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The cumulative PMI at step i in above linear synthesis is determined by the cumulative 

PMI at step i-1 as shown in eqn (1).  To find the relationship between the cumulative PMI 

and the step PMI as defined in eqn (2), one can combine both eqn (1) and eqn (2), 

followed by converting the mass ratio of the substrate vs. the product into the step molar 

yield and molecular weights to obtain the eqn (3)

A C+ D

A: Substrate (Prepared from previous step
or purchased)

C: Non-substrates (incl. reagents, solvents for
reaction and workup, catalyst,
aqueous solution, filtering aid and etc)

D: Isolated product

Scheme S1: A simple linear synthesis example at step i
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A n B+ D

A: Substrate A (Prepared from previous step
or purchased) (limiting)

B: Substrate B (Prepared from previous step
or purchased) (n equiv)

C: Non-substrates (incl. reagents, solvents for
reaction and workup, catalyst,
aqueous solution, filtering aid and etc)

D: Isolated product

C+

Scheme S2: A simple convergent synthesis example at step i
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Actual step PMI in JAK2, Brivanib, CCR2, and Apixaban Processes

The process mass intensity for each step in JAK2 synthesis was determined after 

the scale-up from an initial clinical campaign (Table S1), and the cumulative PMI for the 

API was about 3600.

Steps Step PMI Reaction Type
12 18 Bromination
23 30 Ester formation
34 138 Telescope (Alkylation-Borylation)
45 100 Suzuki
56 26 Amidine Formation
67 73 Cyclization
78 222 Ulmann Coupling
89 47 Saponification

910 129 Amidation
S1-1S1-2 31 Condensation
S1-2S1-3 214 Cyclization
S1-3S1-4 16 Bromination
S2-1S2-2 152 Telescope (Bromination-Cyclization)
S2-2S2-3 161 Sandmeyer
S3-1S3-2 35 Alkylation
S3-2S3-3 70 Deallylation
S3-3S3-4 52 Reductive amination
S3-4S3-5 91 Deallylation
Cumulative 3600

Table S1. Actual step PMI observed in JAK2 synthetic sequence on-scale

The process mass intensity for each step in Brivanib synthesis was determined from a 

late stage LTSS campaign (Table S2), and the cumulative PMI for the API was about 

1488.
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Steps Step PMI Reaction Type
1112 22 enamine formation
1213 48 Cyclocondensation
1315 98 Telescope (N-amination-Cyclocondensation)
1516 63 Grignard addition
1618 113 Telescope (Continuous oxidation-ester formation)
1820 79 Telescope (Chlorination-SNAr)
2022 44 Telescope (Saponification-epoxide ring opening)
2224 91 Telescope(Ester formation-Hydrogenolysis)

S1-5S1-6 76 Telescope(Ester formation-deBoc)
S2-4S2-6 34 Telescope (SNAr-Decarboxylation)
S2-6S2-7 22 SNAr
S2-7S2-8 35 Deprotection
S2-8S2-9 64 Indole formation
Cumulative 1488

Table S2 Actual step PMI observed in Brivanib synthetic sequence on-scale

The process mass intensity for each step in CCR2 synthesis was determined from 

an early stage clinical campaign (Table S3), and the cumulative PMI for the API was 

about 1717.

The process mass intensity for each step in Apixaban synthesis was determined 

from a late stage validation campaign (Table S4), and the cumulative PMI for the API 

was about 197.  To illustrate the percentage of the contribution from each of the step in 

the cumulative PMI, we showed that the penultimate step (4344) had the largest impact 

with approximate 28% of the cumulative PMI (Figure S1). 
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Steps Step PMI Reaction Type
2526 26 Claisen condensation
2627 8 enamine formation
2728 46 enamine reduction
2829 13 Hydrogenolysis
2930 23 Amidation
3031 26 Methylation
3132 82 Cycloalkylation
3233 62 ketal deprotection
3334 28 reductive amination
3435 92 Saponification
3536 65 Curtis Rearrangement
3637 53 Telescope(Deboc-Acylation)
3738 29 Hydrogenolysis
3839 210 Telescope(Chlorination-SNAr)

S1-7S1-8 10 Iodination
S1-8S1-9 70 Pd-cat Cynation

S1-9S1-10 53 Cyclocondensation
Cumulative 1717

Table S3 Actual step PMI observed in CCR2 synthetic sequence on-scale

Steps Step PMI Reaction Type
4041 30.6 Telescope (Amidation-Cycloalkylation-Chlorination)
4142 21 Elimination
4243 15.2 Cycloaddition
4344 47.6 Telescope (Nitroreduction-Amidation-Cycloalkylation)
4445 49.6 Amidation

S1-12S1-13 25.3 Condensation
Cumulative 197

Table S4. Actual step PMI observed in optimized Apixaban synthetic sequence on-scale
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Figure S1. Step contribution in cumulative PMI in Apixaban synthesis 



S8

Cumulative PMI linear synthesis demo

The Monte Carlo simulation of a cumulative PMI for a linear synthesis is 

demonstrated using the R statistical programming language1 below.  In the following 

demo for a hypothetical 4-step linear synthesis as shown in Scheme S3:

