Supporting Information

Structure-Property Reduced Order Model for Viscosity Prediction in Single-Component CO₂-Binding Organic Liquids

David C. Cantu¹, Deepika Malhotra², Phillip K. Koech², David J. Heldebrant², Feng (Richard) Zheng², Charles J. Freeman², Roger Rousseau¹, Vassiliki-Alexandra Glezakou^{1*}

¹Physical Sciences Division, ²Energy Processes and Materials Division Pacific Northwest National Laboratory, Richland WA 99352

Content

Compound Directory	p. 2
Table S1	p. 3
Table S2	p. 4
Figure S1	p. 5
Table S3	p. 6

Compound Directory

1-IPADM-2-BOL	1-IPADH-2-BOL	1-TFMIPADM-2-BOL	1-IPATBM-2-BOL
N N N H OH 1-((1,3- dimethylimidazolidin-2- ylidene)-amino)- propan-2-ol	1-((1,3- dihexylimidazolidin-2- ylidene)amino)propan-2- ol	OH I-((1,3- dimethylimidazolidin-2- ylidene)amino)-4,4,4- trifluorobutan-2-ol	NOH 1-((1-(<i>tert</i> -butyl)-3- methylimidazolidin-2- ylidene)amino)propan- 2-ol
1-EAμEM-2-BOL OH	1-IPAMTFM-2-BOL	1-TFEEIPADM-2-BOL	1-IPAµEMMEMM- BOL
N 1-methyl-2,3,5,6,7,8- hexahydro-1 <i>H</i> - imidazo[1,2- <i>a</i>][1,3]diazepin-7-ol	F ₃ C _N 1-((1-methyl-3- (trifluoromethyl)imidazoli din-2- ylidene)amino)propan-2- ol	N N N N N N N N N N N N N N N N N N N	HO N 1-(2- ((methoxymethyl)(met hyl)amino)-1-methyl- 1,4,5,6- tetrahydropyrimidin-4- yl)ethan-1-ol
1-PADM-2-BOL	1-TFMIPAµEMDM-	1-MEIPADM-2-BOL	1-IPAµEM-2-BOL
1-PADM-2-BOL NOH 3-((1,3- dimethylimidazolidin-2- ylidene)amino)propan- 1-ol	1-TFMIPAµEMDM- BOL HO CF ₃ 1-(2-(dimethylamino)-1- methyl-1,4,5,6- tetrahydropyrimidin-4- yl)-3,3,3-trifluoropropan- 1-ol	1-MEIPADM-2-BOL NOH 1-((1,3- dimethylimidazolidin-2- ylidene)amino)-3- methoxypropan-2-ol	1-IPA μ EM-2-BOL HO N 1-(1-methyl- 1,2,3,5,6,7- hexahydroimidazo[1,2- a]pyrimidin-7- yl)ethan-1-ol

Compound	P _{int,MD} (expressed as	Viscosity	Method
	fraction of 1)		
1-EAµEM-2-BOL	0.001	1032 +628 -592	Multiple temperatures
1-PADM-2-BOL	0.001	950 +556 -505	Multiple temperatures
1-IPATBM-2-BOL	0.02	499 +57 -103	Multiple temperatures
1-IPADH-2-BOL	0.06	341 +120 -120	Green-Kubo
1-IPAMTFM-2-BOL	0.13	328 +415 -117	Non-Equilibrium
1-TFMIPAµEMDM-	0.15	322 +162 -62	Multiple temperatures
BOL			
1-IPADM-3-BOL	0.21	190 +346 -75	Non-Equilibrium
1-IPAµEMMEMM-	0.25	310 +75 -75	Green-Kubo
BOL			
1-IPADM-2-BOL	0.34	149 +22 -16	Non-Equilibrium
1-TFMIPADM-2-	0.34	65 +13 -10	Non-Equilibrium
BOL			
1-TFEEIPADM-2-	0.35	122 +66 -32	Non-Equilibrium
BOL			
1-MEIPADM-2-BOL	0.52	114 +22 -16	Non-Equilibrium
1-MEIPAµEMDM-	0.92	45 +8 -6	Non-Equilibrium
BOL			

Table S1 MD calculated viscosities at 25% mol CO2 loading and Pint values

Error estimation

Viscosities calculated using the Green-Kubo approach by calculating the integral of the pressure tensor autocorrelation function. Calculation was done with the P_{XZ} , P_{XY} , and P_{YZ} tensors independently, and error estimated as the largest viscosity difference obtained between two tensors components. The non-equilibrium method was used as implemented in the g_energy program in the GROMACS package to obtain 1/viscosity values after applying an acceleration. Error calculated based on the 1/viscosity error estimate as reported in the output, that result in different + and – variations. For some compounds the Green Kubo approach was used to calculate viscosities at higher temperatures, and a exponential fit of multiple temperature points was done to estimate it at 40 °C. The lower and upper bound values for each point were also fit to an exponential to estimate the error at 40 °C. See Methods in main text for references.

