Supplementary Data for

Making H₂ from light and biomass-derived alcohols: the outstanding activity of newly designed hierarchical MWCNTs/Pd@TiO₂ hybrid catalysts

A. Beltram, M. Melchionna, T. Montini, L. Nasi, M. Prato, and P. Fornasiero

- Figure S1: HRTEM of the titania shell in CNTs/Pd@TiO₂-calc (left); FFT of a selected area showing the reflections of TiO₂ anatase phase (right).
- Figure S2: Typical HAADF images of 10-CNT/Pd@TiO₂ (A) and 20-CNT/Pd@TiO₂ (B).
- Figure S3: HRTEM of a CNT/Pd@TiO₂ where Pd nanoparticles can be observed; inset, zoom of a Pd NP showing the crystallographic facet and the size of approximately 3-5 nm range.
- Figure S4: H₂ chemisorption measurements for Pd@TiO₂ (A), 10-CNT/Pd@TiO₂ (B), 20-CNT/Pd@TiO₂ (C); insets: extrapolation of the linear part in the 10-20 mmHg range to evaluate contribution of H adsorbed on the surface.
- Figure S5: Results from photocatalytic hydrogen production from methanol/water solutions under UV irradiation for the fresh and calcined catalysts. Activities are normalised by the grams of catalyst.
- Figure S6: Results from photocatalytic hydrogen production from ethanol (left) and glycerol (right) water solutions under UV irradiation. Activities are normalised by the grams of catalyst.
- Table S1:Comparison with the performance of some recent catalytic systems containing
carbon supports and integrated metal phases.
- Figure S7 Gaseous by-products formation during photocatalytic H₂ production from ethanol/water solutions under UV irradiation with 10-CNT/Pd@TiO₂ (left) and 20-CNT/Pd@TiO₂ (right).
- Table S2:Results from semi-quantitative analysis (1-butanol was used as internal standard) of
liquid solutions collected after photocatalytic H2 production from ethanol/water
solutions under UV irradiation.

- Figure S8: Photocatalytic water splitting under UV irradiation. Methanol (10% v/v) was added after 19 h. Activities (H_2 on the left and CO_2 on the right) are normalised by the grams of catalyst.
- Figure S9: Photocatalytic water splitting under UV irradiation. Acetaldehyde (4% v/v) was added after 3 h. Activities (H₂ on the left and byproducts on the right) are normalised by the grams of catalyst.
- Figure S10: Results from photocatalytic by-products production from glycerol/water solutions under UV irradiation expressed in terms of production rate.
- Table S3:Results from semi-quantitative analysis (1-hexanol was used as internal standard) of
liquid solutions collected after photocatalytic H2 production from glycerol / water
solutions under UV irradiation.
- Figure S11: Results from photocatalytic hydrogen production from ethanol (left) and glycerol (right) water solutions under simulated solar irradiation. Activities are normalised by the grams of catalyst.
- Table S4:Results from semi-quantitative analysis (1-butanol was used as internal standard) of
liquid solutions collected after photocatalytic H2 production from ethanol/water
solutions under simulated solar irradiation.
- Table S5:Results from semi-quantitative analysis (1-hexanol was used as internal standard) of
liquid solutions collected after photocatalytic H2 production from glycerol / water
solutions under simulated solar irradiation.

Figure S1: HRTEM of the titania shell in CNTs/Pd@TiO₂-calc (left); FFT of a selected area showing the reflections of TiO₂ anatase phase (right).

Figure S2: Typical HAADF images of 10-CNT/Pd@TiO₂ (A) and 20-CNT/Pd@TiO₂ (B).

Figure S3: HRTEM of a CNTs/Pd@TiO₂ where Pd nanoparticles can be observed; inset, zoom of a Pd NP showing the crystallographic facet and the size of approximately 3-5 nm range.

Figure S4: H₂ chemisorption measurements for Pd@TiO₂ (A), 10-CNTs/Pd@TiO₂ (B), 20-CNTs/Pd@TiO₂ (C); insets: extrapolation of the linear part in the 10-20 mmHg range to evaluate contribution of H adsorbed on the surface.

Figure S5: Results from photocatalytic hydrogen production from methanol/water solutions under UV irradiation for the fresh and calcined catalysts. Activities are normalised by the grams of catalyst.

