Supporting Information

Metal-Free Regioselective Tandem Synthesis of Diversely Substituted Benzimidazo-Fused Polyheterocycles In Aqueous Medium

Pawan K. Mishra and Akhilesh K. Verma*

Department of Chemistry, University of Delhi, Delhi 110007, India averma@acbr.du.ac.in

S.No	Contents	Page
1	X-ray crystallographic data	S2-S4
2	General methods and References	S5-S6
3	Synthesis of the 2-alkynylaldehydes (3c, 5b-h)	S7-S9
4	Synthesis of benzimidazoles fused furopyridine	S10-S20
	and thienopyridine (4a-r and 6a-f)	
5	Synthesis of benzimidazoles fused N-	S21-S27
	heterocycles (7a-l)	
7	Copies of ¹ H and ¹³ C NMRs	S28-S116

X-Ray Crystallographic Studies

Figure I. ORTEP structure of compound 4c of probability 50% level

The intensity data for **4c** was collected on an Oxford Xcalibur CCD diffractometer equipped with graphite monochromatic Mo-Ka radiation ($\lambda = 0.71073$ Å) at 293(2) K^{1.} A multi-scan correction was applied. The structure was solved by the direct methods using SIR-92 and refined by full-matrix least-squares refinement techniques on F^2 using SHELXL97.² The hydrogen atoms were placed into the calculated positions and included in the last cycles of the refinement. All calculations were done using Wingx software package.³

Identification code	4c		
Empirical formula	$C_{27} H_{22} N_2 O$		
Formula weight	390.46		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	$a = 18.7062(12) \text{ Å}, \alpha = 90^{\circ}.$		
	$b = 8.1149(5) \text{ Å}, \beta = 106.281(7)^{\circ}.$		
	$c = 28.815(2) \text{ Å}, \gamma = 90^{\circ}.$		
Volume	4198.7(5) Å ³		
Z	8		
Density (calculated)	1.235 g/cm ³		
Absorption coefficient	0.075 mm ⁻¹		
F(000)	1648		
Crystal size	0.05 x 0.04 x 0.02 mm ³		
Theta range for data collection	3.032 to 29.351°.		
Index ranges	-25<=h<=25, -11<=k<=8, -35<=l<=37		
Reflections collected	11112		
Independent reflections	4918 [R (int) = 0.0327]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	none		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4918 / 0 / 274		
Goodness-of-fit on F ²	1.060		
Final R indices [I>2sigma (I)]	R1 = 0.0634, wR2 = 0.1215		
R indices (all data)	R1 = 0.1113, wR2 = 0.1453		
Extinction coefficient	N/A		
Largest diff. peak and hole	0.170 and -0.196 e.Å ⁻³		
${}^{a}R_{I} = \Sigma F_{o}/- F_{c} /\Sigma F_{o}/; wR = \{ \sum [w(F_{o}^{2}-F_{c}^{2})^{2}]/\Sigma[wF_{o}^{4}] \}^{1/2}$			

Table I.Crystallographic data and structure refinement for compounds 4c

References

- 1. CrysAlisPro, Agilent Technologies, Version 1.171.34.49 (2011).
- 2. Sheldrick, G. M. Acta Cryst., 2008, A64, 112-122.

3. Farrugia, L. J. WinGX Version 1.80.05, *An integrated system of Windows Programs for the Solution, Refinement and Analysis of Single Crystal X-Ray Diffraction Data;* Department of Chemistry, University of Glasgow (**1997-2009**).

Experimental Section

General Method.¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded in CDCl₃/DMSO-d₆. Chemical shifts for protons and carbons are reported in ppm from tetramethylsilane and are referenced to the carbon resonance of the solvent. Data are reported as follows: chemical shift, multiplicity (s = singlet, br = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet), coupling constants in Hertz and integration. High-resolution mass spectra were recorded on electrospray mass spectrometer. Crystal structure analysis was accomplished on single needles X-ray diffractometer. TLC analysis was performed on commercially prepared 60 F₂₅₄ silica gel plates and visualized by either UV irradiation or by staining with I₂. All purchased chemicals were used as received. All melting points are uncorrected.

Reagents All reagents were used directly as obtained commercially unless otherwise noted. Anhydrous forms of dimethylformamide, dimethylacetamide, dimethylsulfoxide, dioxane dichloroethane, diethyether, THF, toluene, hexanes, ethyl acetate, and CH_2Cl_2 were purchased from Merck Chemical Co. *N*–methyloxindole, 2–coumaranone, 3–coumaranone, 2– Bromobenzothieno–2–carbaldehyde, terminal alkynes, palladium (II) chloride, silver nitrate, benzene–1,2–diammine, Et₃N and the palladium salts were purchased from Aldrich Chemical Co., Inc.

Preparation of *o*–Alkynylaldehydes

To probe the viability of the designed tandem strategy, *o*–alkynylaldehydes **1**,**3** and **5** were readily prepared by standard Sonogashira cross–coupling reaction of commercially available and readily accessible *o*–haloaldehydes **1**, **3** and **5** with terminal alkynes (Scheme 1). This coupling procedure has readily accommodated a large variety of functional groups and provided the coupling products in good to excellent yields. The structure and purity of known starting materials **1a-n**, **3a-b**, **3d-f**, **5a**, **5i**, **6d**, and **7i** were confirmed by comparison of their physical and spectral data (¹H NMR and ¹³C NMR) with those reported in the literature.¹⁻⁴

Scheme 1 Preparation of ortho-Alkynylaldehydes

References

- S. Kumar, C. Cruz-Hernandez, S. Pal, R. K. Saunthwal, M. Patel, R. K. Tiwari, E. Juaristi and A. K. Verma, J. Org. Chem., 2015, 80, 10548-10560
- 2. H. Zhang and R. C. Larock, J. Org. Chem., 2002, 67, 7048-7056
- R. A. Maurya, P. R. Adiyala, D. Chandrasekhar, C. N. Reddy, J. S. Kapure, and A. Kamal, ACS. Comb. Sci., 2014, 16, 466–477.
- 4. V. Rustagi, T. Aggarwal and A. K. Verma, Green Chemistry, 2011, 13, 1640.

$\label{eq:2-1} 3-((4-(Trifluoromethoxy)phenyl)ethynyl) benzofuran-2-carbaldehyde$

(3c). The product was obtained as pale brown needles (147.5 mg, 80%): mp 146–150 °C: ¹H NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.58 (d, J = 8.4 Hz, 2H), 7.54–7.47 (m, 2H), 7.35 (t, J = 7.6 Hz, 1H), 7.19 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.0, 155.4, 152.7, 149.8, 133.6, 130.1, 127.4, 124.7, 122.5, 121.1, 120.6, 115.1, 112.9, 98.4, 78.0; HRMS (ESI) [M+H]⁺ Calcd for C₁₈H₉F₃O₃ 331.0582, found 331.0598.

2-((4-Methoxyphenyl)ethynyl)-1-methyl-1H-indole-3-

carbaldehyde (5b). The product was obtained as brown needles (133.1 mg, 92%): mp 162– 166 °C: ¹H NMR (400 MHz, CDCl₃) δ 10.16 (s, 1H), 8.23 (d, *J* = 6.8 Hz, 1H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.29–7.17 (m, 3H), 6.85–6.83 (m, 2H), 3.79–3.76 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 185.2, 160.8, 137.4, 133.5, 132.7, 124.8, 124.5, 123.4, 122.0, 119.4, 114.3, 113.1, 109.6, 101.6, 76.4, 55.4, 31.1; HRMS (ESI) [M+H]⁺ Calcd for C₁₉H₁₅NO₂ 290.1181, found 290.1198.

124.0, 123.4,123.3, 122.0, 121.0, 119.5, 115.1, 109.6, 76.7, 31.7, 28.9, 15.3; HRMS (ESI) [M+H]⁺Calcd for C₂₀H₁₇NO 288.1388, found 288.1405.

carbaldehyde (5d). The product was obtained as pale yellow needles (165.9 mg, 85%): mp 158–162 °C: ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 8.23 (d, J = 8.4 Hz, 1H), 7.69–7.58 (m, 4H), 7.32–7.23 (m, 3H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 184.9, 137.6, 132.0, 130.8, 128.9, 125.8 (q, J = 3.8 Hz, 1C), 125.61, 125.57, 125.3, 125.0, 124.3, 123.7, 123.4, 122.8, 122.2, 120.3, 109.9, 99.3, 79.6, 31.2; HRMS (ESI) [M+H]⁺ Calcd for C₁₉H₁₂F₃NO 328.0949, found 328.0965.