A B C D E

Mw 100.11 Mw 200.12 Mw 240.52 Mw 440.63 Mw 472.56

stepPMI [12,80]
yield [30%,85%]

API

Scheme S3

We assume that step PMI and step molar yield can be sampled from a negatively 

correlated bivariate normal distribution.2  The assumption allows us to provide input 

ranges between a pair of optimistic and pessimistic values for both step PMI and yield for 

each of the steps within the synthetic sequence.  These ranges can be estimated based on 

the existing data in the database, other published scale-up procedures for a similar 

chemical transformation, or experiences acquired by the chemists during the studies.  For 

example in the A to B chemical scale-up process, a pair of negatively correlated step PMI 

and step yield can be sampled with anticipated step PMI between 12 to 80, and the 

anticipated molar step yield between 30 to 85 M%. The ranges can be based on 

distributions of the step PMIs and yields observed for the similar transformations on scale 

from the green chemistry database.  Typically, we start to select the ranges between 

minimum and maximum of the observed distributions unless some of the examples are 

deemed as the outliers, therefore excluded. This can be done by narrowing down the 

range to between 1st and 3rd quantiles.  Conceptually, step PMI is governed by type of 
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chemical transformations, the ensuing work-up conditions, along with the solubility of 

molecules.  When we segment the chemistry transformation types for step PMI, other 

factors including the solubility were confounded.  In theory, the more compounds are 

included in the green chemistry database, the wider the solubility span of the compounds 

could be, and the more evenly distributed of the solubility span could be among different 

transformations.  This will ultimately help average out the solubility impact during the 

segmentation.  We typically used the step PMI ranges without corrections from solubility 

unless we have additional working experiences on the solubility of the intermediates 

which are on the extreme ends of the spectrum and not captured in the proposed 

transformation type.  Considering the possibility of employing extractive work-up 

processes, we may adjust the upper bound of the step PMI accordingly (for example 

20~50% increase is anticipated).   

Based on the cumulative PMI formula, a recursive function can be used to 

efficiently obtain the sequence of the cumulative PMI along the linear synthetic branch.  

To transform the pair of optimistic and pessimistic range (high-low) into the standard 

deviation (sd) input for the bivariate normal distribution function, we can derive the sd 

through dividing the range (high-low) by 5.15 to capture the 99% sampling between the 

pair. Similarly, one can use either 3.29 or 4.0 instead of 5.15 to obtain 90% or 95% PI 

respectively.  The R codes for the correlated bivariate normal distribution function and 

cumulative PMI recursive function for the linear branch are shown in the Figure S2. 

Once, we obtain the predictive distribution of the cumulative PMI scores of the 

synthesis from the Monte Carlo simulation, we can i) compare different proposed 

synthetic routes in terms of their predicted mean and 90% prediction intervals; ii) 
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compare the actual cumulative PMI score if available from unoptimized processes with 

the predicted ranges. As shown in the Figure S3, the actual cumulative PMI score of 280 

ranked it against the predicted cumulative PMI histogram, showing it is better than 77% 

of the predicted scores of similar transformations on scale (red section), while it is still 

worse than 23% of the predicted scores (black section).

Figure S2.  Snippets of R code used for cumulative PMI recursive function and bivariate 

normal distribution.
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Figure S3 Interpretation of observed PMI in the predictive distribution of the cumulative 

PMI from the linear synthesis.

Cumulative PMI convergent synthesis demo

A B C D E

Mw 100.11 Mw 200.12 Mw 240.52 Mw 440.63 Mw 472.56

API

X Y Z

Mw 50.11 Mw 80.22 Mw 170.35

Scheme S4

For the convergent synthesis, a hypothetic synthetic Scheme S4 was 

demonstrated here.  The coding blocks shown here are not optimized (Figure S4). 

Basically, it breaks down the above scheme into three linear branch syntheses (A to C, X 

to Z, and D to E) which used all the cumulative PMI recursive functions. 

Figure S4.  Snippets of R code used for cumulative PMI recursive functions in 

convergent synthesis
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The coupling reaction block (C+Z to D) was demonstrated below.  Typically, for 

prediction purpose, we assume equimolar condition for the coupling reaction between 

two branches unless one of the branches must be using large excess based on existing 

knowledge and experiences.  