Figure S6: Results from photocatalytic hydrogen production from ethanol (left) and glycerol (right) water solutions under UV irradiation. Activities are normalised by the grams of catalyst.

Table S1:	Comparison	with	the	performance	of	some	recent	catalytic	systems	containing
	carbon suppo	orts an	d int	egrated metal	pha	ises.				

Entry	Carbon Support	Metal phase	Maximum Rate of H ₂ evolution (mmol·g ⁻¹ ·h ⁻¹)	Hole scavenger	Quantum efficiency	Power of irradiating lamp	Refere nce
1.	Ox-MWCNT	Pt/TiO ₂	40	Methanol	Not reported	200W (240- 500 nm range)	1
2.	Ox- MWCNTs	Pt/TiO ₂	10	Methanol	Not reported	125W (λ>365)	2
3.	GO	TiO ₂	0.4	Methanol	Not reported	300W (λ>320nm)	3
4.	GO	Cu/TiO₂	19	Methanol	Not reported	300W (λ>365)	4
5.	g-C ₃ N ₄	Pt	0.15	Triethanolamine	Not reported	300W (λ>420)	5
6.	Ox-CNTs	TiO ₂	2	Glycerol	Not reported	Not specified	6
7.	Ox- MWCNTs	Pt/TiO ₂	8	Triethanolamine	Not reported	250W (λ>320)	7
8.	GO	TiO ₂	0.7	Methanol	QE = 3.1%	350W (λ>320)	8
9.	GO	Pt/CdS	55	Lactic Acid	QE = 22%	350W (λ>420)	9
10.	C ₆₀ - SWCNTs	TiO ₂	3.2	Triethanolamine	Not reported	300W (λ>320)	10
11.	GO	Pt/Sr_2Ta_2 $O_{7-x}N_x$	3	Methanol	QE = 6.5%	300W (λ>420)	11
12.	MWCNTs	Pt/Ta_2O_5	32	Methanol	Not reported	450W (λ>365)	12

13.	RGO	TiO ₂	1	Ethanol	Not reported	300W (λ>320)	13
14.	RGO	V-TiO ₂	0.12	Methanol	Not reported	300W λ not specified	14
15.	RGO	Pt/TiO ₂	14	Methanol	Not reported	300W λ not specified	15
16.	f-MWCNTs (20%)	Pd/TiO ₂	21	Methanol	Not reported	125W (λ>365)	This work
17.	f-MWCNTs (20%)	Pd/TiO ₂	6	Glycerol	Not reported	125W (λ>365)	This work
18.	f-MWCNTs (20%)	Pd/TiO ₂	26	Ethanol	QE = 21%	125W (λ>365)	This work

Figure S7 Gaseous by-products formation during photocatalytic H₂ production from ethanol/water solutions under UV irradiation with 10-CNT/Pd@TiO₂ (left) and 20-CNT/Pd@TiO₂ (right).

Table S2:Results from semi-quantitative analysis (1-butanol was used as internal standard) of
liquid solutions collected after photocatalytic H2 production from ethanol/water
solutions under UV irradiation.

	10-CNTs/Pd@TiO ₂ -calc	20-CNTs/Pd@TiO ₂ -calc	Pd@TiO ₂
Acetaldehyde	2.235	2.895	1.102
1,1-diethoxyethane	5.424	6.812	2.533
2,4,5-trimethyl-1,3- dioxolane	0.012	0.092	0
Acetic acid	0.026	0.145	0.003
3-hydroxy-2-butanone	0.026	0.045	0.006
2,3-butandiol	1.613	4.297	1.326

Figure S8: Photocatalytic water splitting under UV irradiation. Methanol (10% v/v) was added after 19 h. Activities (H_2 on the left and CO_2 on the right) are normalised by the grams of catalyst.

Figure S9: Photocatalytic water splitting under UV irradiation. Acetaldehyde (4% v/v) was added after 3 h. Activities (H_2 on the left and byproducts on the right) are normalised by the grams of catalyst.

Figure S10: Results from photocatalytic by-products production from glycerol/water solutions under UV irradiation expressed in terms of production rate.

Table S3:Results from semi-quantitative analysis (1-hexanol was used as internal standard) of
liquid solutions collected after photocatalytic H2 production from glycerol / water
solutions under UV irradiation.