1-Methyl-2-((4-(trifluoromethoxy)phenyl)ethynyl)-1H-indole-

3–carbaldehyde (5e). The product was obtained as pale yellow needles (116 mg, 80%): mp145–150 °C: ¹H NMR (400 MHz, CDCl₃) δ 10.19 (s, 1H), 8.28 (d, *J* = 7.6 Hz, 1H), 7.61 (d, *J* = 7.6 Hz, 2H), 7.35–7.24 (m, 5H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 184.9, 171.1, 150.0, 137.5, 133.5, 125.2, 124.4, 123.6, 122.1, 121.1, 120.1, 120.0, 109.8, 99.5, 78.3, 31.1; HRMS (ESI) [M+H]⁺ Calcd for C₁₉H₁₂F₃NO₂ 344.0898, found 344.0901.

product was obtained as pale brown needles (121.6 mg, 89%): mp 158–162 °C: ¹H NMR (400 MHz, CDCl₃) δ 10.19 (s, 1H), 8.25 (d, *J* = 9.6 Hz, 1H), 7.44 (d, *J* = 8.3 Hz, 2H), 7.32–7.23 (m, 3H), 7.16 (d, *J* = 8.2 Hz, 2H), 3.84 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.2,

140.3, 137.5, 131.7, 129.4, 124.9, 124.5, 123.5, 122.2, 119.7, 118.1, 109.6, 101.6, 69.6, 31.2, 21.7; HRMS (ESI) [M+H]⁺ Calcd for C₁₉H₁₅NO 274.1232, found 274.1251.

The product was obtained as pale yellow needles (126.0 mg, 95%): mp 146–150 °C: ¹H NMR (400 MHz, CDCl₃) δ 10.19 (s, 1H), 8.28 (d, J = 7.6 Hz, 1H), 7.68–7.67 (m,1H), 7.36–7.33 (m, 2H), 7.32–7.30 (m, 1H), 7.28–7.26 (m, 1H), 7.25–7.24 (m, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.1, 137.4, 132.1, 130.9, 129.6, 126.2, 124.9, 124.3, 123.4, 122.0, 120.2, 119.7, 109.6, 96.3, 31.1; HRMS (ESI) [M+H]⁺ Calcd for C₁₆H₁₁NOS 265.0561, found 266.0661.

5-((4-Methoxyphenyl)ethynyl)-3-methyl-1-phenyl-1*H*-pyrazole-4-

carbaldehyde (**5h**).The product was obtained as off white needles (147.5 mg, 89%): mp 155–160 °C: ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 7.81 (d, *J* = 7.6 Hz, 2H), 7.52 (t, *J* = 2.3 Hz, 2H), 7.42–7.40 (m, 3H), 6.86 (d, *J* = 11.4 Hz, 2H), 3.82 (s, 3H), 2.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.1, 160.9, 150.8, 138.8, 133.4, 131.1, 129.0, 128.3, 123.5, 123.1, 114.3, 112.8, 101.6, 74.9, 55.4, 13.5; HRMS (ESI) [M+H]⁺ Calcd for C₂₀H₁₆N₂O₂ 317.1300, found 317.1298.

General procedure for the synthesis of compound (4a-r and 6a-f). To a solution of *ortho*–aryl/alkynylaldehyde (1a-n, 3a-f) (0.50 mmol,), amine (2a–e) (0.50 mmol,) in H₂O (5.0 mL) was allowed to stir at 100 °C for 8-12 h. Progress of reaction was monitored by TLC. After completion of reaction, water (10 mL) was added to the reaction mixture. It was then extracted with ethyl acetate (2 x 10 mL). The combined organic layer was dried over anhydrate Na₂SO₄ and was concentrated under reduced pressure. The crude product was purified by column chromatography over silica gel (100–200 mesh) using petroleum ether/ethyl acetate (95:5) as an eluent to afford the desired pure products.

7–Phenylbenzo[4,5]imidazo[1,2–*a***]benzofuro[3,2–***c***]pyridine (4a). The compound was obtained as a white needles (118 mg, 88%): mp 210–215 °C: ¹H NMR (400 MHz, CDCl₃) \delta 8.49–8.46 (m, 1H), 7.92 (d,** *J* **= 8.4 Hz, 1H), 7.57–7.51 (m, 6H), 7.43–7.41 (m, 2H), 7.33 (t,** *J* **= 7.6 Hz, 1H), 6.96 (s, 1H), 6.87 (t,** *J* **= 7.6 Hz, 1H), 6.40 (d,** *J* **= 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) \delta 154.7, 154.5, 144.7, 144.3, 139.9, 133.3, 129.3, 128.8, 128.7, 128.5, 128.2, 128.1, 125.5, 123.9, 123.2, 121.9, 121.6, 119.4, 118.3, 113.4, 110.4, 107.5, 100.5. HRMS (ESI): [M+H]⁺ calcd. for C₂₃H₁₄N₂O 335.1184, found 335.1198.**

7–(4–Methoxyphenyl)benzo[4,5]imidazo[1,2–a]benzofuro[3,2–c]

pyridine (4b). The compound was obtained as a off–white needles (118.6 mg, 90%): mp 240–246 •C: ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.55

(d, J = 7.6 Hz, 1H), 7.43–7.39 (m, 4H), 7.33 (t, J = 7.6 Hz, 1H), 7.02 (d, J = 8.4 Hz, 2H), 6.91– 6.87 (m, 2H), 6.53 (d, J = 8.4 Hz, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 155.7, 155.6, 145.9, 145.6, 140.9, 130.5, 129.6, 126.7, 126.3, 124.8, 124.1, 123.0, 122.5, 120.3, 119.4, 114.5, 111.4, 108.4, 101.5, 55.5; HRMS (ESI) [M+H]⁺ calcd for C₂₄H₁₆N₂O₂ 365.1290, found 365.1286.

7-(4-(*tert*-Butyl)phenyl)benzo[4,5]imidazo[1,2-*a*]benzofuro[3,2-*c*]

pyridine (**4c**). The compound was obtained as a pale yellow needles (118.8 mg, 92%): mp 242–247 °C: ¹H NMR (400 MHz, CDCl₃) δ 8.49–8.48 (m, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.58–7.53 (m, 3H), 7.45–7.42 (m, 4H), 7.34 (t, J = 7.6 Hz, 1H), 6.96–6.95 (m, 1H), 6.89 (t, J = 7.6 Hz, 1H), 6.47 (d, J = 9.1 Hz, 1H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 154.6, 152.7, 144.9, 144.6, 140.2, 130.5, 128.6, 127.8, 125.3, 125.0, 123.8, 123.1, 122.1, 121.6, 119.3, 118.4, 113.5, 110.4, 107.4, 100.4, 34.0, 30.3; HRMS (ESI) [M+H]⁺ calcd for C₂₇H₂₂N₂O 391.1810, found 391.1825.

7–(Thiophen–3–yl)benzo[4,5]imidazo[1,2–a]benzofuro[3,2–c]pyridine

(4d). The compound was obtained as a silver needles (121.4 mg, 90%); mp 220–226 °C: ¹H NMR (400 MHz, CDCl₃) δ 8.46–8.44 (m, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.60–7.59 (m, 1H), 7.56–7.50 (m, 2H), 7.43–7.37 (m, 2H), 7.33 (t, J = 7.6 Hz, 1H), 7.22 (d, J = 4.6 Hz, 1H), 6.96 (s, 1H), 6.92 (t, J = 7.6 Hz, 1H), 6.53 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 155.7, 155.2, 145.7, 145.4, 135.8, 134.6, 129.5, 128.3, 127.1, 126.5, 126.4, 124.9, 124.1, 122.9,

122.5, 120.5, 119.4, 114.0, 111.4, 108.8, 101.8; HRMS (ESI) $[M+H]^+$ calcd for $C_{21}H_{12}N_2OS$ 341.0749, found 341.0749.