Figure S5.  Snippets of R code used for coupling reaction in convergent synthesis

All the R codes for linear and convergent synthesis demos discussed in the 

supplementary materials are available upon request from the authors.
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Relationship between step PMI and molar step yield

A general reaction can be represented as shown in Scheme S5, where the starting 

material reacts with n equivalent of reactants/reagents. We denote C as the total other 

input masses combined, including all solvents, aqueous media, catalysts, ligands, 

inorganics, filter aids, etc.  Based on the step PMI eqn (7) and molar step yield, we can 

derive the relationship through eqn (9).   , the ratio of (all other input masses 

𝑀𝑎𝑠𝑠𝐶
𝑀𝑎𝑠𝑠𝑆𝑀 𝑀𝑎𝑠𝑠𝐶

combined) to  (starting material mass) can be represented by S, arriving at eqn 𝑀𝑎𝑠𝑠𝑆𝑀

(10). Basically S is defined as the unit mass, indicating the kilograms of all 

nonconsequential input masses (not participating in apparent bond-forming/breaking of 

the desired product) per kilogram of starting material.  Further derivatization from eqn 

(10) through eqn (12), we obtained the term , which essentially 𝑀𝑊𝑆𝑀+ 𝑛∑𝑀𝑤𝑅 ‒ 𝑀𝑤𝑃

describes all the combined molecular weights of the side products generated between the 

starting material and the reactants/reagents in the absence of excess reactants/reagents if n 

is equimolar to the starting material, for example the urea side product generated in a 

typical EDAc coupling. 

Evidently, we can see that S can be a predominant factor in the case of i) dilute 

reactions such as ring closing metathesis, macrolactamization, or very low substrate 

solubility ii) chromatography, iii) multiple acid/base washes iv) scrubbing tanks to 

remove harmful volatiles ranging from HCN, hydrazoic acid, methyl iodide, 

methanethiol etc. On the other hand, the contribution from the side products are related to 

the type of chemical transformations and the ratio of the molecular weight of side-

products to the molecular weight of isolated product.  In case of large excess of 
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reactants/reagents, unconsumed reagents can be treated as contributing to the term S.  

Generally speaking, if product molecular weight is relatively small, the use of chemistry 

such as Mitsunobu or a Simmons-Smith cyclopropanation, which generates relatively 

high molecular weight of the side products, can become a major factor in increasing step 

PMI.  

SM n R+ P

SM: Starting material (limiting)
R: Reactants/reagents (n equiv)
C: Other masses combined (incl. solvents for

reaction and workup, catalyst,
aqueous solution, filtering aid and etc)

P: Isolated product

C+

Scheme S5. General reaction scheme
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(11)

(12)

In principle, one could use eqn (12) with an estimated yield range as an input for a 

particular step, along with a range of S as well as molecular weights of side-products 

based on the chemistry type chosen and standard processes in the scale-up, to predict the 

step PMI, and subsequently propagate through a proposed synthetic sequence to obtain a 

predicted cumulative PMI. Although this is conceptually feasible, the estimation on the 

ranges of S and side-products can be inconvenient due to these type of statistics not being 

readily available.  For the proof of concept, the negatively correlated bivariate 

distribution in both step PMI and yield was simulated using a bivariate normal 

distribution.

Caveat and future direction

It should be noted that negatively correlated bivariate normal model is a crude 

simplification of the complex relationship between step PMI and molar step yield. Here 

the differences in distribution between a bivariate model (53% negatively correlated 

based on the overall data in the green chemistry database) and above derived model (eqn 

6) were compared under the assumptions in eqn 6: i) ratio of ,  follows a uniform 

𝑀𝑤𝑆𝑀
𝑀𝑤𝑝

distribution between 0.8 and 1.2; ii) ratio of  follows a uniform 

𝑀𝑊𝑆𝑀+ 𝑛∑𝑀𝑤𝑅 ‒ 𝑀𝑤𝑃

𝑀𝑤𝑃
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distribution between 0.1 and 0.4; iii) S follows a normal distribution centered around 

either 20 or 28 with standard deviation of 4.

Figure S6. Comparison of correlated bivariate normal model to the derived model (eqn 

6) in which S follows a normal distribution centered at 28 
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Figure S7. Comparison of correlated bivariate normal model to the derived model (eqn 

6) with S centered at 20.

S, the kilograms of all nonconsequential input masses (not participating in 

apparent bond-forming/breaking of the desired product) per kilogram of starting material, 

includes all the solvents used in reaction, extractive workup, crystallization or column 

purifications, all the chemicals and aqueous solutions used for quenching, washing or 

scrubbing purposes of the processes, all the filtering aids or column medium for color, 

metal, impurities removal and etc.  If S is at high end, which approximately covers the 

range of 8 to 48 kg per kilogram of starting material, the corresponding step PMI 

distribution matched pretty well with the bivariate normal model (Figure S6).   However, 
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if S is at relatively low end of the spectrum, which covers the range of 1.6 to 38 kg per 

kilogram of starting material, the bivariate normal model can underrepresent the low step 

PMI region (Figure S7).  

Based on the studies above, for comparison of the relative synthetic efficiency 

between different proposed synthetic routes in case of decision-making, this predictive 

modeling approach with simplified step PMI and yield bivariate normal function 

provided us with reasonable accuracy for example in the JAK2 routes predictions as 

shown in the POC.  In case of benchmarking, we anticipate the inclusion of more real 

world pharma data from industrial processes as well as the development of data 

collection strategy to support the use of derived model such as eqn 12 should further 

improve the validity and accuracy of the model in the future.  

1 R Core Team 2014. R: A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/ 
2 For simulation with correlated non-normal multivariate distributions, Copulas can be used to build these 
type of dependence between the random variables.

http://www.r-project.org/

