3H), 7.13 (d, J = 9.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 8.04 (d, J = 13.5 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  21.5, 124.1, 126.3, 126.6, 131.0, 135.2, 140.4, 145.3, 149.5. MS (ESI) *m/z*: 245.



Chemical Formula: C<sub>13</sub>H<sub>11</sub>NO<sub>3</sub>S Exact Mass: 261.0460 Elemental Analysis: C, 59.76; H, 4.24; N, 5.36; O, 18.37; S, 12.27

2-Nitro-5-(*p*-tolylthio)phenol **3f**, yellow solid, 118-120 °C, yield 78%, 203.6 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.43 (s, 3H), 6.63-6.67 (m, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.92 (d, *J* = 8.5 Hz, 1H), 10.76 (s, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  21.5, 115.0, 117.8, 125.3, 125.6, 130.8, 131.0, 135.5, 140.7, 135.6, 155.5. MS (ESI) *m/z*: 261.0460. Anal. Calcd for C<sub>13</sub>H<sub>11</sub>NO<sub>3</sub>S: C, 59.76%; H, 4.24; N, 5.36%. Found: C, 59.45%; H, 4.62; N, 5.15%.



#### Chemical Formula: C<sub>14</sub>H<sub>13</sub>NO<sub>2</sub>S Mass: 259

(4-Methyl-2-nitrophenyl)(*p*-tolyl)sulfane 3g,<sup>5</sup> yellow solid, 105-107 °C, yield 75%, 194.3 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2,27 (s, 3H), 2.34 (s, 3H), 6.66 (d, *J* = 8.5 Hz, 1H), 7.06 (d, *J* = 8.0 Hz,

1H), 7.19 (d, *J* = 7.5 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.95 (s, 1H).<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 20.6, 21.5, 125.9, 127.8, 128.3, 130.9, 134.7, 135.4, 135.9, 136.6, 140.3, 144.9. MS (ESI) *m/z*: 259.



Methyl 4-(*p*-tolylthio)benzoate **3h**,<sup>6</sup> white solid, mp: 101-103 °C, yield 51%, 131.6 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.39 (s, 3H), 3.88 (s, 3H),7.14 (d, *J* = 7.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.5 Hz, 2H),7.87 (d, *J* = 8.0 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  21.4, 52.2, 126.8, 127.2, 128.3, 130.1, 130.6, 134.5, 139.3, 145.5, 166.9. MS (ESI) *m/z*: 258.



Chemical Formula: C<sub>20</sub>H<sub>16</sub>OS Mass: 304

Phenyl(4-(*p*-tolylthio)phenyl)methanone **3i**,<sup>7</sup> pale yellow solid, 123-125 °C, yield 76%, 231.0 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.40 (s, 3H), 7.18 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.43-7.48 (m, 4H), 7.57 (t, *J* = 8.5 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 7.5 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  21.3, 126.5, 128.0, 128.3, 129.9, 130.6, 130.8, 132.3, 134.4, 134.5, 137.8, 139.3, 145.3, 195.8. MS (ESI) *m/z*: 304.



Chemical Formula: C<sub>14</sub>H<sub>11</sub>NS Mass: 225

4-(*p*-Tolylthio)benzonitrile **3j**,<sup>8</sup> white solid, mp: 100-102 °C (lit. 102-103 °C), yield 83%, 186.8 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.42 (s, 3H), 7.13 (d, *J* = 8.5 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.5 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  21.4, 108.3, 118.9, 126.7, 126.8, 130.8, 132.3, 135.0, 140.0, 146.6. MS (ESI) *m/z*: 225.



1-(4-(*p*-Tolylthio)phenyl)ethan-1-one **3k**,<sup>9</sup> pale yellow solid, mp: 88-90 °C (lit. 90-92 °C), yield 76%, 183.9 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.40 (s, 3H), 2.54 (s, 3H), 7.15 (d, *J* = 8.5 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.79 (d, *J* = 8.0 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  21.4, 26.6, 126.8, 128.0, 129.0, 130.7, 134.3, 134.6, 139.5, 146.1, 197.3. MS (ESI) *m/z*: 242.



Chemical Formula: C<sub>12</sub>H<sub>11</sub>NS Mass: 201

2-(*p*-Tolylthio)pyridine **31**,<sup>10</sup> pale yellow oil, yield 77%, 154.8 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.40 (s, 3H), 6.83 (d, *J* = 8.0 Hz, 1H), 6.96 (t, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.41 (t, *J* = 7.0 Hz, 1H), 7.49 (d, *J* = 8.5 Hz, 2H), 8.41 (d, *J* = 5.0 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  21.5, 119.7, 121.0, 127.4, 130.6, 135.4, 136.7, 139.6, 149.6, 162.3. MS (ESI) *m/z*: 201.



#### Chemical Formula: C<sub>12</sub>H<sub>8</sub>BrNO<sub>2</sub>S Mass: 310

(4-Bromophenyl)(4-nitrophenyl)sulfane 3m,<sup>11</sup> pale yellow solid, mp: 94-96 °C (lit. 92-94 °C), yield 87%, 269.7 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.19 (d, J = 8.5 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 8.5 Hz, 2H), 8.07 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  124.3, 127.2, 130.0, 133.4, 136.1, 145.8, 147.5. MS (ESI) *m/z*: 310.