7-(4-(Trifluoromethyl)phenyl)benzo[4,5]imidazo[1,2-a]

benzofuro[3,2–*c*]**pyridine** (4e). The compound was obtained as a pale green needles (108.8 mg, 85%): mp 280–284 °C: ¹H NMR (400 MHz, CDCl₃): δ 8.50–8.48 (m, 1H), 7.95 (d, *J* = 8.4 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.61 (t, *J* = 5.3 Hz, 1H), 7.48–7.45 (m, 2H), 7.38 (t, *J* = 7.6 Hz, 1H), 6.99 (s, 1H), 6.95 (t, *J* = 7.6 Hz, 1H), 6.46 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 155.8, 155.1, 145.7, 145.6, 138.9, 137.8, 132.5, 132.2, 129.7, 129.2, 126.8, 126.2 (q, *J* = 3.8 Hz, 1C), 125.1, 124.3, 122.8, 122.7, 120.8, 119.8, 113.9, 111.5, 109.2, 102.0; HRMS (ESI) [M+H]⁺ calcd for C₂₄H₁₃F₃N₂O 403.1058, found 403.1085.

7-(4-(Trifluoromethoxy)phenyl)benzo[4,5]imidazo[1,2-a]benzo

furo[3,2–*c***]pyridine (4f).** The compound was obtained as a off–white needles (106.4 mg, 84%): mp 229–232°C: ¹H NMR (400 MHz, CDCl₃) δ 8.51–8.49 (m, 1H), 7.95 (d, *J* = 8.4 Hz, 1H), 7.62–7.59 (m, 3H), 7.47–7.35 (m, 5H), 7.00 (s, 1H), 6.94 (t, *J* = 7.3 Hz, 1H), 6.47 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 155.2, 150.5, 145.8, 145.6, 139.2, 132.9, 131.0, 129.4, 126.7, 125.1, 124.3, 122.9, 122.7, 121.5, 120.6, 119.8, 114.0, 111.5, 109.0, 101.9; HRMS (ESI) [M+H]⁺ calcd for C₂₄H₁₃F₃N₂O₂ 419.1007, found 419.1026.

7-(Cyclohex-1-en-1-yl)benzo[4,5]imidazo[1,2-a]benzofuro[3,2-c]

pyridine (4g). The compound was obtained as a off–white needles (101.5 mg, 75%): mp 222–226 •C: ¹H NMR (400 MHz, CDCl₃) δ 8.44–8.42 (m, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.4 Hz, 1H), 7.55–7.53 (m, 1H), 7.44–7.36 (m, 3H), 7.23 (t, J = 7.6 Hz, 1H), 6.85 (d, J = 2.3 Hz, 1H), 6.16 (s, 1H), 2.50 (d, J = 17.5 Hz, 1H), 2.30–2.08 (m, 6H), 1.70–1.64 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 155.9, 155.5, 145.8, 145.4, 143.4, 133.4, 131.6, 129.2, 126.1, 124.8, 124.0, 123.0, 122.4, 120.7, 119.4, 114.1, 111.3, 108.0, 99.8, 27.9, 25.2, 22.2, 21.5; HRMS (ESI) [M+H]⁺ calcd for C₂₃H₁₈N₂O 339.1497, found 339.1499.

7–Cyclohexylpyrido[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (4h).

The compound was obtained as a off–white needles (91.9 mg, 68%): mp 230–236 °C: ¹H NMR (400 MHz, CDCl₃) δ 8.39–8.35 (m, 2H), 8.17 (dd, *J* = 8.4 and 1.5 Hz, 1H), 7.55–7.53 (m, 1H), 7.40–7.34 (m, 2H), 7.26–7.24 (m, 1H), 7.01 (s, 1H), 4.80 (t, *J* = 11.4 Hz, 1H), 2.19 (d, *J* = 12.2 Hz, 2H), 1.85 (t, *J* = 14.5 Hz, 4H), 1.64 (t, *J* = 12.9 Hz, 2H), 1.44 (t, *J* = 9.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 155.5, 150.8, 146.5, 144.5, 141.1, 137.5, 126.2, 126.1, 125.5, 124.1, 122.9, 122.1, 120.4, 111.3, 107.0, 38.5, 32.5, 28.2, 26.2; HRMS (ESI) [M+H]⁺ calcd for C₂₂H₁₉N₃O 342.1606, found 342.1626.

7–Phenethylpyrido[4,5]imidazo[1,2–a]benzofuro[3,2–c]pyridine (4i).

The compound was obtained as a brown needles (92.8 mg, 70%): mp 200-203 °C: ¹H NMR

(400 MHz, CDCl₃) δ 8.47–8.41 (m, 2H), 8.25 (d, J = 2.2 Hz, 1H), 7.58–7.56 (m, 1H), 7.45–7.42 (m, 3H), 7.32–7.24 (m, 4H), 7.18–1.16 (m, 1H), 6.90 (s, 1H), 4.07 (t, J = 8.0 Hz, 2H), 3.17 (t, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 155.5, 146.5, 144.3, 143.7, 141.3, 140.7, 137.5, 128.6, 128.5, 126.4, 126.3, 124.2, 122.8, 122.2, 120.7, 111.4, 107.6, 100.2, 35.4, 34.9; HRMS (ESI) [M+H]⁺ calcd for C₂₄H₁₇N₃O 364.1450, found 364.1469.

 Me^{-1} **7**-(*o*-Tolyl)pyrido[4,5]imidazo[1,2-*a*]benzofuro[3,2-*c*]pyridine (4j). The compound was obtained as a off-white needles (96.6 mg,72%): mp 220–222 •C: ¹H NMR (400 MHz, CDCl₃) δ 8.49–8.47 (m, 1H), 8.19 (dd, *J* = 7.6 and 1.5 Hz, 1H), 8.05 (dd, *J* = 4.6 and 1.5 Hz, 1H), 7.63–7.61 (m, 1H), 7.47–7.42 (m, 3H),7.37 (t, *J* = 7.6 Hz, 1H), 7.31–7.27 (m, 3H), 7.04 (s, 1H), 1.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 155.8, 145.9, 143.6, 141.9, 140.9, 138.0, 137.2, 134.3, 129.7, 129.6, 129.4, 126.7, 126.3, 125.7, 124.4, 122.8, 122.5, 120.7, 111.6, 108.6, 102.4, 19.7. HRMS (ESI) [M+H]⁺ calcd for C₂₃H₁₅N₃O 350.1293, found 350.1278.

7-(o-Tolyl)benzofuro[3,2-c]naphtho[2',3':4,5]imidazo[1,2-a]pyridine

(**4k**). The compound was obtained as a off-brown needles (130 mg, 85%): mp 262–265 °C: ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 6.8 Hz, 1H), 8.41 (s, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.68–7.65 (m, 2H), 7.55–7.48 (m, 6H), 7.42 (t, J = 6.8 Hz, 1H), 7.30 (t, J = 6.8 Hz, 1H), 7.03 (s, 1H), 6.63 (s, 1H), 2.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 155.7, 148.6, 144.9, 141.6, 137.6, 133.9, 131.5, 130.69, 130.65, 130.5, 129.6, 128.5, 128.3, 127.6, 126.9, 126.4, 124.6, 124.3, 123.5, 123.0, 122.5, 115.1, 111.4, 110.7, 108.1, 100.1, 19.2; HRMS (ESI) [M+H]⁺ calcd for C₂₈H₁₈N₂O 399.1497, found 399.1510.

10-Methyl-7-phenylbenzo[4,5]imidazo[1,2-a]

benzofuro[3,2–*c*]**pyridine** (4l+4l'). The compound was obtained as a pale yellow needles (118 mg, 84%) in the mixture of regioisomers (67:33): mp 210–213 °C: ¹H NMR (400 MHz, CDCl₃) δ 8.58–8.55 (m, 1.6H, major+minor), 7.89 (d, *J* = 8.4 Hz, 0.81H, major+minor), 7.78 (s, 1H, major), 7.69–7.63 (m, 8.57H, major+minor), 7.54–7.49 (m, 3.81H, major+minor), 7.23 (d, *J* = 8.4 Hz, 0.67H, major+minor), 7.00(s, 1.64H, major+minor), 6.74 (d, *J* = 8.4 Hz, 1H, major), 6.35 (d, *J* = 8.4 Hz, 1H, major), 6.22 (s, 0.67H, major+minor), 2.49 (s, 3H, major), 2.22 (s, 2H, minor); ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 155.3, 155.2, 145.8, 145.4, 143.4, 140.7, 140.6, 134.6, 134.41, 134.37, 130.09, 130.06, 130.0, 129.12, 129.06, 129.03, 128.95, 127.5, 126.2, 124.0, 122.9, 122.5, 122.4, 121.8, 119.0, 118.8, 114.3, 113.7, 111.3, 108.3, 101.1, 100.9, 21.8, 21.6; HRMS (ESI) [M+H]⁺ calcd for C₂₄H₁₆N₂O 349.1341, found 349.1357.

