Supporting Information

KCC-1 Supported Palladium Nanoparticles as an Efficient and Sustainable Nanocatalyst for Carbonylative Suzuki-Miyaura Cross-Coupling

Prashant Gautam^a, Mahak Dhiman^b, Vivek Polshettiwar*^b, and Bhalchandra M. Bhanage*^a

^{*a*} Department of Chemistry, Institute of Chemical Technology, N.P. Marg, Matunga-400019, Mumbai, India.

^b Nanocatalysis Laboratories (NanoCat), Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Colaba, Mumbai, Maharashtra 400005, India.

Entry	Content	Page No.
Ι	Characterization data of products	2–8
II	Copies of ¹ H and ¹³ C NMR spectra	9–27
III	Figure SI 1	28
IV	Table SI 1	28
V	Figure SI 2	

I Characterization data of products

(4-methoxyphenyl)(phenyl)methanone (3b)

59.3 mg, yield 56%

¹**H** NMR (500 MHz, CDCl₃): δ 7.86 (d, J = 8.6 Hz, 2H), 7.78 (d, J = 7.6 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 6.99 (d, J = 8.6 Hz, 2H), 3.92 (s, 3H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 195.4, 163.1, 138.2, 132.4, 131.8, 130.0, 129.6, 128.1, 113.4, 55.4. GCMS (EI, 70 eV): *m/z* (%): 212 (40), 135 (100), 105 (14), 77 (36).

phenyl(p-tolyl)methanone (3c)

51.0 mg, yield 52%

¹H NMR (500 MHz, CDCl₃): δ 7.81 (d, J = 7.7 Hz, 2H), 7.75 (d, J = 7.9 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 2.47 (s, 3H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 196.4, 143.1, 137.8, 134.7, 132.0, 130.2, 129.8, 128.8, 128.1, 21.5. GCMS (EI, 70 eV): *m/z* (%): 196 (73), 119 (100), 105 (42), 91 (47), 77 (34).

(4-nitrophenyl)(phenyl)methanone (3d)

57.9 mg, yield 51%

¹**H** NMR (500 MHz, CDCl₃): $\delta 8.37$ (d, J = 8.4 Hz, 2H), 7.97 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 7.7 Hz, 2H), 7.68 (t, J = 7.5 Hz, 1H), 7.56 (t, J = 7.7 Hz, 2H). ¹³C{¹H}NMR (125 MHz, CDCl₃): $\delta 194.7$, 149.7, 142.8, 136.1, 133.4, 130.6, 130.0, 128.6, 123.4. GCMS (EI, 70 eV): *m/z* (%): 227 (55), 150 (19), 105 (100), 77 (58).

4-benzoylbenzonitrile (3e)

50.7 mg, yield 49%

¹H NMR (500 MHz, CDCl₃): δ 7.91 (d, J = 8.2 Hz, 2H), 7.82 (dd, J = 7.9, 4.6 Hz, 4H), 7.67 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.7 Hz, 2H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 194.9, 141.1, 136.2, 133.2, 132.0, 130.1, 129.9, 128.5, 117.9, 115.5. GCMS (EI, 70 eV): m/z (%): 207 (38), 130 (27), 105 (100), 77 (47).

(3-nitrophenyl)(phenyl)methanone (3f)

54.5 mg, yield 48%

¹**H** NMR (500 MHz, CDCl₃): δ 8.65 (s, 1H), 8.48 (d, J = 8.0 Hz, 1H), 8.17 (d, J = 7.7 Hz, 1H), 7.87 – 7.80 (m, 2H), 7.71 (dt, J = 22.5, 7.7 Hz, 2H), 7.57 (t, J = 7.6 Hz, 2H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 194.0, 148.0, 138.9, 136.1, 135.3, 133.2, 129.9, 129.5, 128.6, 126.6, 124.6. GCMS (EI, 70 eV): *m/z* (%): 227 (23), 105 (100), 150 (11), 77 (50).

(4-aminophenyl)(phenyl)methanone (3g)

59.1 mg, yield 60%

¹**H** NMR (500 MHz, CDCl₃): δ 7.75 (d, J = 8.3 Hz, 4H), 7.56 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 6.70 (d, J = 8.5 Hz, 2H), 4.16 (s, 2H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 195.2, 150.9, 138.7, 132.8, 131.3, 129.4, 127.9, 127.2, 113.5. GCMS (EI, 70 eV): m/z (%): 197 (39), 120 (100), 92 (24), 65 (25).

