Supporting Information

for

Straightforward and selective metal capture through CO₂-induced self-assembling

Guillaume Poisson, ab G. Germain, J. Septavaux, Julien Leclaire, *ab

Content

1	. General methods	2
	1.1. Solvents	
	1.2. Synthesis	2
	1.2.1. Metal salts	2
	1.2.2. CO2-based organometallic materials	3
	1.2.3. Metal release through CO_2 -departure	3
	1.3. Nuclear Magnetic Resonance	3
	1.4. Volumetric analysis	4
	1.5. ICP-OES analysis	4
	1.6. UV-Vis analysis	4
2	. Individual datasets	5
	2.1. NMR of sub-systems II	5
	2.1.1. 2.5 M in D ₂ O	
	2.1.2. 0.5 M in D ₂ O	g
	2.1.3. 0.5 M in CD ₃ OD	13
	2.2. Constitutent analyses of systems III	16
	2.2.1. Monometal systems	16
	2.2.1.1. Influence of the metal	16
	2.2.1.2. Influence of the initial stoichiometry x_0	18
	$2.2.1.3.$ Influence of the initial concentration c_0	19
	2.2.2. Bimetallic systems	20
_		0.4

1. General methods

1.1. Solvents

All solvents were purified by standard procedures or obtained from a Solvent Purification System (Braun SPS 800).

1.2. Synthesis

1.2.1. Metal salts

4-Fluorophenol (99%), Ba(OH)₂ (95%), BaCl₂ (99%), CH₃OH (99,6%), Cs₂CO₃ (99%), Cu(CH₃CO₂)₂.H₂O (98%), D₂SO₄ (99,5%), Diethylenetriamine (99%), FeCl₃.6H₂O (98%), In₂O₃ (99%), MgCl₂ (99%), Na₂CO₃ (99%), Nd₂O₃ (99,9%), SrCl₂.6H₂O (99%), ZnO (99%) were purchased from Sigma-Aldrich. Mg(CH₃CO₂).4H₂O (99%), Ni(CH₃CO₂).4H₂O (98%), PdCl₂ (99,9%), were obtained from Strem Chemicals. EtOH (99,98%) was purchased from VWR. CoCl₂ (97%) was purchased from Acros. CO₂ (99,95%) was obtained from Air Liquid. Dy₂O₃ (99,9%), Eu₂O₃ (99,9%), K(CF₃CO₂) (98%), Li(CF₃CO₂) (97%), Pd(CF₃CO₂)₂ (97%), Pr₂(CO₃)₃ (99,9%), Sm₂O₃ (99,9%), Tb₂(CO₃)₃ (99,9%) were purchased from Alfa Aesar. CD₃OD (99,8%) and D₂O (99,9%) were purchased from Eurisotop. Ca(OH)₂ (96%) and CuCl₂.2H₂O (99%) was obtained from Merck. CaCl₂ (94%) was purchased from Prolabo. K₂CO₃ (99%) was purchased from Riedel-de Haen.

Otherwise stated, trifluoroacetate salts were obtained following the procedure described for lanthanide trifluoroacetate synthesis [1]. Pr(CF₃CO₂)₃, Nd(CF₃CO₂)₃, Sm(CF₃CO₂)₃, Eu(CF₃CO₂)₃, Tb(CF₃CO₂)₃, Dy(CF₃CO₂)₃, Y(CF₃CO₂)₃, Zn(CF₃CO₂)₂ were obtained from metal oxide. Ca(CF₃CO₂)₂, Ba(CF₃CO₂)₃, In(CF₃CO₂)₃ were synthesized from metal hydroxide. Na(CF₃CO₂) was obtained from sodium carbonate. In(OH)₃ was synthesized using the following procedure. An excess of an aqueous solution of nitric acid 68%wt (20mL) was added to a suspension of In₂O₃ (1g, 3,6 mmol) in 5 mL of water. The mixture was refluxed until complete dissolution. Water and remaining acid were removed under reduced pressure. The resulting yellow oil was then dissolved in 5 mL of water and an excess of an aqueous solution 0.5M of KOH was added. Spontaneous precipitation of In(OH)₃ occurred. The solid was filtered and wash 4 times with 20mL of water and dried at 70°C under reduced pressure. In(OH)₃ can

be used for the preparation of In(CF₃CO₂)₃ following the procedure reported for lanthanides. Fe(CF₃CO₂)₃ was synthesized using procedure described by Iranpoor *et al.* [2].Co(CF₃CO₂)₂ salt was obtained using the procedure described by Shap *et al.* [3].