7-(3-Methoxyphenyl)-10-methylbenzo[4,5]

imidazo[1,2–*a*] **benzofuro**[3,2–*c*]**pyridine** (4m+4m'). The compound was obtained as a pale yellow needles (112.3 mg, 82%) in the mixture of regioisomers (50:50): mp 210–213 °C: ¹H NMR (400 MHz, CDCl₃) δ 8.50–8.47 (m, 1.52H, major+minor), 7.82 (d, *J* = 8.4 Hz, 0.51H, major+minor), 7.72 (s, 1H, major), 7.60–7.58 (m, 1.5H, major+minor), 7.47–7.41 (m, 4.5H, major+minor), 7.19–7.17 (m, 1.51H, major+minor), 7.14–7.09 (m, 3H, major+minor), 7.05 (s, 1.51H, major+minor), 6.98 (s, 1.23H, major+minor), 6.74 (d, *J* = 8.4 Hz, 1H, major), 6.38 (d, *J* = 8.4 Hz, 1H, major), 6.28 (s, 0.52H, major+minor), 3.80 (s, 1.51H, major+minor), 3.79 (s, 3H, major+minor), 3.79 (s, 3H, major+minor), 3.79 (s, 3H, major+minor), 3.79 (s, 3H, major+minor)

major), 2.42 (s, 3H, major), 2.20 (s, 1.51H, major+minor); ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 155.7, 155.4, 145.8, 140.5, 135.6, 134.9, 130.3, 130.2, 127.5, 126.44, 126.38, 124.1, 123.0, 122.6, 122.1, 121.4, 121.3, 119.1, 118.9, 116.1, 114.5, 114.33, 114.27, 113.9, 111.4, 108.6, 101.2, 101.0, 55.6, 55.5, 21.9, 21.7. HRMS (ESI) [M+H]⁺ calcd for C₂₅H₁₈N₂O₂ 379.1447, found 379.1458.

7-(4-Butylphenyl)-10-methylbenzo[4,5]

imidazo[1,2-*a*]benzofuro[3,2-*c*]pyridine (4n+4n'). The compound was obtained as a pale yellow needles (105.8 mg, 80%) in the mixture of regioisomers (67:33): mp 238–240 •C: ¹H NMR (400 MHz, CDCl₃) δ 8.47–8.45 (m, 1.8H, major+minor), 7.79 (d, J = 8.4 Hz, 0.6H, major+minor), 7.70 (s, 1H, major), 7.57–7.55 (m, 1.6H, major+minor), 7.45–7.40 (m, 7H, major+minor), 7.35–7.32 (m, 3.5H, major+minor), 7.15 (d, J = 8.4 Hz, 1H, major), 6.93 (d, J = 2.3 Hz, 1.7H, major+minor), 6.69 (d, J = 9.1 Hz, 1H, major), 6.30 (d, J = 8.4 Hz, 1H, major), 6.13 (s, 0.6H, major+minor), 2.72 (q, J = 6.8 Hz, 3H, major+minor), 2.40 (s, 3H, major), 2.14 (s, 2H, major+minor), 1.67–1.64 (m, 3H, major+minor), 1.40–1.34 (m, 4H, major+minor), 0.94–0.90 (m, 5H, major+minor); ¹³C NMR (100 MHz, CDCl₃) δ 155.63, 155.55, 155.4, 145.91, 145.86, 145.6, 145.3, 143.5, 141.1, 141.0, 134.7, 131.8, 131.7, 130.0, 129.7, 129.1, 129.0, 128.9, 127.6, 126.3, 124.0, 123.1, 122.6, 121.8, 119.1, 118.8, 114.5, 113.9, 113.3, 108.4, 108.3, 101.01, 100.96, 35.6, 35.5, 33.6, 33.5, 22.3, 22.2, 21.8, 21.6, 14.0; HRMS (ESI) [M+H]⁺ calcd for C₂₈H₂₄N₂O 405.1967, found 405.1985.

7-(4-Ethylphenyl)-10-methylbenzo[4,5]

imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (40+40'). The compound was obtained as a pale yellow needles (117 mg, 86%) in the mixture of regioisomers (83:17): mp 235–238 °C: ¹H NMR (400 MHz, CDCl₃) δ 8.48–8.46 (m, 1.73H, major+minor), 7.80 (d, *J* =8.4 Hz, 0.70H, major+minor), 7.71 (s, 1H, major), 7.58 (d, *J* =7.6 Hz, 2H, major), 7.45–7.42 (m, 7H, major+minor), 7.38–7.35 (m, 3.5H, major+minor), 7.18–7.15 (m, 1.5H, major+minor), 6.96 (dd, *J* = 6.1 and 1.5 Hz, 1.5H, major+minor), 6.72 (d, *J* =8.4 Hz, 0.80H, major+minor), 6.35 (d, *J* = 8.4 Hz, 1H, major), 6.16 (s, 0.83H, major+minor), 2.77 (q, *J* = 7.6 Hz, 4H, major+minor), 2.41 (s, 3H, major), 2.16 (s, 2.53H, major+minor), 1.31 (t, *J* = 7.6 Hz, 6H, major+minor); ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 155.6, 155.4, 145.91, 145.86, 145.6, 145.3, 143.5, 141.1, 141.0, 134.7, 131.8, 131.7, 130.0, 129.7, 129.1, 129.0, 128.9, 127.6, 126.3, 124.0, 123.1, 122.6, 122.5, 121.8, 119.1, 118.8, 114.5, 113.9, 111.3, 108.4, 108.3, 101.01, 100.96, 35.6, 35.5, 33.6, 33.5, 22.3, 22.2, 21.8, 21.6, 14.0, 13.9; HRMS (ESI) [M+H]⁺ calcd for C₂₆H₂₀N₂O 377.1654, found 377.1674.

7–(3,5–Dimethoxyphenyl)benzo[4,5]imidazo[1,2–a]benzofuro[3,2–c]

pyridine (**4p**). The compound was obtained as a pale yellow needles (106.7 mg, 83%): mp 227–230 **•**C: ¹H NMR (400 MHz, CDCl₃) δ 8.57–8.54 (m, 1H), 8.00 (d, *J* = 8.4 Hz, 1H), 7.65–7.62 (m, 1H), 7.51–7.48 (m, 2H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.06 (s, 1H), 7.01 (t, *J* = 8.4 Hz, 1H), 6.72–6.69 (m, 4H), 3.82 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 155.6, 155.4, 145.7, 145.4, 140.6, 135.9, 129.3, 126.4, 124.8, 124.1, 122.9, 122.5, 120.5, 119.3, 114.6, 111.4, 108.6,

106.9, 102.2, 101.0, 55.6; HRMS (ESI) $[M+H]^+$ calcd for $C_{25}H_{18}N_2O_3$ 395.1396, found 395.1410.

7-(3-Methoxyphenyl)benzo[4,5]imidazo[1,2-a]benzofuro[3,2-c]

pyridine (**4q**). The compound was obtained as a pale yellow needles (105.5 mg, 80%): mp 190–194 **•**C: ¹H NMR (400 MHz, CDCl₃) δ 8.63–8.60 (m, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.70–7.68 (m, 1H), 7.58–7.53 (m, 3H), 7.46 (t, J = 7.6 Hz, 1H), 7.24–7.20 (m, 2H), 7.16 (s, 1H), 7.11–7.10 (m, 1H), 7.05–7.01 (m, 1H), 6.62 (d, J = 8.4 Hz, 1H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 155.7, 155.5, 145.7, 145.3, 140.7, 139.3, 135.4, 130.3, 129.4, 126.5, 124.9, 124.2, 122.9, 122.6, 121.3, 120.5, 119.3, 116.1, 114.5, 114.3, 114.0, 111.4, 108.6, 101.4, 55.5; HRMS (ESI) [M+H]⁺ calcd for C₂₄H₁₆N₂O₂ 365.1290, found 365.1286.