O<sub>2</sub>N S

(4-Fluorophenyl)(4-nitrophenyl)sulfane **3n**,<sup>9</sup> pale yellow solid, 82-84 °C, yield 93%, 231.6 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.12-7.18 (m, 4H), 7.53-7.56 (m, 2H), 8.06 (d, *J* = 9.0 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  117.6, 124.2, 125.6, 126.4, 137.3, 145.5, 148.6, 162.8-164.8 (d, *J* = 250 Hz, 1C). MS (ESI) *m/z*: 249.



Chemical Formula: C<sub>11</sub>H<sub>8</sub>N<sub>2</sub>O<sub>2</sub>S Mass: 232

2-((4-Nitrophenyl)thio)pyridine **30**,<sup>12</sup> pale yellow solid, mp: 84-86 °C (lit. 84-85 °C), yield 77%, 178.6 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.19 (t, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.59-7.65 (m, 3H), 8.18 (d, *J* = 9.0 Hz, 2H), 8.52 (d, *J* = 7.5 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  122.2, 124.3, 125.0, 132.0, 137.5, 142.5, 147.1, 150.6, 156.7. MS (ESI) *m/z*: 232.



#### Chemical Formula: C<sub>10</sub>H<sub>7</sub>N<sub>3</sub>O<sub>2</sub>S Mass: 233

2-((4-Nitrophenyl)thio)pyrimidine **3p**,<sup>13</sup> yellow solid, mp: 108-110 °C (lit. 108-113 °C), yield 83%, 193.4 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.07 (t, *J* = 7.0 Hz, 1H), 7.81 (d, *J* = 8.5 Hz, 2H), 8.24 (d, *J* = 8.5 Hz, 2H), 8.52 (d, *J* = 7.5 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  118.1, 124.1, 134.9, 138.7, 148.0, 157.9, 170.9. MS (ESI) *m/z*: 233.

NO<sub>2</sub> S<sup>-n-C<sub>18</sub>H<sub>37</sub></sup>

Chemical Formula: C<sub>24</sub>H<sub>41</sub>NO<sub>2</sub>S Mass: 407

(2-Nitrophenyl)(octadecyl)sulfane 3q,<sup>14</sup> yellow solid, mp: 52-54 °C (lit. 58-59 °C), yield 91%, 370.4 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  0.87 (t, J = 7.0 Hz, 3H), 1.20-1.33 (m, 28H), 1.45-1.51 (m, 2H), 1.70-1.76 (m, 2H), 2.94 (t, J = 7.5 Hz, 2H), 7.23 (t, J = 7.5 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 8.19 (d, J = 8.0 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  14.3, 22.8, 28.0, 29.3 (2C), 29.5, 29.6, 29.7, 29.8, 32.1, 32.5, 124.3, 126.3, 126.7, 133.5, 138.5, 146.1. MS (ESI) *m/z*: 407.



Cyclohexyl(2-nitrophenyl)sulfane 3r,15 yellow oil, yield 90%, 213.3 mg. 1H NMR (500 MHz,

CDCl<sub>3</sub>)  $\delta$  1.27-1.47 (m, 5H), 1.66 (d, *J* = 10.0 Hz, 1H), 1.80 (d, *J* = 10.0 Hz, 2H), 2.05 (d, *J* = 11.0 Hz, 2H), 3.27-3.31 (m, 1H), 7.22 (t, *J* = 8.0 Hz, 1H), 7.45-7.52 (m, 2H), 8.07 (d, *J* = 8.0 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  25.8, 26.1, 32.7, 44.4, 124.9, 126.0, 128.5, 133.1, 136.0, 147.6. MS (ESI) *m/z*: 237.



Chemical Formula: C<sub>13</sub>H<sub>8</sub>N<sub>2</sub>O<sub>2</sub>S<sub>2</sub> Mass: 288

2-((2-Nitrophenyl)thio)benzo[d]thiazole **3s**,<sup>16</sup> yellow solid, mp: 104-106 °C (lit. 106 °C), yield 74%, 213.1 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.39-7.44 (m, 2H), 7.46-7.51 (m, 2H), 7.55 (t, *J* = 7.0 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 8.09 (d, *J* = 8.0 Hz, 1H), 8.23 (d, *J* = 9.0 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  121.6, 123.8, 125.8, 126.4, 126.9, 127.6, 130.8, 133.3, 134.0, 137.7, 146.8, 153.8, 161.0. MS (ESI) *m/z*: 288.



Chemical Formula: C<sub>16</sub>H<sub>11</sub>NO<sub>2</sub>S Mass: 281

Naphthalen-2-yl(2-nitrophenyl)sulfane **3t**,<sup>17</sup> yellow solid, mp: 92-94 °C (lit. 92-93 °C), yield 82%, 230.4 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.95 (d, J = 8.5 Hz, 1H), 7.26 (t, J = 7.5 Hz, 1H), 7.31-7.36 (m, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.62-7.67 (m, 2H), 7.82-7.98 (m, 3H), 8.22 (s, 1H), 8.29 (d, J = 8.0 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  125.2, 125.9, 127.2, 127.8, 128.0, 128.2, 128.3, 128.8, 130.1, 131.7, 133.6, 133.7, 134.1, 136.1, 139.5, 145.2. MS (ESI) *m/z*: 281.