1.2.2. CO₂-based organometallic materials

A 0.5 M solution of diethylenetriamine ($540\mu L$; 5,0 mmol) in MeOH (10mL) is added to a trifluoroacetate metal salt (0.416 mmol; 201.4 mg of Nd($O_2C_2F_3$)₃; 200.0 mg of Pr($O_2C_2F_3$)₃; 204.6 mg of Eu($O_2C_2F_3$)₃; 207.5 mg of Tb($O_2C_2F_3$)₃; 203.9 mg of Sm($O_2C_2F_3$)₃; 209.0 mg of Dy($O_2C_2F_3$)₃; 82.3 mf of Fe($O_2C_2F_3$)₃ (0.21 mmol) and 100.5 mg of Nd($O_2C_2F_3$)₃ (0.21 mmol); 59.4 mg of Co($O_2C_2F_3$)₂ (0.21 mmol) and 102.0 mg of Sm($O_2C_2F_3$)₃ (0.21 mmol)) in a round-bottom flask. The resulting clear solution is purged with CO2, refluxed for an hour then cooled down to room temperature under CO2 atmosphere overnight. The suspension is then centrifuged and the supernatant removed. The solid washed with 2*10mL of MeOH, centrifuged and dry under vacuum. Supernatants are gathered and solvent evaporated under reduced pressure. Each sample is produced in triplicate before analysis.

1.2.3. Metal release through CO₂-departure

Following a typical capturing step as described previously ($c_0 = 0.5 \text{ M}$, $x_0 = 1/12$), the solid material collected is re-suspended into 10 mL of MeOH. (1-E_s(X))*n₀ moles of TFA and (1-E_s(DETA))*n₀ moles de DETA are then added and the mixture is refluxed under a gentle flux of nitrogen until a clear solution is obtained.

1.3. Nuclear Magnetic Resonance

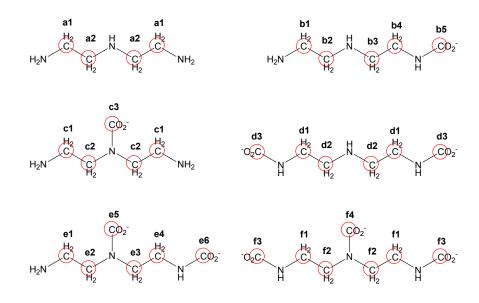
For substystems II, liquid state NMR spectra were recorded in, methanol-d4, heavy water on spectrometers operating at 500 MHz (BBFO and BBI probes with z gradients) respectively for 1H and 13C. Solvent residual signals were used as internal standard (when necessary, water suppression by presaturation was used). 2s relaxation time allowed proton full relaxation. 13C spectra were recorded using a 30 degrees tilt angle and 2s relaxation time. HSQC experiments were run either in full or reduced spectral window (SW = 3.1-2.1 ppm for ¹H and 50-34 ppm for ¹³C) to optimize the resolution, following reported procedure [4].

For systems III, ¹H and ¹⁹F NMR spectra were recorded on a Bruker Advance 300 spectrometer, operating at a frequency of 300 MHz. The samples were prepared by dissolving 5-10mg of the solid residue in a 1mL vial with 650μL of a 95/5 (v/v) D₂O/D₂SO4 solution containing 0.06 mol.L-¹ 4-fluorophenol as an internal standard and sonicated for 3 h at 50°C, then transferred into a NMR tube for 1D standard analysis. 16s relaxation time allowed proton and fluorine full relaxation.

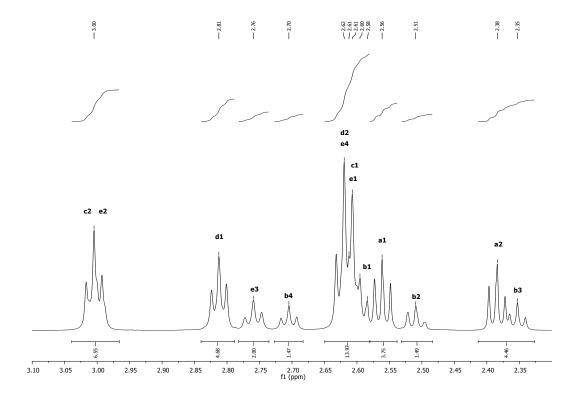
1.4. Volumetric analysis

Analysis were performed with a home-made Chittick Apparatus at 0°C in an ice bath. Calibration was conducted with K_2CO_3 to relate the volume measured to the molar content in carbon dioxide. In a typical experiment, 30mg of solid material were digested by adding under vigorous stirring an excess (1mL) of a 1M H_2SO_4 solution.

1.5. ICP-OES analysis


ICP-OES analysis were recorded on a Varian ICP-OES 710ES. The samples were prepared by dissolving 30 mg of solid or supernatant residue in an aqueous solution of HNO₃ 69%wt for standard acid digestion. Each solution was then precisely diluted in order to reach the successive estimated concentrations of 100, 200 and 400 ppb of metal. All samples were analyzed at 3 different wavelengths in triplicate mode.