10–Chloro–7–phenylbenzo[4,5]imidazo[1,2–a]benzofuro[3,2–c]pyridine (**4r**). The compound was obtained as a off–brown needles (116.6 mg,78%): mp 245–247 •C: ¹H NMR (400 MHz, CDCl₃) δ 8.44–8.42 (m, 1H), 7.82 (d, J = 9.2 Hz, 1H), 7.65–7.57 (m, 4H), 7.54–7.51 (m, 2H), 7.47–7.43 (m, 2H), 7.29 (dd, J = 8.4 and 2.3 Hz, 1H), 7.01 (s, 1H), 6.35 (d, J = 1.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 155.7, 146.8, 146.5, 143.0, 140.7, 134.0, 130.5, 129.4, 129.1, 128.8, 128.2, 127.2, 126.7, 124.3, 122.8, 122.6, 120.8, 119.0, 115.0, 111.5, 108.7, 101.8; HRMS (ESI) [M+H]⁺ calcd for C₂₃H₁₃ClN₂O 369.0795, found 369.0793.

6–Phenylbenzo[4,5]imidazo[1,2–a]benzofuro[2,3–c]pyridine (6a). The

compound was obtained as a pale yellow crystalline needles (120 mg, 90%): mp 230–235 °C: ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 7.6 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.64–7.60 (m, 5H), 7.53–7.48 (m, 1H), 7.43-7.38 (m, 2H), 7.18 (s, 1H), 6.97 (t, J = 7.6 Hz, 1H), 6.52 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 145.0, 142.7, 140.3, 137.3, 134.6, 130.3, 130.0, 129.4, 129.1, 128.6, 128.2, 127.6, 125.1, 123.8, 123.6, 121.1, 121.0, 120.6, 120.1, 114.4, 112.6, 105.1; HRMS (ESI) [M+H]⁺ calcd. for C₂₃H₁₄N₂O 335.1184, found 335.1198.

6-(4-Methoxyphenyl)benzo[4,5]imidazo[1,2-a]benzofuro[2,3-c]

pyridine (6b). The compound was obtained as a off–white needles (121 mg, 92%): mp 245–248 •C: ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 9.2 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.49–7.44 (m, 3H), 7.38–7.33 (m, 2H), 7.11 (s, 1H), 7.06 (d, J = 6.1 Hz, 2H), 6.96 (t, J = 7.6 Hz, 1H), 6.58 (d, J = 9.2 Hz, 1H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ .160.8, 156.9, 145.0, 142.7, 140.4, 139.3, 137.3, 133.3, 130.8, 130.5, 127.6, 126.9, 125.1, 123.8, 121.0, 120.7, 120.1, 115.9, 114.1, 112.7, 105.3, 55.5; HRMS (ESI) [M+H]⁺ calcd for C₂₄H₁₆N₂O₂ 365.1290, found 365.1286.

6-(4-(Trifluoromethoxy)phenyl)benzo[4,5]imidazo[1,2-a]benzo

furo[2,3–c]pyridine (6c). The compound was obtained as a off–white needles (107 mg, 85%):

mp 222–225 °C: ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.68 (d, J = 8.4 Hz, 2H), 7.53 (t, J = 8.4 Hz, 1H), 7.47 (d, J = 9.1 Hz, 2H), 7.25–7.24 (m, 1H), 7.20 (s, 1H), 7.16–7.10 (m, 2H), 7.02 (t, J = 7.6 Hz, 1H), 6.54 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 156.9, 150.4, 144.6, 142.7, 141.6, 139.9, 135.7, 133.1, 128.1, 127.9, 127.6, 125.6, 125.4, 123.9, 123.4, 121.4, 121.3, 120.7, 120.2, 114.0, 112.7, 105.9; HRMS (ESI) [M+H]⁺ calcd for C₂₄H₁₃F₃N₂O 418.0929, found 418.1026.

3-Methyl-6-phenylbenzo[4,5]imidazo[1,2-a]

benzo[4,5]thieno[2,3–*c*]pyridine(6e+6e'). The compound was obtained as a off white needles (122 mg, 88%) in the mixture of regioisomers (50: 50): mp 235–240°C: ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.6 Hz, 1.5H, major+minor), 7.92 (d, J = 7.6 Hz, 1.5H, major+minor), 7.81 (d, J = 8.4 Hz, 0.6H, major+minor), 7.67 (s, 1H, major), 7.62–7.56 (m, 7H, major+minor), 7.45–7.38 (m, 3.3H, major+minor), 7.24 (s, 1.5H, major+minor), 7.17 (d, J = 8.4 Hz, 0.6H, major+minor), 6.75 (d, J = 9.2 Hz, 1H, major), 6.39 (d, J = 8.4 Hz, 1H, major), 6.26 (s, 0.6H, major+minor), 2.42 (s, 3H, major), 2.20 (s, 1.5H, major+minor); ¹³C NMR (100 MHz, CDCl₃) δ 145.4, 145.1, 142.8, 140.81, 140.77, 137.91, 137.85, 135.14, 135.10, 134.8, 134.53, 134.49, 133.8, 133.6, 131.4, 131.3, 130.6, 130.2, 129.9, 129.4, 129.3, 128.94, 128.86, 128.7, 128.2, 126.93, 126.88, 126.5, 125.6, 125.4, 124.8, 123.1, 122.5, 122.3, 121.9, 119.1, 119.0, 114.3, 113.8, 106.3, 106.2, 21.9, 21.6; HRMS (ESI) [M+H]⁺ calcd for C₂₄H₁₆N₂S 365.1112, found 365.1118.

6-(Thiophen-3-yl)benzo[4,5]imidazo[1,2-a]benzo[4,5]thieno[2,3-c]

pyridine (6f). The compound was obtained as a white needles (119.5 mg, 90%): mp 245–249°C: ¹H NMR (400 MHz, CDCl₃) δ 7.95–7.93 (m, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.60–7.59 (m, 1H), 7.53–7.51 (m, 1H), 7.41–7.35 (m, 2H), 7.31 (t, J = 7.6 Hz, 1H), 7.26 (s, 1H), 7.22 (d, J = 5.3 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.57 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.4, 144.6, 140.9, 135.0, 134.7, 133.9, 133.1, 130.1, 128.5, 127.2, 127.0, 126.5, 125.9, 125.0, 123.3, 122.1, 121.1, 119.5, 114.1, 107.1; HRMS (ESI) [M+H]⁺ calcd for C₂₁H₁₂N₂S₂ 357.0520, found 357.0528.

General procedure for the synthesis of compound (7a-l). To a solution of *ortho*-aryl/alkynylaldehyde (5a-k) (0.50 mmol,), amine (2a-b) (0.50 mmol,) in H₂O (5.0 mL) was allowed to stir at 100 °C for 10-18 h. Progress of reaction was monitored by TLC. After completion of reaction, water (10 mL) was added to the reaction mixture. It was then extracted with ethyl acetate (2 x 10 mL). The combined organic layer was dried over anhydrate Na₂SO₄ and was concentrated under reduced pressure. The crude product was purified by column chromatography over silica gel (100–200 mesh) using petroleum ether/ethyl acetate (90:10) as an eluent to afford the desired pure products.

5-Methyl-7-phenyl-5*H*-benzo[4',5']imidazo[1',2':1,2]pyrido[4,3-*b*]

indole (7a). The compound was obtained as a yellow–green needles (109.8 mg, 82%): mp 202–204 •C: ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 9.9 Hz, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 7.52–7.51(m, 4H), 7.37–7.30 (m, 4H), 7.29 (t, *J* = 9.2 Hz, 1H), 6.78 (s, 2H), 6.36 (d, *J* = 9.2

Hz, 1H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.8, 145.8, 144.2, 138.3, 138.2, 138.1, 137.9, 134.0, 128.9, 128.3, 128.0, 123.6, 123.3, 121.5, 121.3, 120.3, 118.5, 117.6, 113.01, 112.96, 107.9, 103.6, 98.7, 29.2; HRMS (ESI) [M+H]⁺ calcd for C₂₄H₁₇N₃ 348.1501, found, 348.1494.