Chemical Formula:C<sub>9</sub>H<sub>9</sub>NO<sub>2</sub>S Mass: 195

Allyl(2-nitrophenyl)sulfane 3u,<sup>18</sup> light yellow oil, yield 74%, 144,3 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  3.65 (d, J = 6.5 Hz, 2H), 5.25 (d, J = 10.0 Hz, 1H), 5.37 (d, J = 16.5 Hz, 1H), 5.89-5.94 (m, 1H), 7.27 (d, J = 7.0 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 7.0 Hz, 1H), 8.20 (t, J = 7.5 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  35.6, 119.5, 124.7, 126.0, 127.2, 131.8, 133.3, 137.1, 146.4. MS (ESI) *m/z*: 195.



(2-Nitrophenyl)(nonyl)sulfane 3v,<sup>19</sup> Light yellow oil, yield 71%, 385.8 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.44-2.55 (m, 2H), 3.22 (t, J = 8.0 Hz, 2H), 7.34 (t, J = 7.0 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.62-7.65 (m, 1H), 8.23-8.25 (m, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  22.2, 29.3-29.7 (m), 124.6, 125.3, 125.6, 133.0, 134.5, 145.7. <sup>19</sup>F NMR (CDCl<sub>3</sub>, 470 MHz)  $\delta$  -126.1, -123.3, -122.8, -121.8, -114.2, -80.8. MS (ESI) *m/z*: 501.



Benzyl(2-nitrophenyl)sulfane 3w,<sup>20</sup> yellow solid, mp: 82-84 °C (lit. 82-83 °C), yield 98%, 240.1 mg. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  4.20 (s, 2H), 7.25 (t, J = 7.0 Hz, 1H), 7.29 (t, J = 7.0 Hz, 1H), 7.34 (t, J = 7.5 Hz, 2H), 7.42 (d, J = 7.5 Hz, 2H), 7.46 (d, J = 7.5 Hz, 1H), 7.52 (t, J = 8.0 Hz, 1H), 8.20 (t, J = 8.0 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  37.7, 124.9, 126.2, 127.1, 127.9, 129.0, 129.2, 133.7, 135.1, 137.9, 146.0. MS (ESI) *m/z*: 245.



(3,4-Dimethoxybenzyl)(4-fluoro-2-nitrophenyl)sulfane  $3x_{,}^{21}$  Light yellow solid, mp: 92-94 °C (lit. 92-94 °C), yield 94%, 303.6 mg. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  3.97 (s, 6H), 4.25 (s, 2H), 6.91 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 8.0 Hz, 2H), 7.36-7.40 (m, 1H), 7.52-7.55 (m, 1H), 7.98-8.01 (m, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  37.0, 54.9 (2C), 110.3, 111.0, 112.0-112.2 (d, J = 26 Hz, 1C), 120.1, 120.2-120.4 (d, J = 25 Hz, 1C), 126.1, 128.3, 131.7, 145.7, 147.8, 148.3, 157.4-159.4 (d, J = 248 Hz, 1C). MS (ESI) *m/z*: 323.



2,5-Dichloro-4-(pyrrolidin-1-yl)pyrimidine **4a**,<sup>17</sup> white solid, 78-80 °C, yield 92%, 200.6 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 1.91 (s, 4H), 3.77 (s, 4H), 7.91 (s, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 25.4, 49.8, 112.4, 156.7, 157.3, 157.6. MS (ESI) *m/z*: 217.



2,5-Dichloro-*N*,*N*-diethylpyrimidin-4-amine **4b**,<sup>22</sup> colorless oil, yield 81%, 177.4 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  1.22 (t, *J* = 8.0 Hz, 6H), 3.61-3.65 (m, 4H), 7.91 (s, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  13.7, 44.5, 112.2, 157.5, 157.9, 158.3. MS (ESI) *m/z*: 219.



2-Nitro-*N*-phenylaniline 4c,<sup>23</sup> red solid, mp: 70-72 °C (lit. 75 °C), yield 85%, 181.9 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.68 (t, *J* = 9.0 Hz, 1H), 7.13-7.20 (m, 4H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 8.12 (d, *J* = 9.0 Hz, 1H), 9.41 (s, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  116.2, 117.6, 124.5, 125.8, 126.8, 129.9, 133.4, 135.8, 138.9, 143.2. MS (ESI) *m/z*: 214.



*N*-(4-Methoxyphenyl)-2-nitroaniline 4d,<sup>24</sup> red solid, mp: 88-90 °C (lit. 89 °C), yield 84%, 205.0 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  3.84 (s, 3H), 6.71 (d, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 9.0 Hz, 2H), 7.00 (d, *J* = 8.5 Hz, 1H), 7.19 (d, *J* = 9.0 Hz, 2H), 7.32 (t, *J* = 7.0 Hz, 1H), 8.18 (d, *J* = 7.5 Hz, 1H), 9.41 (s, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  55.7, 115.1, 115.9, 116.9, 126.7, 127.2, 131.3, 132.6, 135.9, 144.6, 158.1. MS (ESI) *m/z*: 244.