(2-aminophenyl)(phenyl)methanone (3h)

38.4 mg, yield 39%

¹**H** NMR (500 MHz, CDCl₃): δ 7.66 (d, J = 7.5 Hz, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.4 Hz, 3H), 7.32 (t, J = 7.7 Hz, 1H), 6.77 (d, J = 8.3 Hz, 1H), 6.63 (t, J = 7.6 Hz, 1H), 6.10 (s, 2H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 199.0, 150.8, 140.0, 134.5, 134.1, 130.9, 129.0, 127.9, 118.0, 116.9, 115.4. GCMS (EI, 70 eV): m/z (%): 197 (65), 196 (100), 120 (48), 92 (31), 77 (36).

(4-fluorophenyl)(naphthalen-1-yl)methanone (3i)

73.8 mg, yield 59%

¹**H** NMR (500 MHz, CDCl₃): $\delta 8.07$ (d, J = 8.4 Hz, 1H), 8.04 (d, J = 8.1 Hz, 1H), 7.97 - 7.90 (m, 3H), 7.57 (dt, J = 19.1, 6.9 Hz, 4H), 7.16 (t, J = 8.5 Hz, 2H). ¹³C{¹H}NMR (125 MHz, CDCl₃): $\delta 196.3$, 165.7 ($J_{C-F} = 254$ Hz), 136.0, 134.5, 133.6, 132.9 ($J_{C-F} = 10$ Hz, 2C), 131.2, 130.7, 128.3, 127.3, 127.2, 126.4, 125.4, 124.2, 115.5 ($J_{C-F} = 21$ Hz, 2C). GCMS (EI, 70 eV): m/z (%): 250 (88), 155 (77), 127 (100), 95 (61), 75 (24).

naphthalen-1-yl(p-tolyl)methanone (3j)

68.9 mg, yield 56%

¹**H** NMR (500 MHz, CDCl₃): δ 8.02 (d, J = 7.9 Hz, 1H), 7.97 (d, J = 8.1 Hz, 1H), 7.90 (d, J = 7.7 Hz, 1H), 7.75 (d, 2H), 7.51 (dt, J = 17.9, 8.7 Hz, 4H), 7.28 – 7.20 (m, 2H), 2.41 (s, 3H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 197.7, 144.1, 136.6, 135.6, 133.6, 130.9, 130.8, 130.5, 129.1, 128.3, 127.2, 127.0, 126.3,

125.6, 124.3, 21.7. **GCMS** (EI, 70 eV): *m/z* (%): 246 (100), 245 (55), 231 (69), 155 (59), 127 (66), 119 (73), 91 (46).

(4-fluorophenyl)(4-nitrophenyl)methanone (3k)

69.8mg, yield 57%

¹**H** NMR (500 MHz, CDCl₃): δ 8.38 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 8.4 Hz, 2H), 7.88 (dd, J = 8.5, 5.4 Hz, 2H), 7.23 (t, J = 8.4 Hz, 2H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 193.2, 165.8 (J_{C-F} = 256.1 Hz), 149.7, 142.6, 132.7 (J_{C-F} = 9.4 Hz), 132.4, 130.4, 123.5, 115.9 (J_{C-F} = 21.6 Hz). GCMS (EI, 70 eV): m/z (%): 245 (51), 150 (17), 123 (100), 95 (58), 75 (22).

phenyl(pyridin-2-yl)methanone (3m)

36.6mg, yield 40%

¹**H** NMR (500 MHz, CDCl₃): δ 8.75 (d, J = 4.5 Hz, 1H), 8.13 – 8.05 (m, 3H), 7.93 (t, J = 7.7 Hz, 1H), 7.62 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.2 Hz, 3H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 193.8, 155.0, 148.4, 136.9, 136.1, 132.8, 130.9, 128.0, 126.0, 124.5. GCMS (EI, 70 eV): m/z (%): 183 (40), 155 (77), 105 (80), 77 (100), 51 (32).

phenyl(thiophen-2-yl)methanone (3n)

36.7mg, yield 39%

¹**H** NMR (500 MHz, CDCl₃): δ 7.90 (d, J = 7.6 Hz, 2H), 7.75 (d, J = 4.9 Hz, 1H), 7.68 (d, J = 3.8 Hz, 1H), 7.62 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.20 (t, J = 4.4 Hz, 1H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 188.1, 143.5, 138.0, 134.7, 134.1, 132.1, 129.0, 128.3, 127.8. GCMS (EI, 70 eV): m/z (%): 188 (60), 111 (100), 105 (39), 77 (40), 51 (18).