7-(4-Methoxyphenyl)-5-methyl-5H-benzo[4',5']imidazo

[1',2':1,2]pyrido[4,3–*b*]indole (7b). The compound was obtained as a yellow needles (114.5 mg, 88%): mp 245–248 °C: ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 6.9Hz, 1H), 7.90 (d, *J* = 9.2 Hz, 1H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.41–7.34 (m, 3H), 7.30 (t, *J* = 6.1 Hz, 1H), 7.05 (d, *J* = 8.4 Hz, 2H), 6.86 (t, *J* = 8.4 Hz, 1H), 6.79 (s, 1H), 6.48 (d, *J* = 9.2 Hz, 1H), 3.89 (s, 3H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 147.1, 145.5, 139.33, 139.25, 139.1, 139.0, 130.6, 129.7, 127.5, 124.5, 124.2, 122.5, 121.2, 119.4, 118.8, 114.3, 114.1, 108.9, 104.5, 99.7, 55.5, 29.5; HRMS (ESI) [M+H]⁺ calcd for C₂₅H₁₉N₃O 378.1606, found 378.1619.

7-(4-Ethylphenyl)-5-methyl-5H-benzo[4',5']imidazo[1',2':1,2]

pyrido[4,3–*b*]**indole** (7c). The compound was obtained as a pale yellow needles (111 mg, 85%): mp 235–240 •C: ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 7.6 Hz, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.52–7.42 (m, 7H), 7.38 (t, *J* = 6.1 Hz, 1H), 6.93 (t, *J* = 8.4 Hz, 1H), 6.87 (s, 1H), 6.53 (d, *J* = 12.9 Hz, 1H), 3.90 (s, 3H), 2.85 (q, *J* = 7.6 Hz, 2H). 1.38 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.1, 146.3, 145.4, 139.4, 139.3, 139.1, 132.4, 129.6, 129.2, 128.5, 126.6, 124.6, 124.3, 122.5, 121.3, 119.5, 118.7, 114.09, 114.06, 109.0, 104.6, 99.7, 29.7, 28.8, 15.5; HRMS (ESI) [M+H]⁺ calcd for C₂₆H₂₁N₃ 376.1814, found 376.1832.

5-Methyl-7-(4-(trifluoromethyl)phenyl)-5H-benzo[4',5']imidazo

[1',2':1,2]pyrido[4,3-*b*]indole (7d). The compound was obtained as a pale yellow needles (95.2 mg, 75%): mp 222–228 °C: ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 7.6 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 2H), 7.71 (d, *J* = 7.6 Hz, 2H), 7.53 (s, 1H), 7.46–7.38 (m, 3H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.23–7.21 (m, 1H), 6.87 (t, *J* = 9.9 Hz, 1H), 6.82(s, 1H), 6.41 (d, *J* = 7.6 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.8,145.4, 139.3, 138.5, 138.4, 137.1, 129.8, 129.1, 126.1, 126.0 (q, *J* = 2.9 Hz, 1C), 124.9, 124.5, 122.5, 122.3, 122.2, 121.3, 119.8, 118.9, 113.6, 109.0, 104.9, 100.3, 29.7; HRMS (ESI) [M+H]⁺ calcd for C₂₅H₁₆F₃N₃ 416.1375, found 416.1395.

5-Methyl-7-(4-(trifluoromethoxy)phenyl)-5H-benzo[4',5']

imidazo[1',2':1,2]pyrido[4,3–*b***]indole (7e).** The compound was obtained as a pale yellow needles (91.7 mg, 73%): mp 220–222 °C: ¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, *J* = 7.6 Hz, 1H), 7.98 (d, *J* = 8.4 Hz, 1H), 7.65 (d, *J* = 9.2 Hz, 2H), 7.48–7.41 (m, 5H), 7.38 (t, *J* = 6.8 Hz, 1H), 6.93 (t, *J* = 7.6 Hz, 1H), 6.84 (s, 1H), 6.44 (d, *J* = 8.4 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 146.7, 145.2, 139.3, 138.7, 137.4, 133.6, 131.1, 129.2, 124.9, 124.5, 122.6, 122.3, 121.4, 121.3, 119.8, 119.1, 118.9, 113.6, 109.0, 104.8, 100.2, 29.8; HRMS (ESI) [M+H]⁺ calcd for C₂₅H₁₆F₃N₃O 432.1324, found 432.1382.

5,10–Dimethyl–7–(*p*–tolyl)–5*H*–benzo[4',5']

imidazo[1',2':1,2]**pyrido**[4,3–*b*]**indole** (7f+7f'). The compound was obtained as a pale yellow needles (105.2 mg, 86%) in the mixture of regioisomers (67: 33): mp 270–275 •C: ¹H NMR (400 MHz, CDCl₃) δ 8.65 (t, J = 6.8 Hz, 1.7H, major+minor), 7.79 (d, J = 8.4 Hz, 0.7H, major+minor), 7.69 (s, 1H, major), 7.42–7.36 (m, 7.5H, major+minor), 7.33 (t, J = 5.3 Hz, 4.5H, major+minor), 7.12 (d, J = 8.4 Hz, 0.7H, major+minor), 6.75 (s, 1.7H, major+minor), 6.67 (d, J = 8.4 Hz, 1H, major), 6.32 (d, J = 8.4 Hz, 1H, major), 6.23 (s, 0.7H, major+minor), 3.81 (s, 5H, major+minor), 2.48 (s, 2H, major+minor), 2.47 (s, 3H, major), 2.40 (s, 3H, major), 2.18 (s, 1.9H, major+minor); ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 139.34, 139.30, 139.27, 139.21, 139.0, 132.41, 132.35, 129.7, 129.6, 129.5, 129.2, 129.1, 129.0, 127.7, 125.6, 124.51, 124.50, 122.5, 122.5, 121.1, 120.9, 118.6, 118.3, 114.2, 113.5, 108.9, 104.6, 99.5, 99.3, 29.7, 21.9, 21.6, 21.5; HRMS (ESI) [M+H]⁺ calcd for C₂₆H₂₁N₃ 376.1814, found 376.1832.

5,10-dimethyl-7-phenyl-5H-benzo[4',5']imidazo

[1',2':1,2]pyrido[4,3-*b*]indole (7g+7g'). The compound was obtained as a pale yellow needles (117.0 mg, 84%) in the mixture of regioisomers (50: 50): mp 250–255 °C: ¹H NMR (400 MHz, CDCl₃) δ 8.63–8.61 (m, 1.8H, major+minor), 7.65 (s, 1H, major), 7.51–7.47(m, 7.5H, major+minor), 7.34–7.27(m, 5.6H, major+minor), 6.67–6.66 (m, 1.7H, major+minor), 6.60 (d, J = 9.2 Hz, 1H, major), 6.18 (d, J = 8.4 Hz, 1H, major), 7.69 (s, 1H, major), 7.33 (t, J = 5.3 Hz, 4.5H, major+minor), 7.12 (d, J = 8.4 Hz, 0.7H, major+minor), 6.06 (s, 0.6H, major+minor), 3.69–3.68 (m, 5H, major+minor), 2.36 (s, 3H, major), 2.22 (s, 1.5H, major+minor); ¹³C NMR

(100 MHz, CDCl₃) δ 146.9, 146.7, 145.6, 139.2, 138.92, 138.86, 135.12, 135.08, 134.1, 129.8, 129.5, 129.3, 129.2, 129.01, 128.92, 128.8, 128.4, 127.5, 127.3, 125.7, 125.6, 124.5, 124.4, 123.0, 122.4, 122.3, 121.1, 121.0, 118.5, 118.1, 114.1, 114.0, 113.4, 108.8, 104.5, 99.4, 99.3, 29.7, 29.5, 21.8, 21.6; HRMS (ESI) [M+H]⁺ calcd for C₂₅H₁₉N₃ 362.1657, found 362.1658.

