Sensitivity Analysis – life cycle assumptions

Solvent	Process details	LCA system	Data source		
Ethyl		¥	EcoInvent		
Acetate	Production of EtOAc from the reaction of ethanol and acetic acid	From raw materials to final product. Manufacture of acetic acid and fossil- ethanol from Gabi database; and 1 kg ethyl acetate modelled from ethanol in Europe	Combined GaBi engineering database (ethanol, acetic acid); Ecoinvent-European plant (EtOAc)		
	Process ^a for producing ethyl acetate by <i>dehydrogenation of</i> <i>ethanol</i> using a homogenous catalyst system	Production of 1 kg ethyl acetate (81% yield) according to process ^a ; with ethanol production modeled from GaBi datasets. LCA modelling of catalyst not included	Combined GaBi engineering database (fossil-ethanol); and Nielsen et al. 2013 (patent) ^a		
2- MeTHF	Corn stover	From US corn field to harvesting, generation of straw, collection of stover and bio-chemical prod. of levulinic acid as intermediate followed by the synthesis of 1 kg of 2-MeTHF ; transportation not included	LCA models described in Khoo et al. 2015 ^b		
	Sugarcane bagasse	From Brazillian sugarcane plantation to milling process and generation of bagasse, bio-chemical prod. of levulinic acid as intermediate followed by the synthesis of 1 kg of 2-MeTHF ; transportation not included			
	Rice straw (RS)	From China rice paddy field to harvesting, generation of straw, collection of straw and bio-chemical prod. of levulinic acid as intermediate followed by the synthesis of 1 kg of 2-MeTHF ; transportation not included			
Fossil- CPME	Synthesized from cyclopentene and fossil-methanol	From refinery co-products; cyclopentene produced from pyrolysis gasoline. Synthesis of 1 kg CPME from fossil- MeOH and cyclopentene with 89% yield	Ecoinvent		
Bio- CPME	Synthesized from cyclopentene and RS-methanol	Streamlined LCA, from farm cultivation of rice, harvesting and straw as by- product to RS-Methanol; cyclopentene produced from pyrolysis gasoline. Synthesis of 1 kg CPME from RS- MeOH and cyclopentene with 89% yield	US NREL (RS) RS-MeOH from Xiao et al. ^c ; GaBi life cycle database (fossil- resources)		
	Synthesized from "bio"- cyclopentene (from cyclopentanol derived from stover) and RS- methanol	Streamlined LCA, from farm cultivation of rice, harvesting and straw as by- product to RS-Methanol; cyclopentene produced from cyclopentanol which is produced from hydrogenation of furfural. It was estimated that 9.06 kg stover is needed per kg furfural ^d . Synthesis of 1 kg CPME from RS-MeOH and cyclopentene with 89% yield; energy requirements for bio-processes involved in converting stover to cyclopentanol not included.	US NREL (RS and stover); RS- MeOH from Xiao et al. ^c ; GaBi life cycle database (fossil- resources)		

^a Nielsen, M., Kammer, A., Junge, H., Beller, M. (2013) *A process for producing ethyl acetate by dehydrogenation of ethanol using a homogenous catalyst system* (Patent WO 2013079659 A1), http://www.google.com/patents/WO2013079659A1?cl=en

^b Khoo, H.H., Wong, L.L., Tan, J., Isoni, V., Sharratt, P. (2015) Synthesis of 2-Methyl tetrahydrofuran from various lignocellulosic feedstocks: sustainability assessment via LCA. *Res. Conserv. Rec.* 95: 174 – 182.

^c Xiao, J., Shen, L., Zhang, Y., Gu, J. (2009) Integrated Analysis of Energy, Economic, and Environmental Performance of Biomethanol from Rice Straw in China, *Ind. Eng. Chem. Res.* 48, 9999 – 10007.

^d Zhou, M., Zhu, H., Niu, L., Xiao, G., Xiao, R. (2014) Catalytic Hydroprocessing of Furfural to Cyclopentanol Over Ni/CNTs Catalysts: Model Reaction for Upgrading of Bio-oil, *Catal Lett.* 144, 235 – 241.

Changes		10% Increase		10% Reduce			
		Yield/ Bio- Conversion	Energy efficiency	Yield/ Bio- Conversion	Energy efficiency		
Estimated effects in life cycle impacts							
EtOAc	GWP	8% reduce	2% reduce	7.5% increase	1.6% increase		
(fossil)	Energy	4% reduce	13% reduce	4% increase	12.3% increase		
2MeTHF	GWP	10% reduce	1.3% reduce	9.9% increase	1.6% increase		
(bio)	Energy	9.9% reduce	7.2% reduce	10% increase	7.2% increase		
CPME (mix	GWP	11% reduce	3% reduce	11% increase	2.6% increase		
bio + fossil)	Energy	10% reduce	1% reduce	9.05% increase	1% increase		

Uncertainty Analysis – one table