1.6. UV-Vis analysis


UV-Vis spectra were recorded on a Shimadzu UV-2401 PC spectrophotometer. The samples were prepared by dissolving 15mg of solid residue in an aqueous solution of HCl 5%wt. The solution was then precisely diluted to reach levels of absorbance at the working wavelength were the Beer Lambert law is valid. Nd³⁺ was quantified at $\lambda = 794$ nm, Dy³⁺ was quantified at $\lambda = 806$ nm and Fe³⁺ at $\lambda = 334.5$ nm. As Nd³⁺ also absorbs around 334.5 nm, a cross-calibration was required to reliably determine the concentration in Fe³⁺.

2. Individual datasets

2.1. NMR of sub-systems II

2.1.1. 2.5 M in D₂O

Figure S1: ¹H NMR spectrum of a 2.5 M solution of DETA in D₂O purged with CO₂, refluxed for an hour then cooled down to room temperature under CO₂ atmosphere overnight.

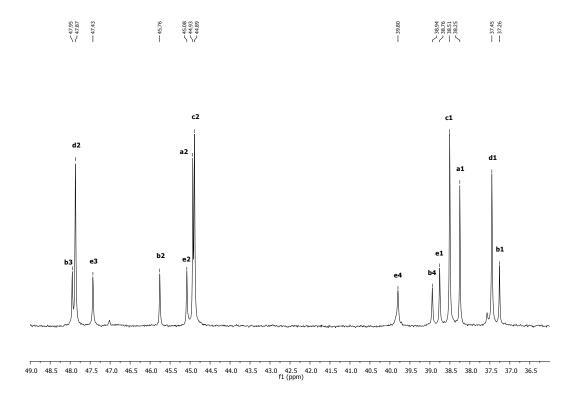
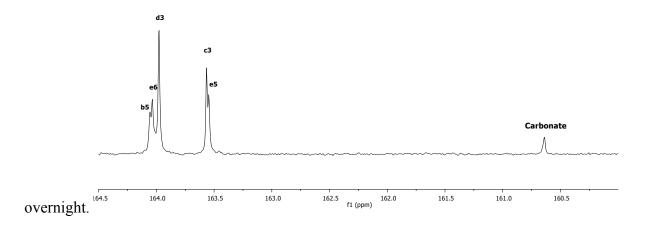
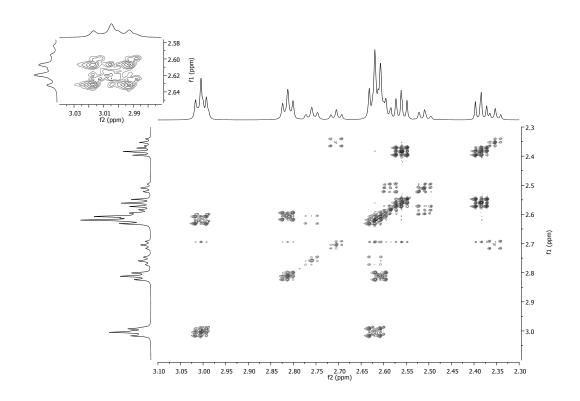




Figure S2: High field 13 C NMR spectrum of a 2.5 M solution of DETA in D_2 O purged with CO_2 , refluxed for an hour then cooled down to room temperature under CO_2 atmosphere

Figure S3: Low field 13 C NMR spectrum of a 2.5 M solution of DETA in D_2 O purged with CO_2 , refluxed for an hour then cooled down to room temperature under CO_2 atmosphere overnight.

Figure S3: COSY NMR spectrum of a 2.5 M solution of DETA in D_2O purged with CO_2 , refluxed for an hour then cooled down to room temperature under CO_2 atmosphere overnight.

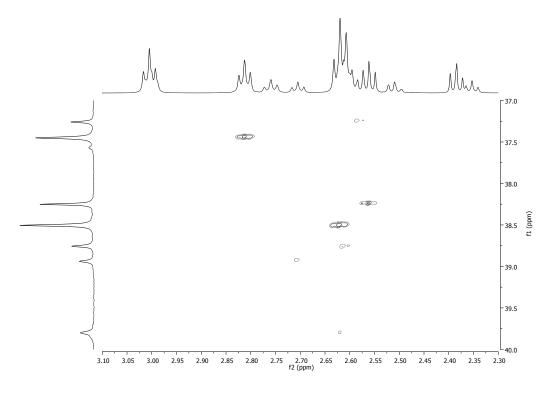


Figure S4: Partial view of the HSQC NMR spectrum of a 2.5 M solution of DETA in D_2O purged with CO_2 , refluxed for an hour then cooled down to room temperature under CO_2

atmosphere overnight.