5-Methyl-7-(thiophen-3-yl)-5H-benzo[4',5']imidazo[1',2':1,2]

pyrido[4,3–*b*]**indole** (7**h**). The compound was obtained as a pale yellow needles (124.6 mg, 88%): mp 220–222 •C: ¹H NMR (400 MHz, DMSO–d₆) δ 8.49 (d, *J* = 7.6 Hz, 1H), 8.18 (s, 1H), 7.75 (t, *J* = 8.4 Hz, 2H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.43–7.38 (m, 3H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.19 (t, *J* = 6.8 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.81 (d, *J* = 4.5 Hz, 1H), 4.09 (s, 3H); ¹³C NMR (100 MHz, DMSO–d₆) δ 145.1, 144.5, 141.7, 140.9, 134.7, 128.8, 127.9, 127.6, 126.0, 124.9, 123.7, 123.5, 123.3, 122.8, 121.9, 119.9, 115.9, 113.3, 112.5, 88.3, 29.5; HRMS (ESI) [M+H]⁺ calcd for C₂₂H₁₅N₃S 354.1065, found 354.1075.

1–Methyl–3,5–diphenyl–3*H*–benzo[4,5]imidazo[1,2–*a*]pyrazolo[4,3–*c*]

pyridine (**7j**). The compound was obtained as a off-white needles (108.2 mg, 83%): mp 245–250 •C: ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.57–7.44 (m, 7H), 7.34–7.27 (m, 2H), 6.88–6.85 (m, 2H), 6.28 (d, J = 8.4 Hz, 1H), 2.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.6, 145.8, 145.1, 140.2, 139.1, 138.6, 134.6, 130.2, 129.8, 129.6, 129.2, 129.1, 127.6, 124.2, 123.3, 120.6, 119.3, 113.9, 109.7, 99.3, 13.8; HRMS (ESI) [M+H]⁺ calcd for C₂₅H₁₈N₄ 375.1610, found 375.1618.

5-(4-Methoxyphenyl)-1-methyl-3-phenyl-3H-benzo[4,5]imidazo

[1,2–*a*]pyrazolo[4,3–*c*]pyridine (7k). The compound was obtained as a off white needles (108.6 mg, 85%): mp 220–226 •C: ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.4 Hz, 1H), 7.66 (d, *J* = 7.6 Hz, 2H), 7.52–7.44 (m, 4H), 7.39–7.35 (m, 2H), 7.07 (d, *J* = 9.2 Hz, 2H), 6.95 (t, *J* = 7.6 Hz, 1H), 6.88 (s, 1H), 6.46 (d, *J* = 8.4 Hz, 1H), 3.92 (s, 3H), 3.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 146.5, 145.7, 144.9, 140.1, 139.1, 138.7, 130.5, 129.8, 129.5, 129.1, 127.5, 126.8, 125.1, 124.2, 123.2, 120.5, 119.1, 114.3, 113.9, 109.5, 99.4, 55.4, 13.8; HRMS (ESI) [M+H]⁺ calcd for C₂₆H₂₀N₄O 405.1715, found 405.1719.

The compound was obtained as a off–white needles (107.4 mg, 80%): mp 270–276 •C: ¹H NMR (400 MHz, CDCl₃) δ 9.58 (s, 1H), 8.13 (d, *J* = 8.1 Hz, 1H), 8.01 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 7.6 Hz, 1H), 7.77 (t, *J* = 6.8 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.35–7.31 (m, 3H), 7.12 (s, 1H), 7.01 (t, *J* = 8.4 Hz, 1H), 6.48 (d, *J* = 8.4 Hz, 1H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 148.6, 147.7, 144.1, 142.2, 140.4, 133.5, 131.4, 131.0, 131.0, 129.7, 128.9, 128.7, 127.0, 126.7, 126.5, 124.3, 122.7, 122.3, 118.7, 117.5, 114.2, 113.9, 21.6; HRMS (ESI) [M+H]⁺ calcd for C₂₅H₁₇N₃ 360.1501, found 360.1498.

 $^{\circ}$ $^{\circ}$

MHz, CDCl₃) δ 8.49–8.47 (m, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.60–7.51 (m, 6H), 7.43–7.39 (m, 2H), 7.33 (t, J = 7.6 Hz, 1H), 6.87 (t, J = 7.6 Hz, 1H), 6.40 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 154.7, 154.5, 144.7, 144.3, 139.9, 133.3, 129.3, 128.8, 128.7, 128.5, 128.2, 128.1, 125.5, 123.9, 123.2, 121.9, 121.6, 119.4, 118.3, 113.4, 110.4, 107.5, 100.5; HRMS (ESI) [M+H]⁺ calcd. for C₂₃H₁₃DN₂O 336.1247, found 336.1250.

6-phenylbenzo[4,5]imidazo[1,2-*a***]benzofuro[2,3-***c***]pyridine (8b). The compound was obtained as a off-white crystalline needles (60 mg, 90%): mp 215–220 °C: ¹H NMR (400 MHz, CDCl₃): \delta 8.01 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 7.6 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.78–7.60 (m, 5H), 7.53–7.49 (m, 1H), 7.41 (t, J = 7.6 Hz, 2H), 6.99 (t, J = 7.6 Hz, 1H), 6.55 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): \delta 156.8, 145.0, 142.7, 140.3, 137.3, 134.6, 130.3, 130.0, 129.4, 129.1, 128.6, 128.2, 127.6, 125.1, 123.8, 123.6, 121.1, 121.0, 120.6, 120.1, 114.4, 112.6, 105.1. HRMS (ESI) [M+H]⁺ calcd. for C₂₃H₁₃DN₂O 336.1247, found 336.1250**

Copies of ¹H NMR and ¹³C NMR

3-((4-(Trifluoromethoxy)phenyl)ethynyl)benzofuran-2-carbaldehyde (3c)

 $\label{eq:2-1} 3-((4-(Trifluoromethoxy)phenyl)ethynyl) benzofuran-2-carbaldehyde~(3c)$

2-((4-Methoxyphenyl)ethynyl)-1-methyl-1*H*-indole-3-carbaldehyde (5b)

2-((4-Ethylphenyl)ethynyl)-1-methyl-1*H*-indole-3-carbaldehyde (5c)

 $2-((4-Ethylphenyl)ethynyl)-1-methyl-1 H-indole-3-carbaldehyde\ (5c)$

1-Methyl-2-((4-(trifluoromethyl)phenyl)ethynyl)-1*H*-indole-3-carbaldehyde (5d)

1-Methyl-2-((4-(trifluoromethyl)phenyl)ethynyl)-1*H*-indole-3-carbaldehyde (5d)

1-Methyl-2-((4-(trifluoromethoxy)phenyl)ethynyl)-1*H*-indole-3-carbaldehyde (5e)

1-Methyl-2-((4-(trifluoromethoxy)phenyl)ethynyl)-1*H*-indole-3-carbaldehyde (5e)

1-Methyl-2-(p-tolylethynyl)-1H-indole-3-carbaldehyde (5f)

1-Methyl-2-(p-tolylethynyl)-1H-indole-3-carbaldehyde (5f)

1-Methyl-2-(thiophen-3-ylethynyl)-1*H*-indole-3-carbaldehyde (5g)

1-Methyl-2-(thiophen-3-ylethynyl)-1*H*-indole-3-carbaldehyde (5g)

5-((4-Methoxyphenyl)ethynyl)-3-methyl-1-phenyl-1*H*-pyrazole-4-carbaldehyde (5h)

5-((4-Methoxyphenyl)ethynyl)-3-methyl-1-phenyl-1*H*-pyrazole-4-carbaldehyde (5h)

7–Phenylbenzo[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (4a)

7–Phenylbenzo[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (4a)

7–(4–Methoxyphenyl)benzo[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (4b)

7–(4–Methoxyphenyl)benzo[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (4b)

7-(4-(*tert*-Butyl)phenyl)benzo[4,5]imidazo[1,2-*a*]benzofuro[3,2-*c*]pyridine (4c)

7-(4-(*tert*-Butyl)phenyl)benzo[4,5]imidazo[1,2-*a*]benzofuro[3,2-*c*]pyridine (4c)

7–(Thiophen–3–yl)benzo[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (4d)

7–(Thiophen–3–yl)benzo[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (4d)

7-(4-(Trifluoromethyl)phenyl)benzo[4,5]imidazo[1,2-*a*]benzofuro[3,2-*c*]pyridine (4e)

7-(4-(Trifluoromethyl)phenyl)benzo[4,5]imidazo[1,2-*a*]benzofuro[3,2-*c*]pyridine (4e)