Compound	P _{int,MD}	At	omic Distan	stances Atomic Cha		Atomic Charg	jes	X	P _{int,X}
		r _{он}	r _{NH}	r _{NO}	q _н	qo	q _N		
1-EAµEM-2-	0.001								0.001
BOL		5.72463							
1-PADM-2-BOL	0.001	4.45067			When rOH>	2.0 Å, P _{int,X} =0.	001		0.001
1-IPATBM-2-	0.02							-0.11922	0.04
BOL		1.80186	1.03001	2.76226	0.28049	-0.82837	-0.35288		
1-IPADH-2-BOL	0.06							-0.21385	0.50
		1.73115	1.03772	2.71842	0.40616	-0.75798	-0.31995		
1-IPAMTFM-2-	0.13							-0.15705	0.22
BOL		1.68195	1.04789	2.67029	0.32287	-0.81257	-0.27905		
1-	0.15							-0.16723	0.27
TFMIPAµEMD									
M-BOL		1.75565	1.03198	2.71072	0.33625	-0.82571	-0.42826		
1-IPADM-3-	0.21							-0.14199	0.15
BOL		1.80903	1.02865	2.78317	0.31035	-0.78627	-0.36978		
1-	0.25							-0.19846	0.43
ΙΡΑμΕΜΜΕΜΜ									
-BOL		1.74257	1.03372	2.69729	0.36683	-0.79730	-0.51667		
1-IPADM-2-	0.34							-0.21269	0.40
BOL		1.70861	1.03729	2.69645	0.36249	-0.82774	-0.39748		
1-TFMIPADM-	0.34							-0.19250	0.50
2-BOL		1.72621	1.03677	2.70966	0.38492	-0.81579	-0.43850		
1-TFEEIPADM-	0.35							-0.19371	0.40
2-BOL		1.79571	1.02929	2.75233	0.37296	-0.78458	-0.39791		
1-MEIPADM-2-	0.52							-0.24648	0.51
BOL		1.67597	1.03996	2.67136	0.38675	-0.80303	-0.42638		
1-	0.61							-0.21620	0.51
MEIPAµEMDM-									
BOL		1.75289	1.03251	2.70630	0.38199	-0.86820	-0.54931		
1-IPAµEM-2-	0.80							-0.27971	0.82
BOL		1.69120	1.03967	2.68318	0.43792	-0.83601	-0.57676		
1-O-EADM-2-	0.92							-0.31437	0.99
BOL		1.63505	1.04931	2.65504	0.47754	-0.84997	-0.48991		

Table S2 Compound structural parameters obtained from single molecular geometry optimizations with density functional theory, calculated X and $P_{int,X}$ values, as well as $P_{int,MD}$ values.

Figure S1 Classical MD viscosities versus reduced model viscosities using $P_{int,MD}(A)$ and $P_{int,X}(B)$.

Additionally, we calculated the average absolute percent deviation (AAPD) for the full data sets shown above:

$$AAPD = \frac{100}{N} * \sum_{i=1}^{N} \frac{\left|\eta^{model} - \eta^{MD}_{i}\right|}{\eta^{MD}_{i}}$$

where *N* is the number of different solvent compounds in each data set. The calculated AADP values are 29 % between the classical MD viscosities and those estimated with the reduced model with $P_{int,MD}$, and 31% between the classical MD viscosities and those estimated with the reduced model with $P_{int,X}$, showing ~70% fidelity in the prediction regardless of the method. However, we note that the AAPD analysis is not optimal because the percent deviations at the low viscosity regime are not as significant as those in the high viscosity regime.

Compound	ΔΔΕ
	(kJ/mol)
1-EAµEM-2-BOL	+16.8
1-PADM-2-BOL	-31.1
1-IPATBM-2-BOL	+2.5
1-IPADH-2-BOL	-21.9
1-IPAMTFM-2-BOL	-13.0
1-TFMIPAµEMDM-BOL	+9.6
1-IPADM-3-BOL	-15.5
1-IPAµEMMEMM-BOL	+4.1
1-IPADM-2-BOL	0.00
1-TFMIPADM-2-BOL	+5.6
1-TFEEIPADM-2-BOL	-17.4
1-MEIPADM-2-BOL	-8.3
1-MEIPAµEMDM-BOL	+0.9
1-IPAµEM-2-BOL	+16.4
1-O-EADM-2-BOL	-1.2

Table S3 CO₂ capture $\Delta\Delta E$ values with respect to the capture energy of IPADM-2-BOL.