4-(4-Nitrophenyl)morpholine **4e**,<sup>25</sup> yellow solid, mp: 147-149 °C (lit. 149-150 °C), yield 95%, 197.6 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  3.36 (t, *J* = 5.0 Hz, 4H), 3.84 (t, *J* = 5.0 Hz, 4H), 6.81 (d, *J* = 9.5 Hz, 2H), 8.10 (d, *J* = 9.5 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  47.2, 66.5, 112.7, 126.0, 139.1, 155.1. MS (ESI) *m/z*: 208.



*N*-Benzyl-4-nitroaniline **4f**,<sup>26</sup> yellow solid, mp: 144-146 °C (lit. 147 °C), yield 89%, 202.9 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  4.43 (d, *J* = 5.5 Hz, 2H), 4.94 (s, 1H),6.57 (d, *J* = 9.0 Hz, 2H), 7.30-7.39 (m, 5H), 8.07 (d, *J* = 9.0 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  47.8, 111.5, 126.5, 127.5, 128.0, 129.1, 137.5, 138.4, 153.2. MS (ESI) *m/z*: 228.



1-(4-Nitrophenyl)-1H-imidazole **4g**,<sup>27</sup> pale yellow solid, mp: 193-195 °C (lit. 195-198 °C), yield 89%, 168.2 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.27 (s, 1H), 7.37 (s, 1H), 7.58 (d, *J* = 9.0 Hz, 2H), 7.98 (s, 1H), 8.37 (d, *J* = 9.5 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  117.8, 121.2, 125.9, 131.8, 135.5, 142.1, 146.4. MS (ESI) *m/z*: 189.



4-(2-Fluoro-4-nitrophenyl)morpholin **4h**,<sup>28</sup> yellow solid, mp: 110-112 °C (lit. 112-113 °C), yield 99%, 223.7 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  3.25 (t, *J* = 9.5 Hz, 4H), 3.84 (t, *J* = 5.0 Hz, 4H), 6.89 (t, *J* = 8.0 Hz, 1H), 7.84 (d, *J* = 10.5 Hz, 1H), 7.93 (d, *J* = 7.5 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  50.0, 66.7, 112.7, 117.0, 121.1, 140.8, 145.6, 152.2-154.2 (d, *J* = 248 Hz, 1C). MS (ESI) *m/z*: 226.



Chemical Formula: C<sub>17</sub>H<sub>17</sub>NO Mass: 251

Phenyl(4-(pyrrolidin-1-yl)phenyl)methanone **4i**,<sup>29</sup> pale yellow solid, mp: 134-136 °C (lit. 138 °C), yield 67%, 168.2 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.03 (t, J = 6.5 Hz, 4H), 3.37 (t, J = 6.5 Hz, 4H), 6.53 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 7.0 Hz, 2H), 7.51 (d, J = 7.5 Hz, 1H), 7.71 (d, J = 7.5 Hz, 2H), 7.79 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  25.6, 47.7, 110.7, 124.3, 128.1, 129.5, 131.1, 133.1, 139.6, 151.0, 195.2. MS (ESI) *m/z*: 251.



Chemical Formula: C<sub>8</sub>H<sub>9</sub>Cl<sub>2</sub>N<sub>3</sub> Mass: 217

2,4-Dichloro-6-(pyrrolidin-1-yl)pyrimidine 4j,<sup>30</sup> white solid, 84-86 °C, yield 72%, 156.2 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  1.91-1.97 (m, 2H), 2.01-20.6 (m, 2H), 3.29 (t, *J* = 7.0 Hz, 2H), 3.57 (t, *J* = 6.5 Hz, 2H), 6.15 (s, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  24.8-25.5 (d, *J* = 86 Hz, 1C), 46.9-47.4 (d, *J* = 65 Hz, 1C), 100.5, 159.1, 159.6, 161.4. MS (ESI) *m/z*: 217.

 $CI \rightarrow CI$   $N \rightarrow N$  Chemical Formula:  $C_8H_9Cl_2N_3$  $N \rightarrow N$  Mass: 217

4,6-Dichloro-2-(pyrrolidin-1-yl)pyrimidine **4j**',<sup>31</sup> white solid, 87-89 °C, yield 15%, 32.6 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  1.96-1.98 (m, 4H), 3.56 (t, *J* = 7.0 Hz, 4H), 6.49 (s, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  25.4, 47.2, 107.2, 159.4, 161.4. MS (ESI) *m/z*: 217.



4-Chloro-2,6-di(piperidin-1-yl)pyrimidine 4k,<sup>32</sup> pale yellow solid, mp: 93-95 °C (lit. 95-96 °C), yield 78%, 218.4 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  1.52-1.58 (m, 8H), 1.59-1.64 (m, 4H), 3.50 (t, J = 5.0 Hz, 4H), 3.69 (t, J = 5.0 Hz, 4H), 5.79 (s, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  24.8-25.0 (d, J = 23 Hz, 1C), 25.6-25.9 (d, J = 35 Hz, 1C), 44.9-45.3 (d, J = 51 Hz, 1C), 90.2, 160.4, 161.1, 163.2. MS (ESI) m/z: 280.