7-(4-(Trifluoromethoxy) phenyl) benzo [4,5] imidazo [1,2-a] benzo furo [3,2-c] pyridine (4f) benzo [4,5] imidazo [1,2-a] benzo furo [3,2-c] pyridine (4f) benzo [4,5] imidazo [1,2-a] benzo furo [3,2-c] pyridine (4f) benzo [4,5] imidazo [1,2-a] benzo furo [3,2-c] pyridine (4f) benzo [4,5] imidazo [1,2-a] benzo furo [3,2-c] pyridine (4f) benzo [4,5] imidazo [4,5] imidazo [4,5] benzo furo [3,2-c] pyridine (4f) benzo [4,5] imidazo [4,5] imidazo [4,5] benzo furo [3,2-c] pyridine (4f) benzo [4,5] imidazo [

7-(4-(Trifluoromethoxy)phenyl)benzo[4,5]imidazo[1,2-*a*]benzofuro[3,2-*c*]pyridine (4f)

7-(Cyclohex-1-en-1-yl)benzo[4,5]imidazo[1,2-*a*]benzofuro[3,2-*c*]pyridine (4g)

 $7-(Cyclohex-1-en-1-yl) benzo [4,5] imidazo [1,2-a] benzo furo [3,2-c] pyridine \ (4g)$

7-Cyclohexylpyrido[4,5]imidazo[1,2-*a*]benzofuro[3,2-*c*]pyridine(4h)

7–Cyclohexylpyrido[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (4h)

7–Phenethylpyrido[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (4i)

7–Phenethylpyrido[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (4i)

7- (o-tolyl) pyrido [4,5] imidazo [1,2-a] benzo furo [3,2-c] pyridine~(4j)

7- (o-tolyl)pyrido[4,5]imidazo[1,2-a]benzofuro[3,2-c]pyridine (4j)

7-(o-Tolyl)benzofuro[3,2-c]naphtho[2',3':4,5]imidazo[1,2-a]pyridine (4k)

7-(*o*-Tolyl)benzofuro[3,2-*c*]naphtho[2',3':4,5]imidazo[1,2-*a*]pyridine (4k)

10–Methyl–7–phenylbenzo[4,5]imidazo[1,2–a]benzofuro[3,2–c]pyridine (4l+4l')

10-Methyl-7-phenylbenzo[4,5]imidazo[1,2-*a*]benzofuro[3,2-*c*]pyridine (4l+4l')

7-(3-Methoxyphenyl)-10-methylbenzo[4,5]imidazo[1,2-*a*]benzofuro[3,2-*c*]pyridine (4m+4m')

7-(4-Butylphenyl)-10-methylbenzo[4,5] imidazo[1,2-a] benzofuro[3,2-c] pyridine(4n+4n') benzofuro[3,2-c] pyridine(3n+3n') benzofuro[3,2-c] py

7-(4-Ethylphenyl)-10-methylbenzo[4,5]imidazo[1,2-*a*]benzofuro[3,2-*c*]pyridine(4o+4o')

7-(4-Ethylphenyl)-10-methylbenzo[4,5]imidazo[1,2-*a*]benzofuro[3,2-*c*]pyridine(4o+4o')

7–(3,5–Dimethoxyphenyl)benzo[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (4p)

7–(3–Methoxyphenyl)benzo[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (4q)

7-(3-Methoxyphenyl) benzo [4,5] imidazo [1,2-a] benzo furo [3,2-c] pyridine (4q)

10–Chloro–7–phenylbenzo[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (4r)

10–Chloro–7–phenylbenzo[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (4r)

6-Phenylbenzo[4,5] imidazo[1,2-a] benzofuro[2,3-c] pyridine(6a)

6–Phenylbenzo[4,5]imidazo[1,2–*a*]benzofuro[2,3–*c*]pyridine(6a)

6–(4–Methoxyphenyl)benzo[4,5]imidazo[1,2–*a*]benzofuro[2,3–*c*]pyridine (6b)

6-(4-Methoxyphenyl)benzo[4,5]imidazo[1,2-*a*]benzofuro[2,3-*c*]pyridine (6b)

6-(4-(Trifluoromethoxy)phenyl)benzo[4,5]imidazo[1,2-*a*]benzofuro[2,3-*c*]pyridine (6c)

6-(4-(Trifluoromethoxy)phenyl)benzo[4,5]imidazo[1,2-*a*]benzofuro[2,3-*c*]pyridine (6c)

 $\label{eq:limitation} 3-Methyl-6-phenylbenzo[4,5]imidazo[1,2-a]benzo[4,5]thieno[2,3-c]pyridine~(6e+6e')$

3-Methyl-6-phenylbenzo[4,5]imidazo[1,2-*a*]benzo[4,5]thieno[2,3-*c*]pyridine (6e+6e')

6-(Thiophen-3-yl)benzo[4,5]imidazo[1,2-*a*]benzo[4,5]thieno[2,3-*c*]pyridine (6f)

6-(Thiophen-3-yl)benzo[4,5]imidazo[1,2-a]benzo[4,5]thieno[2,3-c]pyridine (6f)

5-Methyl-7-phenyl-5*H*-benzo[4',5']imidazo[1',2':1,2]pyrido[4,3-*b*]indole (7a)

5-Methyl-7-phenyl-5*H*-benzo[4',5']imidazo[1',2':1,2]pyrido[4,3-*b*]indole (7a)

7-(4-Methoxyphenyl)-5-methyl-5*H*-benzo[4',5']imidazo[1',2':1,2]pyrido[4,3-*b*]indole (7b)

7-(4-Methoxyphenyl)-5-methyl-5*H*-benzo[4',5']imidazo[1',2':1,2]pyrido[4,3-*b*]indole (7b)

 $7-(4-Ethylphenyl)-5-methyl-5H-benzo[4',5'] imidazo[1',2':1,2] pyrido[4,3-b] indole\ (7c)$

7-(4-Ethylphenyl)-5-methyl-5*H*-benzo[4',5']imidazo[1',2':1,2]pyrido[4,3-*b*]indole (7c)

5-Methyl-7-(4-(trifluoromethyl)phenyl)-5*H*-benzo[4',5']imidazo[1',2':1,2]pyrido[4,3*b*]indole (7d)

5–Methyl–7–(4–(trifluoromethoxy)phenyl)–5*H*–benzo[4',5']imidazo[1',2':1,2]pyrido[4,3– *b*]indole (7e)

5,10–Dimethyl–7–(*p*-tolyl)–5*H*–benzo[4',5']imidazo[1',2':1,2]pyrido[4,3–*b*]indole (7f+7f')

5,10–Dimethyl–7–(*p*-tolyl)–5*H*–benzo[4',5']imidazo[1',2':1,2]pyrido[4,3–*b*]indole (7f+7f')

5,10-Dimethyl-7-phenyl-5*H*-benzo[4',5']imidazo[1',2':1,2]pyrido[4,3-*b*]indole (7g)

5-Methyl-7-(thiophen-3-yl)-5H-benzo[4',5'] imidazo[1',2':1,2] pyrido[4,3-b] indole~(7h)

5-Methyl-7-(thiophen-3-yl)-5H-benzo[4',5'] imidazo[1',2':1,2] pyrido[4,3-b] indole~(7h)

1-Methyl-3,5-diphenyl-3*H*-benzo[4,5]imidazo[1,2-*a*]pyrazolo[4,3-*c*]pyridine (7j)

1-Methyl-3,5-diphenyl-3*H*-benzo[4,5]imidazo[1,2-*a*]pyrazolo[4,3-*c*]pyridine (7j)

¹H NMR

¹³C NMR

7–(p–Tolyl)benzo[b]benzo[4,5]imidazo[2,1–f][1,6]naphthyridine (7l)

7–(p–Tolyl)benzo[b]benzo[4,5]imidazo[2,1–f][1,6]naphthyridine (7l)

¹H NMR

7–Phenylbenzo[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (8a)

¹³C NMR

7–Phenylbenzo[4,5]imidazo[1,2–*a*]benzofuro[3,2–*c*]pyridine (4a)

6–Phenylbenzo[4,5]imidazo[1,2–*a*]benzofuro[2,3–*c*]pyridine (6b)

6–Phenylbenzo[4,5]imidazo[1,2–*a*]benzofuro[2,3–*c*]pyridine (8b)

