Electronic Supplementary Information

Solventless mechanochemical metallation of porphyrins

Kathryn Ralphs, Chen Zhang and Stuart L. James

School of Chemistry and Chemical Engineering, Queens University Belfast, David Keir Building, Stranmillis Road, Belfast, N. Ireland, BT9 5AG

1. Experimental

Equipment used

Retsch Mixer mill (MM400) with a 25 ml stainless steel jar equipped with a 15 mm stainless steel ball. Bruker Avance 300 MHz NMR spectrometer. Perkin Elmer Lambda 25 UV-Vis spectrometer. Perkin Elmer Spectrum One FT-IR spectrometer

Materials

Materials were obtained from Sigma Aldrich and used as received.

Metallation of the porphyrin

In a typical experiment, a 25 ml stainless steel jar was charged with 25.3 mg or 151.5 mg of *meso*-tetraphenylporphyrin and the required amount of metal acetate salt (see Tables S1 and S2) and milled for 20-90 min at 25-30 Hz in a shaker mill.

Complex	Metal salt	Purity of metal salt (%)	Moles	Quantity (mg)
H ₂ TPP	/	99	4.07x10 ⁻⁵	25.3
ZnTPP	$Zn(OAc)_2.2H_2O$	99.99	4.07x10 ⁻⁵	8.9
NiTPP	$Ni(OAc)_2.4H_2O$	98	4.07x10 ⁻⁵	10
CuTPP	$Cu(OAc)_2H_2O$	99.99	4.07x10 ⁻⁵	7.4
FeTPP	Fe(OAc) ₂	99.99	4.07x10 ⁻⁵	7.1

Table S1 Quantities of materials used to prepare metallated porphyrins (small scale)

 Table S2 Quantities of materials used to prepare metallated porphyrins (large scale)

Complex	Metal salt	Purity of metal salt (%)	Moles	Quantity (mg)
H ₂ TPP	/	99	2.44x10 ⁻⁴	151.5
ZnTPP	$Zn(OAc)_2.2H_2O$	99.99	2.44x10 ⁻⁴	54
NiTPP	Ni(OAc) ₂ .4H ₂ O	98	2.44x10 ⁻⁴	62
CuTPP	$Cu(OAc)_2H_2O$	99.99	2.44x10 ⁻⁴	44

2. Analytical data for the metallated porphyrins

 Table S3 UV visible data for porphyrins (dichloromethane solution)

Porphyrin	Soret Bands	Q bands
TPPH ₂	418	516, 550, 590, 645
ZnTPP	418	547, 584
NiTPP	417	526
CuTPP	416	540, 620
FeTPP	417	509, 580

Table S4 IR data for porphyrins (KBr disc)

Porphyrin	IR Spectroscopic Data
TPPH ₂	3317, 1594, 983, 800
ZnTPP	1599, 1002, 797
NiTPP	1599, 1007, 797
CuTPP	1603, 1006, 801
FeTPP	1599, 1007, 802

Table S5 Mass spectrometric data for porphyrins

	Ion observed
Porphyrin	(M+ calc.)
ZnTPP	677.17 (678.11)
NiTPP	671.18 (671.41)
CuTPP	676.16 (676.26)
FeTPP	669.17 (668.56)

Table S6 ¹H NMR data for porphyrins (CDCl₃)

	Chemical shift / ppm						
Porphyrin		Р	roton				
	Pyrrole Ortho Meta Para N						
TPPH ₂	8.85	8.23	7.77	7.77	-2.79		
ZnTPP	8.74	8.02	7.69	7.69	-		
NiTPP	8.74	8.02	7.69	7.69	-		

3. Spectra

Figure S3 ¹H-NMR spectrum of NiTPP

Figure S4 FT-IR spectrum of H₂TPP

Figure S6 FT-IR spectrum of NiTPP

Figure S7 FT-IR spectrum of CuTPP

Wavenumbers cm⁻¹

Figure S8 FT-IR spectrum of FeTPP

Figure S9 Absorption spectrum of TPPH₂ showing the Soret and Q bands.

Figure S10 Absorption spectrum of $TPPH_2$ showing the Q bands.

Figure S11 Absorption spectrum of ZnTPP showing the Soret and Q bands.

Figure S12 Absorption spectrum of ZnTPP showing the Q bands.

Figure S13 Absorption spectrum of NiTPP showing the Soret and Q bands

Figure S14 Absorption spectrum of NiTPP showing the Q bands

Figure S15 Absorption spectrum of CuTPP showing the Soret and Q bands

Figure S16 Absorption spectrum of CuTPP showing the Q bands

Figure S17 Absorption spectrum of FeTPP showing the Soret and Q bands

Figure S18 Absorption spectrum of FeTPP showing the Q bands

Metal	Metal salt	Speed (Hz)	Time (Min)	Additives (cm ³)	Successful (Y/N)
Gold	Au(OAc) ₃	25	20	/	N
		25	60	/	Ν
		25	60	Py (0.2)	Ν
		30	90		Ν
		30	90	DMF (0.4)	N
Magnesium	Mg(OAc) ₂ .4H ₂ O	25	40	/	Ν
		25	40	DMF (0.2)	Ν
		25	60	/	Ν
		25	80	/	Ν
		25	100	/	Ν
		25	100	DMF (0.2)	Ν
		25	270	/	Ν
		30	30	/	Ν
		30	30	DMF (0.2)	Ν
		30	30	DMF (0.4)	Ν
		30	40	/	Ν
		30	40	/	Ν
		30	120	DMF (0.2)	Ν
		30	180	/	Ν
		30	180	DMF (0.2)	N
Silver	Ag(OAc)	25	20	/	Ν
		25	60	/	Ν
		30	30	/	Ν
		30	45	/	Ν
		30	120	/	Ν
				MeOH	
		30	30	(0.6)	N
		30	30	Py (0.4)	N
		30	30	H ₂ O (0.4) MeOH	Ν
		30	30	(0.4) MeOH	Ν
		30	45	(0.4)	Ν
		30	60	/	Ν
				MeOH	
		30	60	(0.4)	Ν
		30	00	MeOH	N
		50	90	MeOH	1 N
		30	120	(0.4) McOII	Ν
		30	180	(0.4)	Ν

Table S7 Summary of unsuccessful attempted metalation reactions with Au, Mg, Ag, Pt, Li, Mn and Co

Platinum	PtO ₂	25	40	/	Ν
	$H_2Pt(OH)_6$	25	40	/	Ν
Lithium	Li(OAc)	25	20	/	Ν
		25	40	/	Ν
Manganese	$Mn(OAc)_2.4H_2O$	25	20	/	Ν
		25	40	/	N
Cobalt	$Co(OAc)_2$	25	20	/	Ν
		25	60	/	Ν