#### Chemical Formula: C<sub>12</sub>H<sub>17</sub>ClN<sub>4</sub> Mass: 252

4-Chloro-2,6-di(pyrrolidin-1-yl)pyrimidine **41**,<sup>32</sup> pale yellow solid, mp: 78-80 °C (lit. 79-82 °C), yield 81%, 204.1 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  1.88-1.94 (m, 8H), 3.52 (t, *J* = 7.0 Hz, 8H), 5.63 (s, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  25.6, 46.3-46.6 (d, *J* = 41 Hz, 1C), 90.7, 159.0, 159.9, 161.4. MS (ESI) *m/z*: 252.

N N OH

Chemical Formula: C<sub>8</sub>H<sub>12</sub>N<sub>2</sub>O Mass: 152

2-(Methyl(pyridin-2-yl)amino)ethan-1-ol **4m**,<sup>33</sup> pale yellow oil, yield 94%, 142.9 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  3.05 (s, 3H), 3.69 (t, J = 5.5 Hz, 2H), 3.83 (t, J = 5.0 Hz, 2H), 6.52 (d, J = 8.5 Hz, 1H), 6.56 (t, J = 7.0 Hz, 1H), 7.46 (t, J = 8.5 Hz, 1H), 8.03 (d, J = 6.5 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  38.0, 54.5, 63.1, 106.5, 112.4, 137.9, 147.2, 159.4. MS (ESI) *m/z*: 152.



### Chemical Formula:C<sub>16</sub>H<sub>11</sub>NO<sub>3</sub> Mass: 265

2-(2-Nitrophenoxy)naphthalene **5a**,<sup>34</sup> brown solid, mp: 55-57 °C (lit. 58 °C), yield 80%, 212 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.10 (d, *J* = 8.5 Hz, 1H), 7.25-7.33 (m, 2H), 7.42 (s, 1H), 7.47-7.56 (m, 3H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.88-7.93 (m, 2H), 8.03 (d, *J* = 8.0 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  115.2, 119.8, 120.9, 123.5, 125.5, 126.0, 127.0, 127.4, 128.0, 130.5, 130.9, 134.3, 134.4, 141.6, 150.8, 153.7. MS (ESI) *m/z*: 265.



#### Chemical Formula: C<sub>15</sub>H<sub>10</sub>N<sub>2</sub>O<sub>3</sub> Mass: 266

6-(4-Nitrophenoxy)quinoline **5b**,<sup>35</sup> red solid, 69-71 °C, yield 78%, 207.5 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.08 (d, J = 9.0 Hz, 2H), 7.42-7.49 (m, 3H), 8.09 (d, J = 9.0 Hz, 1H), 8.17 (d, J = 9.0 Hz, 2H), 8.22 (d, J = 9.0 Hz, 1H), 8.90 (s, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  116.4, 117.9, 122.1, 123.8, 126.2, 129.2, 132.3, 135.6, 143.3, 146.0, 150.3, 152.9, 162.9. MS (ESI) *m/z*: 266.



1,4-Bis(2-nitrophenoxy)benzene **5c**,<sup>36</sup> brown solid, mp: 158-160 °C (lit. 159-160 °C), yield 71%, 249.9 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.03 (d, *J* = 8.0 Hz, 2H), 7.08 (s, 4H), 7.22 (t, *J* = 7.5 Hz,

2H), 7.53 (t, J = 8.0 Hz, 2H), 7.96 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  120.4, 120.9, 123.5, 125.9, 134.4, 141.4, 150.8, 152.4. MS (ESI) *m/z*: 352.



Chemical Formula: C<sub>24</sub>H<sub>25</sub>NO<sub>4</sub> Mass: 391

(8R,9S,13S,14S)-13-Methyl-3-(2-nitrophenoxy)-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[a]phenanthren-17-one **5d**,<sup>37</sup> yellow solid, >250 °C, yield 77%, 301.1 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  0.93 (s, 3H), 1.49-1.64 (m, 7H), 1.96-2.17 (m, 3H), 2.27-2.31 (m, 1H), 2.39-2.42 (m, 1H), 2.49-2.54 (m, 1H), 2.88-2.90 (m, 2H), 6.79 (s, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 7.03 (d, *J* = 8.5 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.27 (d, *J* = 8.5 Hz, 1H), 7.48 (t, *J* = 8.5 Hz, 1H), 7.94 (d, *J* = 8.5 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  14.0, 21.7, 26.0, 26.5, 29.6, 31.7, 36.0, 38.3, 44.2, 48.1, 50.6, 60.5, 116.6, 119.4, 120.5, 122.9, 125.8, 127.0, 134.1, 136.3, 138.8, 141.4, 151.1, 153.8. MS (ESI) *m/z*: 391.



1-Nitro-2-(*p*-tolyloxy)benzene **5e**,<sup>38</sup> yellow oil, yield 92%, 197.8 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.01 (d, *J* = 8.0 Hz, 1H), 7.04 (d, *J* = 7.5 Hz, 2H), 7.16-7.20 (m, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.49 (d, *J* = 8.5 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  119.9, 120.6, 123.3, 124.7, 125.9, 130.2, 134.3, 141.5, 150.9, 155.9. MS (ESI) *m/z*: 215.