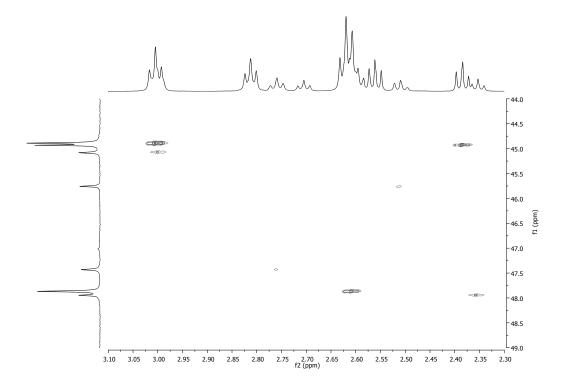
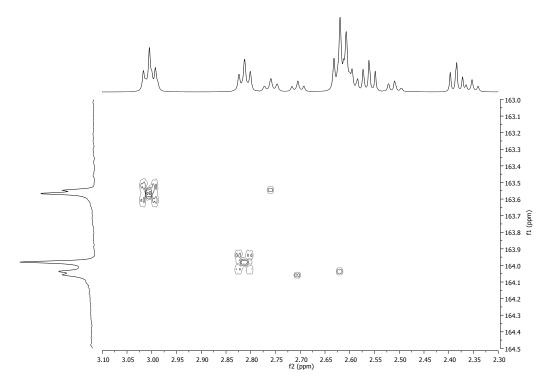
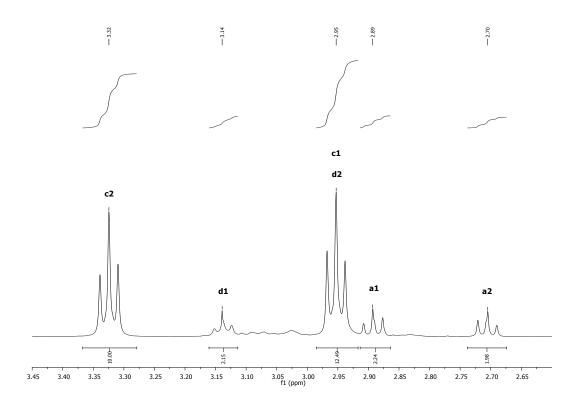




Figure S5: Partial view of the HSQC NMR spectrum of a 2.5 M solution of DETA in D_2O purged with CO_2 , refluxed for an hour then cooled down to room temperature under CO_2 atmosphere overnight.

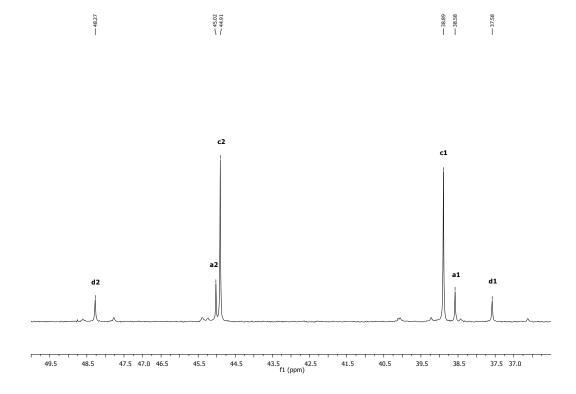
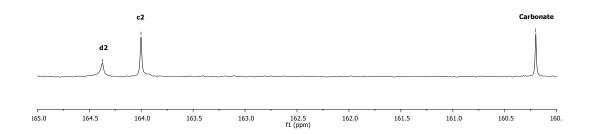
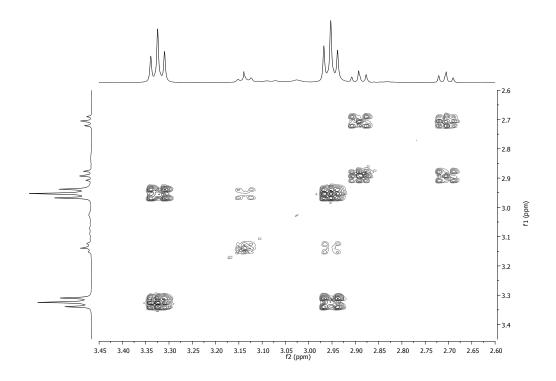
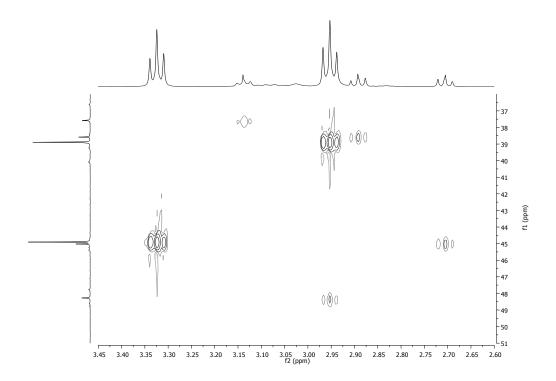


Figure S6: View of the low field HMBC NMR spectrum of a 2.5 M solution of DETA in D_2O purged with CO_2 , refluxed for an hour then cooled down to room temperature under CO_2 atmosphere overnight..