4-(3-methylbenzoyl)benzonitrile (30)

63.0mg, yield 57%

¹H NMR (500 MHz, CDCl₃): δ 7.89 (d, J = 8.0 Hz, 2H), 7.82 (d, J = 8.0 Hz, 2H), 7.63 (s, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 2.46 (s, 3H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 195.1, 141.3, 138.5, 136.2, 134.0, 132.0, 130.3, 130.1, 128.3, 127.2, 117.9, 115.4, 21.2. GCMS (EI, 70 eV): m/z (%): 221 (31), 119 (100), 91 (36), 65 (18).

(4-fluorophenyl)(3-nitrophenyl)methanone (3p)

67.4mg, yield 55%

¹**H** NMR (500 MHz, CDCl₃): δ 8.62 (s, 1H), 8.48 (d, J = 8.1 Hz, 1H), 8.14 (d, J = 7.6 Hz, 1H), 7.88 (dd, J = 8.5, 5.4 Hz, 2H), 7.74 (t, J = 7.9 Hz, 1H), 7.24 (t, J = 8.4 Hz, 2H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 192.58, 165.79 ($J_{C-F} = 256.1$ Hz), 148.0, 138.8, 135.1, 132.6 ($J_{C-F} = 9.4$ Hz), 132.4, 129.6, 126.6, 124.4, 115.9 ($J_{C-F} = 22.0$ Hz). GCMS (EI, 70 eV): m/z (%): 245 (23), 123 (100), 95 (39), 75 (13).

benzo[d][1,3]dioxol-5-yl(4-methoxyphenyl)methanone (3q)

76.8mg, yield 60%

¹**H** NMR (500 MHz, CDCl₃): δ 7.81 (d, J = 8.6 Hz, 2H), 7.39 – 7.33 (m, 2H), 6.98 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 8.0 Hz, 1H), 6.09 (s, 2H), 3.91 (s, 3H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 194.0, 162.8, 151.0, 147.7, 132.4, 132.2, 130.4, 126.1, 113.4, 109.8, 107.6, 101.7, 55.4. GCMS (EI, 70 eV): m/z (%): 256 (74), 225 (15), 149 (44), 135 (100), 107 (13), 77 (21).

(4-bromophenyl)(naphthalen-1-yl)methanone (3r)

91.7mg, yield 59%

¹H NMR (500 MHz, CDCl₃): δ 8.07 (dd, J = 18.0, 8.1 Hz, 2H), 7.96 (d, J = 7.9 Hz, 1H), 7.76 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 8.3 Hz, 2H), 7.61 – 7.51 (m, 4H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 196.8, 137.0, 135.7, 133.6, 131.8, 131.7, 131.5, 130.7, 128.4, 128.4, 127.7, 127.3, 126.5, 125.4, 124.3. GCMS (EI, 70 eV): m/z (%): 310 (52), 231 (71), 183 (22), 155 (100), 127 (87), 101 (35)

(4-aminophenyl)(4-chlorophenyl)methanone (3s)

62.5mg, yield 54%

¹H NMR (500 MHz, CDCl₃): δ 7.72 (d, J = 4.8 Hz, 2H), 7.70 (d, J = 4.7 Hz, 2H), 7.46 (d, J = 8.2 Hz, 2H), 6.70 (d, J = 8.4 Hz, 2H), 4.19 (s, 2H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 194.0, 151.0, 137.6, 137.0, 132.8, 130.9, 128.3, 126.9, 113.6. GCMS (EI, 70 eV): m/z (%): 231 (10), 120 (40), 92 (8), 65 (8).

(4-methoxyphenyl)(*m*-tolyl)methanone (3t)

65.6mg, yield 58%

¹H NMR (500 MHz, CDCl₃): δ 7.85 (d, J = 8.6 Hz, 2H), 7.62 – 7.53 (m, 2H), 7.43 – 7.35 (m, 2H), 6.99 (d, J = 8.6 Hz, 2H), 3.91 (s, 3H), 2.45 (s, 3H). ¹³C{¹H}NMR (125 MHz, CDCl₃): δ 195.7, 163.0, 138.2, 137.9, 132.5, 132.4, 130.1, 130.1, 127.8, 126.9, 113.4, 55.4, 21.2. GCMS (EI, 70 eV): m/z (%): 226 (33), 135 (100), 119 (15), 91 (17), 77 (18).

(4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (3u)

92.2mg, yield 61%

¹**H NMR (500 MHz, CDCl₃)**: δ 7.78 (d, *J* = 8.7 Hz, 2H), 6.98 (s, 2H), 6.93 (d, *J* = 8.7 Hz, 2H), 3.89 (s, 3H), 3.85 (s, 3H), 3.84 (s, 6H). ¹³C{¹H}**NMR (125 MHz, CDCl₃)**: δ 194.6, 163.0, 152.7, 141.4, 133.28, 132.3, 130.1, 113.4, 107.3, 60.8, 56.2, 55.4.