1-Nitro-4-phenethoxybenzene **5f**,<sup>39</sup> pale yellow solid, mp: 54-56 °C (lit. 56-57 °C), yield 79%, 192.0 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  3.15 (t, *J* = 7.0 Hz, 2H), 4.26-4.30 (m, 2H), 6.94 (d, *J* = 9.0 Hz, 2H), 7.22-7.36 (m, 5H), 8.18 (d, *J* = 9.5 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  35.6, 69.6, 114.6, 126.0, 126.9, 128.8, 129.1, 137.6, 141.6, 164.0. MS (ESI) *m/z*: 243.



1-(4-(4-Methoxyphenoxy)phenyl)ethan-1-one **5g**,<sup>38</sup> pale yellow solid, mp: 60-62 °C (lit. 60-61 °C), yield 76%, 183.9 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.55(s, 3H), 3.82 (s, 3H), 6.92 (t, *J* = 7.5 Hz, 4H), 7.01 (d, *J* = 9.0 Hz, 2H), 7.91 (d, *J* = 9.0 Hz, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  26.5, 55.8, 115.2, 116.5, 121.8, 130.7, 131.5, 148.6, 156.8, 163.1, 196.9. MS (ESI) *m/z*: 242.



Chemical Formula: C<sub>15</sub>H<sub>16</sub>FNO<sub>2</sub>S Mass: 293

2-((3,4-Dimethoxybenzyl)thio)-5-fluoroaniline **6**,<sup>40</sup> light yellow oil, yield 92%, 269.6 mg. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  3.72 (s, 3H), 3.74 (s, 2H), 3.79 (s, 3H), 4.44 (s, 2H), 6.27-6.34 (m, 1H), 6.35-6.36 (m, 1H), 6.53 (d, *J* = 1.5 Hz, 1H), 6.61-6.62 (m, 1H), 6.69 (d, *J* = 8.0 Hz, 1H), 7.07-7.10 (m, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  38.2, 54.3, 54.5, 99.8-100.0 (d, *J* = 25 Hz, 1C), 103.7-103.8 (d, *J* = 22 Hz, 1C), 109.8, 110.8-110.9 (d, *J* = 22 Hz, 1C), 119.8, 129.5, 137.3, 137.4, 146.8-147.3 (d, *J* = 65 Hz, 1C), 149.3-149.4 (d, *J* = 11 Hz, 1C), 162.0, 164.0. MS (ESI) *m/z*: 293.



4,4'-(6-Chloropyrimidine-2,4-diyl)dimorpholine 7,<sup>30</sup> white solid, mp: 139-141 °C (lit. 139-142 °C), yield 83%, 235.7 mg. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  3.50 (s, 4H), 3.68-3.72 (m, 12H), 5.82 (s, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  44.4, 66.6-66.9 (d, *J* = 39 Hz, 1C), 91.2, 160.6, 160.9, 163.9. MS (ESI) *m/z*: 284.

[1] (a) Simon, L. D, Simon, W. R. David, J. C. Aqueous-biphasic hydroformylation of alkenes promoted by"weak" surfactants. *Green Chemistry* **2009**, 11(5), 630-637. (b) Rather, M. A.; Rather, G. M.; Pandit, S. A.; Bhat, S. A.; Bhat, M. A., Determination of cmc of imidazolium based surface active ionic liquids through probe-less UV–vis spectrophotometry. *Talanta* **2015**, *131*, 55-58.

[2] Liang L.; Hongyang, M.; Yuqiang, D., Iridium and phosphine promoted C–F bond activation: the C–S cross-coupling of aryl fluorides with diaryl disulfides to synthesize thioethers. *Tetrahedron Letters* **2015**, 56(46), 6405–6408.

[3] Commercial chemical, CAS number: 91955-35-0.

[4] Commercial chemical, CAS number: 870241-04-7.

[5] Rockway, T. W.; Betebenner, D. A.; Krueger, A.; Iwasaki, N.; Cooper, C. S.; Anderson, D. D.; Kempf, D. J.; Madigan, D. L.; Motter, C. E.; Shanley, J. P., Preparation of 1,6- and 1,8- naphthyridines as antiviral compounds for treatment of HCV infections. *The International Application according to the Patent Cooperation Treaty* **2007**, WO 2007076035.

[6] Suguru, Y.; Yasuyuki, S.; Yuki, H.; Yoshitake, N.; Takahisa, Y.; Shigeomi, S.; Takamitsu, H., A mild and facile synthesis of aryl and alkenyl sulfides via copper-catalyzed deborylthiolation of organoborons with thiosulfonates. *Chemical Communications* **2015**, 51(93), 16613-16616

[7] Nicolaou, K. C.; Koumbis, A. E.; Snyder, S. A.; Simonsen, K. B. Novel reactions initiated by titanocene methylidenes: deoxygenation of sulfoxides, N-oxides, and selenoxides. *Angewandte Chemie International Edition* **2000**, 39(14), 2529-2533.

[8] Anns, M. T.; Sujatha, A.; K, S. S.; Gopinathan, A., A general and inexpensive protocol for the

Cu-catalyzed C-S cross-coupling reaction between aryl halides and thiols. *Tetrahedron Letters* **2015**, 56(47), 6560-6564.

