Development of 6-amyl-α-pyrone as a potential biomass-derived platform molecule

Md. Imteyaz Alam^a⁺^{*}, Shelaka Gupta^a[†], Ashish Bohre^b, Ejaz Ahmad^a, Tuhin S. Khan^a, Basudeb Saha^{b,c*}, M. Ali Haider^{a*}

 * Renewable Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India
 * Laboratory of Catalysis, Department of Chemistry, University of Delhi, Delhi 110007, India
 * Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19713, USA
 * Corresponding Authors. * Equal first author contribution

> *Tel:* +91-11-26591016, *Fax:* +91-11-2658-2037 *E-mail: imteyaz84@gmail.com , bsaha@udel. Edu , haider@iitd.ac.in*

SUPPLIMENTARY INFORMATION

1. EXPERIMENTAL AND COMPUTATIONAL METHODS

1.1 Materials

6PP, γ -alumina, silica-alumina, 4-nonanone, 5-nonanone, HMF and furfural were obtained from Sigma Aldrich Chemicals Pvt. Ltd. (India). Sodium chloride, sodium sulphate, tetrahydrofuran, and ethyl acetate were procured from Sisco Research Laboratories Pvt. Ltd. (SRL, India). A 10% Pd/C catalyst, was obtained from Alpha Aeser (India). Magnesium nitrate, calcium nitrate, NaOH and Na₂CO₃ were procured from S.D. Fine Chemical Pvt. Ltd., India.

1.2 Preparation of CaO-MgO catalyst

The CaO-MgO catalyst was synthesized via a co-precipitation method.¹ In this method 23.61 gm $Ca(NO_3)_2.4H_2O$ and 12.80 gm of Mg(NO₃)_2.6H₂O were dissolved in 500mL DI water. The solution was stirred rigorously for 1 h to achieve homogeneous mixing. A precipitate was obtained on drop-wise addition of the NaOH and Na₂CO₃ solution at a constant pH of 10. After

the completion of precipitation, the solution was filtered and washed with DI water until the pH of filtrate reached 7. The obtained slurry was dried at 393 K for 12 h and calcined at 1073 K for 6 h.

1.3 Instrumentation

The XRD patterns of CaO-MgO material (Figure 2a) were collected at room temperature using a Bruker D8 Advance and a Rigakuminiflex-(II) X-Ray diffractometer equipped with a monochromatized Cu-K α radiation (λ = 1.54056 Å) source operated at 45 V and 40 mA. The XRD peaks were compared with pure phase of CaO (JCPDS File No. 00-037-1497), MgO (JCPDS file No. 00-004-0829), CaCO₃ (JCPDS File No. 00-047-1743) and Ca(OH)₂ (JCPDS File No. 00-084-1264)². FT-IR spectra of CaO-MgO were recorded on a Perkin-Elmer spectrophotometer (model 1752X FTIR).

1.4 Ring-opening, decarboxylation and hydrogenation reactions:

Reactions were performed in a high pressure batch reactor (100 ml, Amar Equipment Pvt. Ltd., India) equipped with a multi-blade impeller and a heater. For ring-opening and decarboxylation reaction, mass ratio of the reactant and catalyst was kept at 2:1 in a solvent mixture of water and THF (1:3) at a specified temperature. On completion of the reaction, the organic phase was separated by adding sodium chloride (0.5 g) and the aqueous layer was extracted with ethyl acetate. The residual water in the combined organic solution was absorbed through sodium sulfate and the organic solvent was evaporated under reduced pressure in a rotary evaporator. Hydrogenation of obtained non-2-ene-4one was performed in 25 mL THF at temperature 373 K and 37 bar H₂ pressure for 5 hours using 10% Pd/C (50% wt% to the reactant).

1.5 Product characterization and analysis

Quantitative analysis of reaction mixture were performed on a 30 m x 0.250 mm x 0.50 µm DBwax column (Agilent Technologies, India) placed in a gas chromatograph (GC) (Nucon, India Model: 6775) and integrated to a flame ionization detector (FID). The column was maintained at 333 K for 4 minutes, 403 K for 2 min and 513 K for 30 min with an intermediate ramping rate of 10° min⁻¹ between steps. The temperatures of injector and detector were set to 503 and 513 K respectively. Additionally, products in liquid phase were qualitatively analyzed using a GC-MS (Perkin Elmer, Clarus 600) equipped with a DB-wax column (Agilent Technologies, India) under similar conditions as of in GC analysis. The MS spectra (Figure S1, Scheme S1) of the reaction products were compared with the spectra of the standards obtained from the NIST MS library. The conversion of 6PP on a carbon basis was calculated as follows,