	10-CNTs/Pd@TiO ₂ - calc	20-CNTs/Pd@TiO ₂ - calc	Pd@TiO ₂
Hydroxy-acetaldehyde	2.34	3.03	1.65
Formic acid	0.37	0.26	0.22
Acetic acid	0.08	0.07	0.04
1-hydroxy-2-propanone	1.60	1.12	0.75
2,3-dihydroxypropanal	0.22	0.20	0.26
1,3-dihydroxy-2-propanone	1.62	2.05	1.13

Figure S11: Results from photocatalytic hydrogen production from ethanol (left) and glycerol (right) water solutions under simulated solar irradiation. Activities are normalised by the grams of catalyst.

Table S4:Results from semi-quantitative analysis (1-butanol was used as internal standard) of
liquid solutions collected after photocatalytic H2 production from ethanol/water
solutions under simulated solar irradiation.

	10-CNTs/Pd@TiO ₂ -calc	20-CNTs/Pd@TiO ₂ -calc	Pd@TiO ₂
Acetaldehyde	0.22	0.18	0.68
1,1-diethoxyethane	0.39	0.23	0.20

Table S5:Results from semi-quantitative analysis (1-hexanol was used as internal standard) of
liquid solutions collected after photocatalytic H2 production from glycerol / water
solutions under simulated solar irradiation.

	10-CNTs/Pd@TiO ₂ - calc	20-CNTs/Pd@TiO ₂ - calc	Pd@TiO ₂
Hydroxy-acetaldehyde	1.04	1.14	1.40
1-hydroxy-2-propanone	0.10	0.15	0.14
2,3-dihydroxypropanal	0.16	0.21	0.18
1,3-dihydroxy-2-propanone	1.18	1.30	1.53

- ³ H. Kim, S. Kim, J.-K. Kang, W. Choi, J. Catal 2014, 309, 49.
- ⁴ X.-J. Lv, S.-X. Zhou, C. Zhang, H.-X. Chang, Y. Chen and W.-F. Fu, J. Mater. Chem., 2012, 22, 18542.

- ⁷ K. Dai, T. Peng, D. Ke, B. Wei, *Nanotechnology* 2009, **20**, 125603.
- ⁸ Q. Xiang, J. Yu, M. Jaroniec, *Nanoscale* 2011, **3**, 3670.

¹⁰ B. Chai, T. Peng, X. Zhang, J. Mao, K. Li, X. Zhang, *Dalton Trans.* 2013, **42**, 3402.

¹ A. Moya, A. Cherevan, S. Marchesan, P. Gebhardt, M. Prato, D. Eder, J. J. Vilatela *Appl Catal B: Environmental* 2015, **179**, 574.

² M. Cargnello, M. Grzelczak, B. Rodriguez-Gonzalez, Z. Syrgiannis, K. Bakhmutsky, V. La Parola, L. M. Liz-Marzan, R. J. Gorte, M. Prato, P. Fornasiero *J. Am. Chem. Soc.*, 2012, **134**, 11760.

⁵ K. Li, Z. Zeng, L. Yan, S.n Luo, X. Luo, M. Huo, Y. Guo, *App. Catal. B: Environmental* 2015, **165**, 428.

⁶ M. MamathaKumari, D. Praveen Kumar, P. Haridoss, V. DurgaKumari, M.V. Shankar, *Int. J. Hydrogen Energ.* 2015, **40**, 1665.

⁹ Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J. Ru Gong, J. Am. Chem. Soc. 2011, **133**, 10878.

¹¹ A. Mukherji, B. Seger, G. Qing Lu, L. Wang ACS Nano, 2011, **5**, 3483.

¹² A. S. Cherevan, P. Gebhardt, C. J. Shearer, M. Matsukawa, K. Domen, D. Eder, *Energy Environ. Sci.*, 2014, **7**, 791

¹³ G. Nagaraju, K. Manjunath, S. Sarkar, E. Gunter, S. R. Teixeira, J. Dupont, *Int. J. Hydrogen Energ.* 2015, 40, 12209.
¹⁴ A. K. Agegnehu, C.-J. Pan, M.-C. Tsai, J. Rick, W.-N. Su, J.-Fu Lee, B.-J. Hwang *Int. J. Hydrogen Energ.* 2016, 41, 6752.
¹⁵ D. Chen, L. Zou, S. Li, F. Zheng *Scientific Reports* 2016, 6, Article number: 20335