[9] K, S. S.; Amrutha, P.; Thankachan, A.; Maria, T.; Gopinathan, A., An efficient iron-catalyzed S-arylation of aryl and alkylthiols with aryl halides in the presence of water under aerobic conditions. *Tetrahedron Letters* **2015**, 56(34), 4923-4926.

[10] Gogoi, P., Role of TBATB in nano indium oxide catalyzed C-S bond formation. *Scientific Reports* **2015**, 5, 13873.

[11] Mei-jie, B.; Guo-ping, L.; Chun, C., Ascorbic Acid Promoted Metal-Free Synthesis of Aryl Sulfides with Anilines Nitrosated in Situ by tert-Butyl Nitrite. *Synlett* **2015**, 26(13), 1841-1846.

[12] Rahul, S.; Bharat, K. A.; Neetu, S.; Kumkum,, K.; Satish, K. S.; Krishna, N. S., Nickel-Catalyzed C-S Bond Formation: Synthesis of Aryl Sulfides from Arylsulfonyl Hydrazides and Boronic Acids. *Advanced Synthesis & Catalysis* **2015**, 357(6), 1181-1186.

[13] Feng, L.; Qingqing, M.; Huansheng, C.; Zhiming, L.; Quanrui, Wang., Synthesis of Diaryl Ethers, Diaryl Sulfides, Heteroaryl Ethers and Heteroaryl Sulfides under Microwave Dielectric Heating. *Synthesis* **2005**, *8*, 1305-1313.

[14] Commercial chemical, CAS number: 1031899067-8.

[15] Zhongyu, D.; Sadananda, R.; Pengfei, Z.; Xiaogang, L., Synthesis of Aryl Sulfides by Decarboxylative C-S Cross-Couplings. *Chemistry-A European Journal* **2009**, 15(15), 3666-3669.

[16] Guozhen, H.; Yuan, H.; Yao, T.; Jie, Z.; Dan, Z.; Shuangli, Z.; Shiqing, H., Substratepromoted ligand-free CuI catalyzed S-arylation of 2-mercaptobenzothiazoles with aryl iodides in water. *Tetrahedron Letters* **2013**, 54(39), 5318-5321.

[17] Nicholas, A. I.; Roscoe, T. H. L.; Sean, M. K.; Fabrice, G.; Bruce, H. L., Nucleophilic Aromatic Substitution Reactions in Water Enabled by Micellar Catalysis. *Organic Letters* **2015**, 17 (19), 4734-4737.

[18] Peter, K. D.; Kevin, G. M. K.; K, N. Houk.; Vy M. D., Dynamic Kinetic Resolution of Allylic Sulfoxides by Rh-Catalyzed Hydrogenation: A Combined Theoretical and Experimental Mechanistic Study. *Journal of Americal Chemistry Society* **2014**, 136(1), 291–298.

[19] Commercial chemical, CAS number: 1642142-77-5.

[20] Prasanta, G.; Sukanya, H.; Manas, J. S.; Kuladip, S.; Pranjit, B., Nickel-Schiff base complex catalyzed C-S cross-coupling of thiols with organic chlorides. *Tetrahedron Letters* **2014**, 70(41), 7484-7489.

[21] Guoping, L.; Yamei, L., Preparation of polysubstituted 2-arylbenzothiazole with thiourea as sulfur source. *Faming Zhuanli Shenqing* **2015**, CN 104892545.

[22] Commercial chemical, CAS number: 1531745-71-7.

[23] Reddy, P. L.; Arundhathi, R.; Rawat, D. S., Cu(0)@Al2O3/SiO2 NPs: an efficient reusable catalyst for the cross coupling reactions of aryl chlorides with amines and anilines. *RSC Advances* **2015**, 5(112), 92121-92127.

[24] Liang-Zhu, H.; Pan, H.; You-Qiang, L.; Ying-Meng, X.; Tao, Z.; Zhen-Ting, D., A Facile and Efficient Synthesis of Diaryl Amines or Ethers under Microwave Irradiation at Presence of KF/Al<sub>2</sub>O<sub>3</sub> without Solvent and Their Anti-Fungal Biological Activities against Six Phytopathogens. *International Journal of Molecular Sciences* **2013**, 14(9), 18850-18860.

[25] Sheng-Huei, H.; Ying-Hsiu, H.; Yu-Ruei, K., Synthesis and characterization of new redoxactive and electrochromic polyimides with (4-morpholinyl)triphenylamine units. *Journal of Electroanalytical Chemistry* **2016**, 764, 31-37. [26] Valerio, F.; James, E. R.; Michael, J. I., B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>-Catalyzed Reductive Amination using Hydrosilanes. *ACS Catalysis* **2016**, 6(3), 1793–1798.

[27] Jie-hua, S.; Jiong-jie, W., An efficient method for N-arylation of nitrogen-containing heterocycles catalyzed by CuCl2/Al2O3. *Zhejiang Gongye Daxue Xuebao* **2013**, 41(2), 126-132.

[28] Paulen, A.; Gasser, V.; Hoegy, F.; Perraud, Q.; Pesset, B.; Schalk, Isabelle. J.; Mislin, G. L. A., Synthesis and antibiotic activity of oxazolidinone-catechol conjugates against Pseudomonas aeruginosa. *Organic & Biomolecular Chemistry* **2015**, 13(47), 11567-11579.