$2.1.2.0.5 M in D_2O$


Figure S7: ¹H NMR spectrum of a 0.5 M solution of DETA in D₂O purged with CO₂, refluxed for an hour then cooled down to room temperature under CO₂ atmosphere overnight


Figure S8: High field ¹³C NMR spectrum of a 0.5 M solution of DETA in D₂O purged with CO₂, refluxed for an hour then cooled down to room temperature under CO₂ atmosphere overnight.

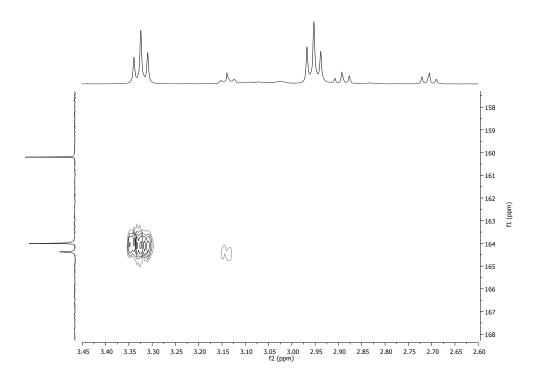

Figure S8: Low field ¹³C NMR spectrum of a 0.5 M solution of DETA in D₂O purged with CO₂, refluxed for an hour then cooled down to room temperature under CO₂ atmosphere overnight.

Figure S9: COSY NMR spectrum of a 0.5 M solution of DETA in D_2O purged with CO_2 , refluxed for an hour then cooled down to room temperature under CO_2 atmosphere overnight.

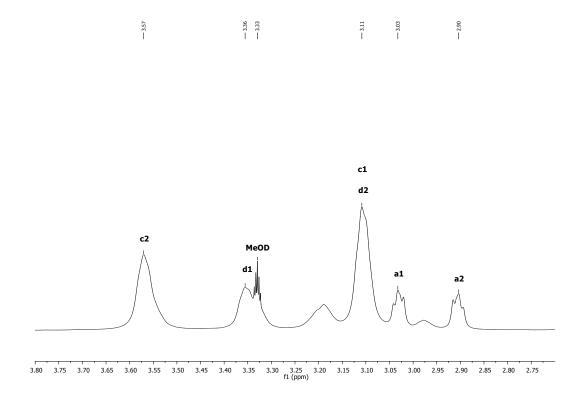


Figure S10: HSQC NMR spectrum of a 0.5 M solution of DETA in D_2O purged with CO_2 , refluxed for an hour then cooled down to room temperature under CO_2 atmosphere overnight.

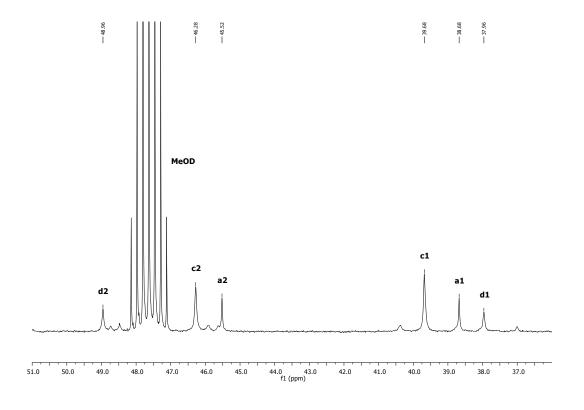
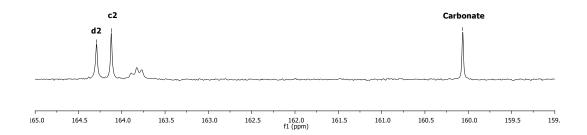
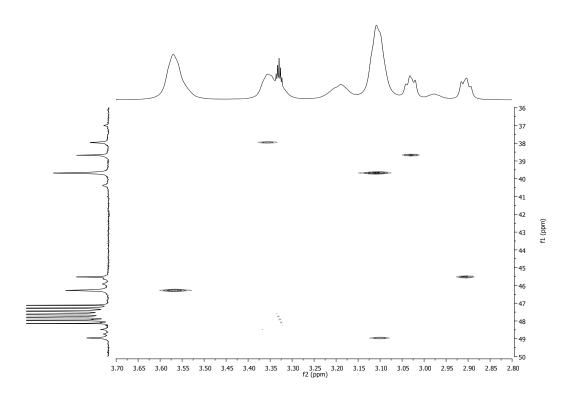


Figure S11: Partial view of the low field HMBC NMR spectrum of a 0.5 M solution of DETA in D_2O purged with CO_2 , refluxed for an hour then cooled down to room temperature under CO_2 atmosphere overnight.


