The Steps of Activating a Prospective CO₂ Hydrogenation Catalyst with Combined CO₂ Capture and Reduction

David B. Lao, Brandon R. Galan, John C. Linehan, David J. Heldebrant*

Table of Contents

Experimental	3
General Procedures	3
Synthetic Procedures	3
cis-Ru(PNP) ₂ Cl ₂	3
cis-Ru(PNP) ₂ (H) ₂	3
$[DBUH]^{+}[C_{6}H_{13}OCO_{2}]^{-}$	3
General Procedure for NMR Kinetics Solution.	3
CO ₂ Reduction with DBU	4
CO ₂ Reduction with DBU and 1-hexanol.	4
$[DBUH]^+[C_6H_{13}OCO_2]^-$ Reduction.	4
Thermodynamic Estimates	4
$[DBUH]^+ [C_6H_{13}OCO_2]^-$ Reduction	5
CO ₂ Reduction with 2 Equivalents DBU	7
CO ₂ Reduction with 1 Equivalent of DBU	.10
CO ₂ Reduction with 2 Equivalents of DBU and 2 Equivalents 1-Hexanol	.13
Comparison of Formate Formation Rates	.15

Experimental

General Procedures

All chemicals were purchased from commercial sources and used as received unless otherwise specified. Manipulations of metal complexes and air sensitive reagents were carried out using standard Schlenk and glovebox techniques under an atmosphere of argon or nitrogen. Solvents were sparged with nitrogen and dried over basic alumina in a custom dry solvent system. Tetrahydrofuran-d₈ was dried using NaK alloy and distilled. DBU was distilled over solid Na and stored under an atmosphere of nitrogen.

All kinetic data were collected on a 300 MHz Varian NMR instrument at 25°C.

Synthetic Procedures

cis-Ru(PNP)₂Cl₂.

A slurry of Ru(DMSO)₄Cl₂ (514 mg, 1.1 mmol) in 20 mL of dichloromethane was treated with a solution of PNP (PNP = CH₃N[CH₂P(CH₂CH₃)₂]) (500 mg, 2.1 mmol) dissolved in 2.0 mL dichloromethane. The reaction was allowed to stir for 5 hr after which the volume of the reaction was reduced to 5 mL. Pentane (25 ml) was added to the reaction flask that caused the precipitation of the product as a fine yellow solid. The product was collected by vacuum filtration and washed with diethylether (2 x 5 mL and) followed by pentane (2 x 5 mL) to give the product as a fine yellow powder (600 mg, 88%). ¹H NMR (CD₂Cl₂): Assignments made by 2-D TOCSY and HSQC. δ 1.06-1.26 (br m, 24H, -CH₂-CH₃), 1.39-1.46 (m, 2H, CH₂-CH₃), 1.65-1.68 (m, 4H, -CH₂-CH₃), 1.88-1.95 (m, 4H, -CH₂-CH₃), 2.24-2.27 (m, 2H, -N-CH₂-P-), 2.37 (s, 6H, -N-CH₃), 2.47-2.56 (br m, 12H, -N-CH₂-P, CH₃S(O)CH₃), 2.75-2.82 (m, 2H, -CH₂-CH₃), 3.02-3.07 (m, 4H, -P-CH₂-N-). ³¹P{¹H} NMR (CD₂Cl₂): AA'XX', δ 22.5 (pseudo t, splitting = 33.4 Hz), -0.12 (pseudo t, splitting = 33.4 Hz. Anal. Calcd. for C₂₂H₅₄Cl₂N₂P₄Ru · C₂H₅SO: C, 40.00; H, 8.39; N, 3.89. Found: C, 39.90; H, 8.37; N, 3.81.

cis-Ru(PNP)₂(H)₂.

A J. Young tube containing a solution of cis-Ru(PNP)₂Cl₂ in 0.55 mL of THF-d₈ was treated with 2.1 eq of 1.0M LiHBEt₃ in THF. The solution rapidly changed from bright yellow to a very pale yellow color. The tube was sealed and ¹H and ³¹P data were collected. Complete conversion of the corresponding dichloride to the dihydride was observed as evidenced by the appearance of new ¹H and ³¹P resonances to the spectra described above for cis-Ru(PNP)₂Cl₂. ¹H NMR (THF-d₈): -10.3 (m). δ ³¹P{¹H} NMR (THF-d₈): δ 31.6 (pseudo t, 30.3 Hz), 15.6 (pseudo t, splitting = 30.3Hz).

$[DBUH]^+[C_6H_{13}OCO_2]^-.$

An equimolar mixture of DBU and 1-hexanol was stirred in a stainless steel autoclave for 16 hours under ca. 15 atm of CO_2 . The clear, viscous solution was stored under 2 atm of CO_2 .

General Procedure for NMR Kinetics Solution.

A solution of cis-Ru(PNP)₂Cl₂ (0.0156 mmol) in 0.550 mL of THF-d₈ was treated with 31.0 μ L (0.0310 mmol) of a 1.0 M LiHBEt₃ solution in THF. The solution immediately changed from bright yellow to a pale yellow color. 2 μ L of toluene was added to the solution as an NMR integration standard. The precipitated LiCl was allowed to settle and the clear solution was loaded into a J. Young NMR tube under inert atmosphere.

