ELECTRONIC SUPPLEMENTARY INFORMATION.

HIGHLY SELECTIVE BIOCATALYTIC SYNTHESIS OF MONOACYLGLYCERIDES IN SPONGE-LIKE IONIC LIQUIDS

Pedro Lozano,*^a Celia Gomez,^a Susana Nieto,^a Gergorio Sanchez-Gomez,^b Eduardo García-Verdugo^c and Santiago V. Luis^c

- ^aDepartamento de Bioquímica y Biología Molecular B e Inmunología. Facultad de Química.
 Campus Regional de Excelencia Internacional "Mare Nostrum". Universidad de Murcia, E-30100
 MURCIA. Spain.
- ^bDepartamento de Química Inorgánica. Facultad de Química. Campus Regional de Excelencia Internacional "Mare Nostrum". Universidad de Murcia, E-30100 MURCIA. Spain.
- ^c Departamento de Química Inorgánica y Orgánica. Universidad Jaume I. Campus del Riu Sec. Avenida Sos Baynant s/n, E-12071, Castellón, Spain

NMR analyses

Samples preparation of reaction media containing SLILs based on [NTf2] anion

As representative example of SLILs based on [NTf₂] anion, the resulting acylglyceride products from reaction mixture reported in Table 1, corresponding to the synthesis of monoolein in [C₁₈mim][NTf₂] (entry 10), was selected for the determination of the residual IL content. The reaction mixture was placed into a 2-mL vial, and then incubated at 60 °C until a fully clear and homogeneous phase was observed. Then, hot water (1.0 mL, 60°C) was added, and the resulting multiphase solution was strongly shaken for 30 min at 60°C, being finally cooled to room temperature. The acylglycerides/water/[C₁₈mim][NTf₂] multiphasic mixture was consecutively centrifuged three times at 15,000 rpm (60 min) and at room temperature (noncontrolled), 23 and 15°C, respectively, resulting in three phases, as follows: a top phase of acylglyceride product, an aqueous middle phase and a bottom phase containing the solid IL. Then, an aliquot (80 μ L) was taken from the resulting top phase, being dissolved in 0.45 mL acetone- δ_6 containing 80 μ L trifluoroacetic acid (internal standard), and analyzed by 300 MHz ¹⁹F NMR in a Brucker AC 200E spectrometer. As standard reference, a sample (50 mg) of [C₁₈tmna][NTf₂] dissolved in 0.45 mL acetone- δ_6 ,containing 80 μ L trifluoroacetic acid, was also analysed to be used as reference

1. Standard reference [C₁₈mim][NTf₂]

¹⁹F-NMR spectrum

р зоомиг

2. Sample of reaction medium of Entry 10, Table 1(from [C₁₈mim][NTf₂]) ¹⁹F-NMR spectrum

300MHz

Samples preparation of reaction media containing SLILs based on [BF₄] anion

As representative example of SLILs based on $[BF_4]$ anion, the resulting acylglyceride products from reaction mixtures reported in Table 1, corresponding to the synthesis of monocaprin, monolaurin, monomyristin, monopalmitin and monoolein in $[C_{12}mim][BF_4]$ (entries 12, 13, 14, 15 and 16, respectively), were selected for the determination of the residual IL content.

The reaction mixture was placed into a 2-mL vial, and then incubated at 60°C until a fully clear and homogeneous phase was observed. Then, dodecane (1 mL) was added to each sample, and the resulting fully clear monophasic solutions were strongly shaken for 3 min at room temperature and finally incubated into an ice-bath for 15 min. Each aglyglycerides/SLIL/dodecane mixture was centrifuged at 15,000 rpm (15 min) and at 6°C, resulting in the full precipitation of the $[C_{12}mim][BF_4]$. The top phases were collected, and the residual IL content was analysed by ¹⁹F NMR, as described above by using a $[C_{12}mim][BF_4]$ solution in acetone- δ_6 containing TFA, as standard

1. Standard reference [C₁₂mim][BF₄]

¹⁹F-NMR spectrum

Standard reference: (50 mg) of $[C_{12}$ tmna][BF₄] dissolved in 0.45 mL acetone- δ_6 , containing 40 µL trifluoroacetic acid.

2. Sample of reaction medium of Entry 12, Table 1(monocaprin/[C₁₂mim][BF₄]) ¹⁹F-NMR spectrum p so 300MB2

3. Sample of reaction medium of Entry 13, Table 1(monolaurin/[C₁₂mima][BF₄]) ¹⁹F-NMR spectrum

4. Sample of reaction medium of Entry 14, Table 1(monomyristin/[C₁₂mim][BF₄]) ¹⁹F-NMR spectrum

M So 300MDHz

5. Sample of reaction medium of Entry 15, Table 1(monopalmitin/[C₁₂min][BF₄]) ¹⁹F-NMR spectrum

PS0 300MHz

6. Sample of reaction medium of Entry 15, Table 1(monoolein/[C₁₂mim][BF₄]) ¹⁹F-NMR spectrum

о so 300м1нг

