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Calculations

Thermodynamic electrolysis potentials for water splitting, oxide iron reduction to iron and
ammonia synthesis with water are calculated from the unit activity thermochemical data for the
individual species, using the convention to describe the positive potential necessary to drove a non
spontaneous potential from the reactions: Si;x riRi=> -1ty ¢/C; Using following equation 1-5:

E°(T)=-AG"°(T)/nF (1)
AG(T)= 12110y 6 G(C,T) =Ji=1t0x i G°(R;,T) (2)
G°(T)= H(T) -TS°(T) (3)
HO(T)-H50g15= A*t + B*t2/2 + C*t3/3 + D*t*/4 - E/t + F - H (4)
S°(T)= A*In(t) + B*t + C*t2/2 + D*8/3 - E/(2*t}) + G (5)

where
E°(T)——Electrolytic Potential at T (V);
T ——Temperature (K);
n——Transfer Electron Mole;
F——Faraday Constant(96485C/mol);
AG°(T)——Standard Gibbs Free Energy Change at T (kJ/mol);
G°(T)——Standard Gibbs Free Energy at T (kJ/mol);
H°(T)——Standard Enthlpy at T (kJ/mol);
S°(T)——Standard Entropy at T (J/mol-K);
t——Temperature, T(K)/1000;

A~G ——Thermodynamic Parameters. Basic data is derived from NIST Chemistry WebBook.
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Fig. S1. The ammonia formation rate (a) and Coulombic efficiency (b) at 250°C with different catalysts or without
catalysts in wet N, when applied with voltage of 1.15 V.
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Fig. S2. Photograph of electrolyte containing Fe,03/AC catalysts, cathode, and anode subsequent to electrolysis for

3 hours at a constant voltage of 1.15 V, cooling to room temperature and removing the crucible.
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Fig. S3. The stability of ammonia formation rate and efficiency for the NHj3 electrolysis in wet N in

suspensions of Fe;03/AC in a hydroxide electrolyte.
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Fig. S4. TEM images of Fe;03/AC (a) before electrolysis, (b) after 1hour electrolysis, (b) after 3 hours

electrolysis, and (d) after 21 hours electrolysis.
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Fig. S5. The relationship between the ammonia formation rate or Coulombic efficiency and calcination

temperature.
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Fig. $6. Ammonia formation rate and Coulombic efficiency at different weight ratios of iron to
activated carbon.