$2.1.3.\ 0.5\ M\ in\ CD_3OD$


Figure S12: ¹H NMR spectrum of a 0.5 M solution of DETA in CD₃OD purged with CO₂, refluxed for an hour then cooled down to room temperature under CO₂ atmosphere overnight..

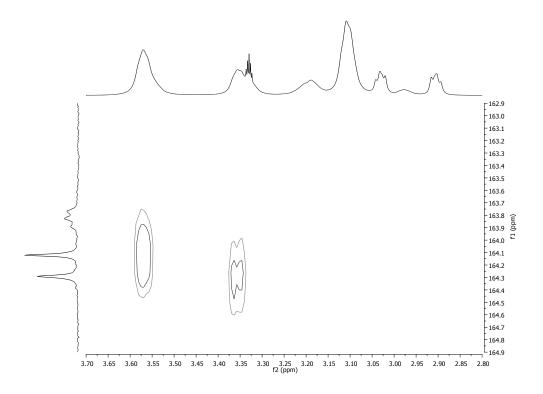

Figure S13: High field of ¹³C NMR spectrum of a 0.5 M solution of DETA in CD₃OD purged with CO2, refluxed for an hour then cooled down to room temperature under CO₂ atmosphere overnight.

Figure S14: Low field of ¹³C NMR spectrum of a 0.5 M solution of DETA in CD₃OD purged with CO₂, refluxed for an hour then cooled down to room temperature under CO₂ atmosphere overnight.

Figure S15: HSQC NMR spectrum of a 0.5 M solution of DETA in CD₃OD purged with CO₂, refluxed for an hour then cooled down to room temperature under CO₂ atmosphere overnight.

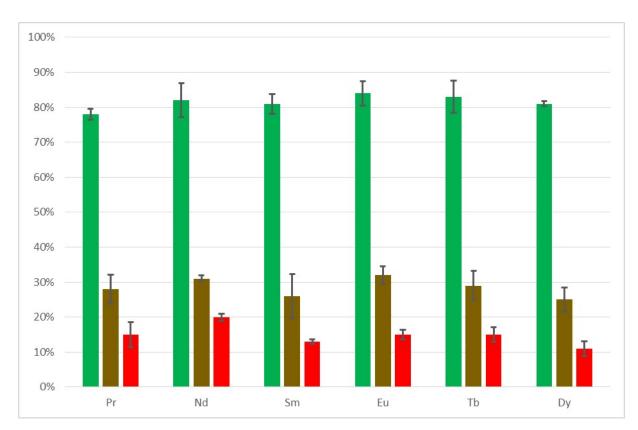


Figure S16: Partial view of the low field HMBC NMR spectrum of a 0.5 M solution of DETA in CD_3OD purged with CO_2 , refluxed for an hour then cooled down to room temperature under CO_2 atmosphere overnight.

2.2. Constitutent analyses of systems III

2.2.1. Monometal systems

2.2.1.1. Influence of the metal

Figure S17: Capture efficiency E_S by CO_2 -induced self-assembling of rare earth metals (green), diethylenetriamine (brown) and trifluoroacetate (red) from methanolic samples ($c_0 = 0.5 \text{ M}, x_0 = 1/12$).

E _s (%)	S(M/X
() E _s (DETA) E _s (M	I) E _s (X)
3 28 78	15 21.4
5 31 82	20 19.2
2 26 81	13 28.0
5 32 84	20 22.2
3 29 83	15 28.9
0 25 81	11 36.8
0	25 81

Table S1: Compositional analyses of solid/liquid phases (in mmol) with varying metals ($n_0(M) = 0.416 \text{ mmol}$; $n_0(DETA) = 5.0 \text{ mmol}$; $n_0(X) = 1.25 \text{ mmol}$)

		P _S (M	/CO ₂)			P _s (CC	₂ /M)		>	$c_3 = P_S(DE)$	TA/2.CO ₂)
	max	min	moy	Δ	max	min	moy	Δ	max	min	moy	Δ
Pr	100%	82%	91%	18%	45%	36%	41%	8%	80%	60%	70%	20%
Nd	100%	76%	88%	24%	40%	31%	36%	9%	81%	61%	71%	20%
Sm	100%	83%	91%	17%	45%	37%	41%	8%	79%	58%	69%	21%
Eu	100%	76%	88%	24%	41%	31%	36%	10%	77%	54%	66%	23%
Tb	100%	83%	92%	17%	48%	40%	44%	8%	81%	61%	71%	20%
Dy	100%	87%	93%	13%	46%	40%	43%	6%	83%	66%	75%	17%

Table S2: Building block pairing and carbamate repartition for varying metals ($n_0(M) = 0.416$ mmol; $n_0(DETA) = 5.0$ mmol; $n_0(X) = 1.25$ mmol)

Details of the calculations:

$$\% P_s(i/j) = \frac{n_s(i/j)}{\sum_k n_s(i/k)}$$

Where ${}^{9/6}P_s(i/j)$ is the percentage of the building block i paired with the building block j.