CO₂ Reduction with DBU.

2 equivalents of DBU (0.0156 mmol) were added to the solution of cis-Ru(PNP)₂(H)₂. For the addition of 2, 1, or 0.5 atm of CO₂, the solution was freeze-pump-thaw degassed 3 times prior to addition of CO₂. For reduction of 1 and 2 equivalents of CO₂, well-sealed septa topped NMR tubes were used and CO₂ was injected into the tube with a gas-tight syringe. The tube was mixed by shaking and immediately inserted into the NMR instrument for analysis.

CO₂ Reduction with DBU and 1-hexanol.

2 equivalents of DBU (0.0312 mmol) and 2 equivalents of 1-hexanol (0.0312 mmol) were added to the solution of cis-Ru(PNP)₂(H)₂. The solution was freeze-pump-thaw degassed 3 times prior to addition of 2, 1, or 0.5 atm of CO₂. The tube was mixed by shaking and immediately inserted into the NMR instrument for analysis.

[DBUH]⁺[C₆H₁₃OCO₂]⁻ Reduction.

2, 1, or 0.5 equivalents of $[DBUH]^+[C_6H_{13}OCO_2]^-$ was added to the top of the J. Young NMR tube cap. The tube was sealed carefully to avoid mixing the solution until just prior to inserting the NMR instrument for analysis.

Thermodynamic Estimates

Free energies of reactions in acetonitrile are presented. The free energy of the net reactions can be compared for given values of \mathbf{a} and \mathbf{c} . The two net reactions shown in Table S1 and S2 only differ by the term \mathbf{c} .

Table S 1. Free energy estimates for the reduction of CO₂

$H^- + CO_{2(g)} \longrightarrow HCO_2^-$		-44	(1)
$H_{2(g)}$ \longrightarrow H^+ + H^-		76.0	(2)
H ⁺ + Base	–1.364 p <i>K</i> a	а	(3)
$H_{2(g)}$ + Base + $CO_{2(g)}$ + HBase + HCO_2^-		b	(4)

Units in kcal/mol. **a** is the free energy for protonation of a base. **b** is the net free energy for the reduction of CO_2 in the presence of a base.

Table S 2. Free energy estimates for the reduction of alkylcarbonate

$H^- + CO_{2(g)} \longrightarrow HCO_2^-$		-44	(1)
$H_{2(g)}$ \longrightarrow H^+ + H^-		76.0	(2)
H⁺ + Base → ⁺HBase	–1.364 p <i>K</i> a	а	(3)
$ROCO_2^- + ^+HBase \longrightarrow ROH + CO_{2(g)} + Base$	-1.364 log(K _{eq})	С	(5)
$H_{2(q)} + ROCO_2^- \longrightarrow ROH + HCO_2^-$		d	(6)

Units in kcal/mol. **a** is the free energy for protonation of a base. **c** is the free energy of CO_2 capture by a base and alcohol. **d** is the net free energy for the reduction of alkylcarbonate.

[DBUH]⁺ [C₆H₁₃OCO₂]⁻ Reduction

Figure S 1. Reduction of 1 equivalent of hexylcarbonate.

Figure S 2. Reduction of 2 equivalents of hexylcarbonate.

CO₂ Reduction with 2 Equivalents DBU

F

igure S 4. Reduction of 1 equivalent of CO₂.

Figure S 5. Reduction of 2 equivalents of CO₂.

Figure S 6. Reduction of 3.4 equivalents (0.5 atm) of CO₂.

Figure S 8. Reduction of 13.6 equivalents (2 atm) of CO₂.

Concentration vs Time

Figure S 9. Reduction of 1 equivalent of CO₂.

Figure S 10. Reduction of 2 equivalents of CO₂.

Figure S 11. Reduction of 0.5 equivalents (3.4 atm) of CO₂.

Figure S 12. Reduction of 6.8 equivalents (1 atm) of CO₂.

Figure S 13. Reduction of 13.6 equivalents (2 atm) of CO₂.

CO₂ Reduction with 2 Equivalents of DBU and 2 Equivalents 1-Hexanol Concentration vs Time

Figure S 14. Reduction of 1 equivalent of CO₂.

Figure S 15. Reduction of 2 equivalents of CO₂.

Figure S 16. Reduction of 3.4 equivalents (0.5 atm) of CO₂.

Figure S 17. Reduction of 6.8 equivalents (1 atm) of CO₂.

Figure S 18. Reduction of 13.6 equivalents (2 atm) of CO₂.

Comparison of Formate Formation Rates

Figure S 19. Carbonate reduction.

Figure S 20. CO₂ reduction in the presence of 1 equivalent of DBU.

CO2 Reduction (2 eq. DBU)

Figure S 21. CO₂ reduction in the presence of 2 equivalents of DBU.

Figure S 22. CO₂ reduction in the presence of 2 equivalents of DBU and 2 equivalents 1-hexanol.