[29] Zhi, H. C.; Zi, H. M.; Yan, Q. M.; Peng, W.; Qi, W.; Lin, M. Z.; Ke, J. Cu.; Fang, Y.; Zhi, B. X., Amination of electron deficient aryl chlorides promoted by nano sized Mg(OH)2 under transition metals free condition. *Chinese Chemical Letters* **2012**, 23(2), 137-140.

[30] Ping, G; Yanfang, Z; Yajing, L; Xin, Z; Wufu, Zhu. Preparation of pyrimidine and triazine derivatives for treating cancer. *Faming Zhuanli Shenqing* **2012**, CN 102659765.

[31] Padilla, A. G.; Pearlman, B. A. Highly Selective Hydrolysis of Chloropyrimidines to Pyrimidones in 12 N Hydrochloric Acid. *Organic Process Research & Development* **2006**, 10(5), 921-926.

[32] Prevost, G; Liberatore, A; Bigg, D; Pons, D. Preparation of triaminopyrimidine derivatives as phosphatase Cdc25 inhibitors and their use in treatment of diseases, especially neoplasm. *The International Application according to the Patent Cooperation Treaty* **2008**, WO 2008152223.

[33] Ge, M; Meilin, Z; Mengshu, D; Yang, G; Aqun, Zheng; Zhenyu, L; Ruizhi, Hu. Synthetic optimization of rosiglitazone and related intermediates for industrial purposes. *Research on Chemical Intermediates* **2016**, 42(3), 2023-2033.

[34] Jungwun, H.; Dial, B. E.; Ping, L.; Kozik, M. E.; Smith, M. D.; Shimizu, K. D., How important are dispersion interactions to the strength of aromatic stacking interactions in solution? *Chemical Science* **2015**, 6(7), 4358-4364.

[35] Teno, N.; Gohda, K.; Wanaka, K.; Tsuda, Y.; Sueda, T.; Yamashita, Y.; Otsubo, T., Pyrrolopyrimidine-inhibitors with hydantoin moiety as spacer can explore P4/S4 interaction on plasmin. *Bioorganic & Medicinal Chemistry* **2014**, 22(7), 2339-2352.

[36] Okazaki, T.; Nakagawa, M.; Futemma, T.; Kitagawa, T., NMR and DFT studies on persistent carbocations derived from benzo[kl]xanthene, dibenzo[d,d']benzo[1,2-b:4,3-b']difuran and dibenzo[d,d']benzo[1,2-b:4,5-b']difuran in superacidic media. *Journal of Physical Organic Chemistry* **2016**, 29(2), 107-111.

[37] Commercial chemical, CAS number: 1034358-12-7.

[38] Pillaiyar, P.; Wha-Seung, A., Synthesis of copper nanoparticles supported on a microporous covalent triazine polymer: an efficient and reusable catalyst for O-arylation reaction. *Catalysis Science & Technology* **2016**, 6(6), 1701-1709.

[39] Buonomo, J. A.; Aldrich, C. C., Mitsunobu Reactions Catalytic in Phosphine and a Fully Catalytic System. *Angewandte Chemie International Edition* **2015**, 54(44), 13041-13044.

[40] Guoping, L; Yamei, L. Preparation of polysubstituted 2-arylbenzothiazole with thiourea as sulfur source. *Faming Zhuanli Shenqing* **2015**, CN 104892545.



# **3 NMR Spectra of All Products**

<sup>13</sup>C NMR of 3a







<sup>13</sup>C NMR of 3b



<sup>1</sup>H NMR of 3c



<sup>13</sup>C NMR of 3c



<sup>13</sup>C NMR of 3d



<sup>13</sup>C NMR of 3e



<sup>1</sup>H NMR of 3f



<sup>13</sup>C NMR of 3f



<sup>13</sup>C NMR of 3g



<sup>13</sup>C NMR of 3h



<sup>13</sup>C NMR of 3i



<sup>13</sup>C NMR of 3j



<sup>13</sup>C NMR of 3k



<sup>13</sup>C NMR of 3l



<sup>13</sup>C NMR of 3m



<sup>13</sup>C NMR of 3n



<sup>13</sup>C NMR of 30



<sup>13</sup>C NMR of 3p



<sup>13</sup>C NMR of 3q







<sup>13</sup>C NMR of 3r



<sup>13</sup>C NMR of 3s



<sup>13</sup>C NMR of 3t





<sup>13</sup>C NMR of 3v





<sup>13</sup>C NMR of 3w



<sup>13</sup>C NMR of 3x







<sup>13</sup>C NMR of 4b



<sup>13</sup>C NMR of 4c



<sup>13</sup>C NMR of 4d







<sup>13</sup>C NMR of 4f



<sup>13</sup>C NMR of 4g







<sup>13</sup>C NMR of 4i



<sup>13</sup>C NMR of 4j





<sup>13</sup>C NMR of 4k



<sup>13</sup>C NMR of 4l



<sup>13</sup>C NMR of 4m



<sup>13</sup>C NMR of 5a







<sup>13</sup>C NMR of 5c











<sup>13</sup>C NMR of 5f



<sup>13</sup>C NMR of 5g