%
$$P_s(M/X) = \frac{n_s(M/X)}{n_s(M/X) + n_s(M/CO_2)}$$

In extreme cases, either all trifluoroacetates are paired with metal or none are paired. Giving:

$$% P_s(M/X)_{max} = \frac{n_s(X)}{3n_s(M)} et % P_s(M/X)_{min} = 0$$

$$\% P_s(M/X)_{moy} = \frac{n_s(X)}{6n_s(M)}$$

Hence:

%
$$P_s(M/CO_2)_{min} = 1 - \frac{n_s(X)}{3n_s(M)}$$
 et % $P_s(M/CO_2)_{max} = 1$

$$% P_s(M/CO_2)_{moy} = 1 - \frac{n_s(X)}{6n_s(M)}$$

Similarly for carbamate – ammonium vs. metal-carbamato pairing:

$$\% P_{s}(CO_{2}/M) = \frac{n_{s}(CO_{2}/M)}{n_{s}(CO_{2}/M) + n_{s}(CO_{2}/RR'NH_{2})}$$

$$\% P_{s}(CO_{2}/M)_{min} = \frac{3n_{s}(M) - n_{s}(X)}{n_{s}(CO_{2})} \quad and$$

$$\% P_{s}(CO_{2}/M)_{max} = \frac{3n_{s}(M)}{n_{s}(CO_{2})}$$

$$\% P_{s}(CO_{2}/M)_{moy} = \frac{6n_{s}(M) - n_{s}(X)}{2n_{s}(CO_{2})}$$

Regarding the fraction of dicarbamates among the DETA – CO_2 adducts, by definition of the loading in CO_2 is:

$$L_S(CO_2) = \frac{n_2 + 2n_3}{n} = x_2 + 2x_3 = 1 + x_3 - x_1$$

The molar fraction x_3 of dicarbamates 3 with respect to either the molar fraction x_1 of free DETA 1 or x_2 of monocarbamate 2 can be easily be deduced:

$$x_3 = \frac{L_S(CO_2) - x_2}{2}$$
 or $x_3 = L_S(CO_2) - 1 - x_1$,

providing the maximal (no monocarbamate 2), minimal (no free DETA 1) and average values for x_3 respectively:

$$x_{3max} = \frac{L_S(CO_2)}{2}; x_{3min} = L_S(CO_2) - 1$$

$$x_{3moy} = \frac{3L_S(CO_2) - 2}{4}$$

2.2.1.2. Influence of the initial metal/DETA stoichiometry $x_0(M)$

		n _s (mm	nol)		nլ	(mmol)			L_S			E _s (%)		S(M/X)
X ₀ (M)	n _s (CO ₂)	n _s (DETA)	n _s (M)	n _s (X)	n _L (DETA)	n _L (M)	n _L (X)	L _S (CO2)	L _S (M)	L _S (X)	E _s (DETA)	E _s (M)	E _s (X)	
1/24	0.983	0.650	0.143	0.040	4.359	0.065	0.573	1.51	0.22	0.06	13	69	6	31.5
1/12	2.324	1.543	0.353	0.220	3.412	0.071	1.036	1.51	0.23	0.14	31	83	12	39.5
1/6	1.69	1.13	0.37	0.24	1.33	0.02	0.89	1.50	0.35	0.21	46	95	22	68.6

1/3	2.37	1.29	0.78	0.31	0.90	0.05	1.07	1.83	0.60	0.24	59	94	23	53.8
-----	------	------	------	------	------	------	------	------	------	------	----	----	----	------

Table S3: Compositional analyses of solid/liquid phases (in mmol) with varying initial Nd³⁺ /DETA stoichiometries $x_0(M)$ ($c_0(DETA) = 0.5 \text{ mol.L}^{-1}$)

		P _S (M	/CO ₂)			P _s (CC) ₂ /M)			$x_3 = P_S(DE$	TA/2CO ₂)	
XO	max	min	moy	Δ	max	min	moy	Δ	X _{3max}	X _{3min}	X _{3moy}	Δx_3
1/24	100%	91%	95%	9%	44%	40%	42%	4%	76%	51%	63%	25%
1/12	100%	79%	90%	21%	46%	36%	41%	9%	76%	51%	63%	25%
1/6	100%	78%	89%	22%	66%	51%	59%	14%	75%	50%	63%	25%
1/3	100%	87%	93%	13%	99%	86%	92%	13%	92%	83%	87%	9%

Table S4: Building block pairing and carbamate repartition for varying initial Nd³⁺ /DETA stoichiometries $x_0(M)$ ($C_0(DETA) = 0.5 \text{ mol.L}^{-1}$)