II. Copies of ¹H and ¹³C NMR spectra

(4-methoxyphenyl)(phenyl)methanone (3b) (¹H NMR)

(4-methoxyphenyl)(phenyl)methanone (3b) (¹³C NMR)

phenyl(*p*-tolyl)methanone (3c) (¹H NMR)

phenyl(*p*-tolyl)methanone (3c) (¹³C NMR)

(4-nitrophenyl)(phenyl)methanone (3d) (¹H NMR)

(4-nitrophenyl)(phenyl)methanone (3d) (¹³C NMR)

4-benzoylbenzonitrile (3e) (¹H NMR)

4-benzoylbenzonitrile (3e) (¹³C NMR)

(3-nitrophenyl)(phenyl)methanone (3f) (¹H NMR)

(3-nitrophenyl)(phenyl)methanone (3f) (¹³C NMR)

(4-aminophenyl)(phenyl)methanone (3g) (¹H NMR)

(4-aminophenyl)(phenyl)methanone (3g) (¹³C NMR)

(2-aminophenyl)(phenyl)methanone (3h) (¹H NMR)

(2-aminophenyl)(phenyl)methanone (3h) (¹³C NMR)

(4-fluorophenyl)(naphthalen-1-yl)methanone (3i) (¹H NMR)

(4-fluorophenyl)(naphthalen-1-yl)methanone (3i) (¹³C NMR)

naphthalen-1-yl(*p*-tolyl)methanone (3j) (¹H NMR)

naphthalen-1-yl(p-tolyl)methanone (3j) (¹³C NMR)

(4-fluorophenyl)(4-nitrophenyl)methanone (3k) (¹H NMR)

(4-fluorophenyl)(4-nitrophenyl)methanone (3k) (¹³C NMR)

phenyl(pyridin-2-yl)methanone (3m) (¹H NMR)

phenyl(pyridin-2-yl)methanone (3m) (¹³C NMR)

phenyl(thiophen-2-yl)methanone (3n) (¹H NMR)

phenyl(thiophen-2-yl)methanone (3n) (¹³C NMR)

4-(3-methylbenzoyl)benzonitrile (30) (¹H NMR)

4-(3-methylbenzoyl)benzonitrile (30) (¹³C NMR)

(4-fluorophenyl)(3-nitrophenyl)methanone (3p) (¹H NMR)

(4-fluorophenyl)(3-nitrophenyl)methanone (3p) (¹³C NMR)

benzo[d][1,3]dioxol-5-yl(4-methoxyphenyl)methanone (3q) (¹H NMR)

benzo[d][1,3]dioxol-5-yl(4-methoxyphenyl)methanone (3q) (¹³C NMR)

(4-bromophenyl)(naphthalen-1-yl)methanone (3r) (¹H NMR)

(4-bromophenyl)(naphthalen-1-yl)methanone (3r) (¹³C NMR)

(4-aminophenyl)(4-chlorophenyl)methanone (3s) (¹³C NMR)

(4-methoxyphenyl)(*m*-tolyl)methanone (3t) (¹H NMR)

(4-methoxyphenyl)(*m*-tolyl)methanone (3t) (¹³C NMR)

(4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (3u) (¹H NMR)

(4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (3u) (¹³C NMR)

Figure SI 1. TEM image of KCC-1-PEI/Pd (0.1%) catalyst after 10 cycles of reaction.

Table SI 1. Recycling study of KCC-1-PEI/Pd (0.1%) for carboylative Suzuki-Miyaura cross-coupling between iodobenzene and phenylboronic acid.

Run	Conversion ^b (%)	Selectivity ^b (%)	TON ^c	TOF (h ⁻¹)
1	54	85	4019	669
2	55	89	4286	714
3	54	88	4161	693
4	55	88	4238	706
5	54	86	4066	677
6	54	88	4161	693
7	53	87	4037	672
8	51	86	3840	640
9	46	85	3423	570
10	45	86	3388	564

^{*a*}Reaction conditions: **1a** (5 mmol), **2a** (7.5 mmol), CO (2 bar), KCC-1-PEI/Pd (50 mg 0.1% Pd), K₂CO₃ (15 mmol), anisole (20 mL) at 100 °C for 6 h. ^{*b*}Determined by GC-MS. ^{*c*} mol product per mol Pd.

Figure SI 2. A drawing showing the chemical structure of the KCC-1-PEI