2.2.1.3. Influence of the initial concentration $c_0(DETA)$

			Ns			nL			LS			ES(%)		S(M/X)
c0	n _s (CO ₂)	n _s (DETA)	n _s (M)	n _s (X)	n _L (DETA)	n _L (M)	n _L (X)	L _s (CO2)	L _S (M)	L _S (X)	E _s (DETA)	E _s (M)	E _s (X)	
0.05	1.30	0.73	0.40	0.01	4.17	0.02	1.34	1.79	0.54	0.02	15	96	1	2376
0.1	1.69	0.90	0.35	0.01	3.73	0.03	0.79	1.87	0.39	0.01	20	92	2	922
0.25	2.27	1.28	0.32	0.11	3.82	0.06	1.05	1.78	0.25	0.08	25	84	10	51
0.5	2.32	1.54	0.35	0.22	3.41	0.07	1.04	1.51	0.23	0.14	31	83	11	39
1	2.12	1.39	0.28	0.26	3.18	0.09	0.89	1.50	0.33	0.22	30	75	23	11
1.5	7.17	5.35	0.87	0.97	8.45	0.27	2.11	1.83	0.60	0.24	39	76	31	7

Table S5: Compositional analyses of solid/liquid phases (in mmol) with varying initial $c_0(DETA)$ ($x_0(M) = 1/12$)

		P _S (M	I/CO ₂)			P _s (CC	₂ /M)			$x_3 = P_S(DE$	TA/2CO ₂)	
C ₀	max	min	moy	Δ	max	min	moy	Δ	X _{3max}	X _{3min}	X _{3moy}	Δx_3
0.05	100%	99%	100%	1%	78%	78%	78%	1%	90%	79%	84%	11%

0.1	100%	99%	100%	1%	62%	62%	62%	1%	94%	87%	90%	6%
0.25	100%	89%	94%	11%	42%	37%	40%	5%	89%	78%	84%	11%
0.5	100%	79%	90%	21%	45%	36%	41%	9%	76%	51%	63%	25%
1	100%	69%	85%	31%	40%	27%	33%	12%	75%	50%	63%	25%
1.5	100%	63%	81%	37%	36%	23%	30%	14%	92%	83%	87%	9%

Table S6: Building block pairing and carbamate repartition for varying initial $c_0(DETA)$ $(x_0(M)=1/12)$

2.2.2. Bimetallic systems

				L _S				E _S (%)		$S(M_2/M_1)$
M ₁ /M ₂	C ₀	L _S (CO2)	$L_S(M_1)$	L _S (M ₂)	L _S (X)	E _s (DETA)	E _S (M ₁)	E _S (M ₂)	E _S (X)	
Fe/Nd	0.5M	1.57	0.10	0.35	0.02	14	20	73	1	22
Fe/Nd	0.05M	1.48	0.08	0.26	0.03	25	34	90	0	32
Co/Sm	0.5M	1.30	0.05	0.13	0.13	14	19	79	7	17
Co/Sm	0.05M	1.37	0.02	0.10	0.10	6	2	0.71	1	106

Table S7: Compositional analyses of solid/liquid phases (in mmol) with varying initial $c_0(DETA)$ and bimetallic system $(x_0(M_1+M_2)=1/12)$

			P _s (M	/CO ₂)			P _s (C0	O₂/M)			$x_3 = P_S(DE)$	TA/2CO ₂)	
M ₁ /M ₂	C ₀	max	min	moy	Δ	max	min	moy	Δ	X _{3max}	X _{3min}	X _{3moy}	Δx_3
Fe/Nd	0.5M	100%	99%	100%	1%	78%	78%	78%	1%	81%	61%	71%	20%
Fe/Nd	0.05M	100%	98%	99%	2%	91%	89%	90%	2%	76%	52%	64%	24%
Co/Sm	0.5M	100%	76%	88%	24%	42%	32%	37%	10%	76%	51%	63%	25%
Co/Sm	0.05	100%	72%	86%	28%	26%	19%	23%	7%	76%	51%	63%	25%

Table S8: Building block pairing and carbamate repartition for varying initial $c_0(DETA)$ and bimetallic system $(x_0(M_1+M_2)=1/12)$

References

- (1) C. Rüssel, J. Non-Cryst. Solids, 1993, 152, 161-166
- (2) N. Iranpoor and H. Adibi, Bull. Chem. Soc. Jpn., 2000, 73, 675-680
- (3) M. J. Baillie, D. H. Brown, K. C. Moss and D. W. A. Sharp, *J. Chem. Soc. A*, 1968, 3110-3114
- (4) B. Vitorge, S. Bieri, M. Humam, P. Christen, K. Hostettmann, O. Muñoz, S. Loss and D. Jeannerat, *Chem. Commun.* 2009, 950.