% conversion =
$$\left(\frac{C_i - C_o}{C_i}\right) \times 100$$

where C_i was the initial concentration of 6PP in the reaction mixture and C_o was the final concentration in the product mixture. The selectivity to the product '*i*' was calculated based on the total number of carbon atoms in the product,

$$S_i = [(n_i M_i) / \sum n_j (C_i - C_o)] \times 100$$

where n_i is the number of carbon atoms in the product, n_j is the number of carbon atoms in the reactant and M_i is the moles of product formed. Calibration curves for 6PP and 4-nonanone were plotted using the standards. Response factor of the product non-2-en-4-one on FID was assumed to be equal to 4-nonanone.³

Further confirmation of the identified products was obtained on utilizing a ¹H and ¹³C NMR analysis performed on a JEOL JNM ECX-400P at 400 and 100 MHz respectively. The NMR spectral analyses were performed on a JEOL DELTA program version 4.3.6. The values for chemical shifts were reported with respect to the internal standard, teramethylsilane (δ H 0.00). The NMR data was represented in following manner: chemical shift (δ , ppm), multiplicity (s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet) and coupling constant. ¹H NMR (400 MHz, CDCl₃): δ 6.83-6.77 (m, 1H), 6.10-6.05 (m, 1H), 2.46 (t, *J* = 7.6 Hz, 2H), 1.86-1.84 (m, 3H), 1.26-1.24 (m, 6H), 0.85-0.82 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.8, 142.5, 131.8, 39.9, 31.4, 23.9, 22.4, 18.1, 13.8. The ¹H and ¹³C NMR spectra are shown in Figure S2.

1.6 Aldol condensation between nonanone and furanic aldehydes

Aldol condensation of HMF or furfural with 5-nonanone was conducted under neat condition in a 10 mL round bottom flask placed in a pre-heated oil bath equipped with a magnetic stirrer. The flask was purged with nitrogen and the reaction was performed under the inert atmosphere. For a typical aldol reaction, HMF or furfural (8 mmol), 5-nonanone (16 mmol) and CaO-MgO catalyst (100 mg) were added in the flask and the mixture was continuously stirred at desired temperature (353-443 K) and reaction time (6-18 h). Upon completion of the reaction, the mixture was cooled down to room temperature and catalyst was separated by centrifugation. The yields (mol%) of products were determined by ¹H NMR spectroscopy using mesitylene as an internal standard. Details on the method are given in our earlier study⁴. NMR spectra of the products revealed the formation of 4-(furan-2-ylmethylene)nonan-5-one (F5N) and 4-((5-(hydroxymethyl))furan-2yl)methylene)nonan-5-one (H5N). ¹H NMR of F5N (400 MHz, CDCl₃): δ 7.49 (d, *J* = 1.3 Hz, 1H), 7.15 (s, 1H), 6.57 (d, 1H), 6.45 (dd, 1H), 2.70 – 2.66 (m, 2H), 2.60 – 2.57 (m, 2H), 1.21-1.52 (m, 6H), 0.91 – 0.81 (m, 6H) ppm (Figure S3). ¹H NMR of H5N (400 MHz, CDCl₃): δ 7.26 (s, 1H), 6.52 (d, 1H), 6.43 (dd, 1H), 4.67 (s, 1H), 2.77 – 2.67 (m, 2H), 2.60 – 2.64 (m, 2H), 1.29-1.62 (m, 6H), 0.98 – 0.81 (m, 6H) ppm (Figure S4).

To study catalyst stability, after the 1st cycle of reaction, the catalyst was separated by filtration, washed with distilled water, dried and reused for three consecutive cycles. Fresh catalyst was not added to replenish any loss of the catalyst mass during recovery.

1.7 Computation methods

DFT calculations in non-catalytic water medium were performed using DMol³ module available in Material Studio 8 (Biovia, San Diego, USA)⁵ with DNP (Double Numerial plus Polarization) numerical basis set. GGA (Generalized gradient approximation) with PW91 (Perdew and Wang's) functional was utilized to explain exchange correlation energy and potential⁶. DMol³ specified "Fine" convergence criteria for energy, force and atom displacement was set to 0.0001 eV, 0.05 eV/ Å and 0.005 Å respectively for geometry optimization and transition state search. The self-consistent field calculations of electron density were converged to 1×10^{-6} value with a density mixing parameter set to 0.02.

The activation barriers were measured through a transition state (TS) search by linear synchronous transit/quadratic synchronous transit (LST/QST) method⁷. In LST, a set of single point calculations were performed on a set of linearly interpolated structures between the reactant and product. The first estimate of TS structure was provided by the maximum energy structure along this path. Subsequently, the structure was refined in orthogonal direction to the QST, which was further used as an intermediate for QST pathway. The method thus yields a refined transition state geometry. Transition state thus obtained is further refined with the 'TS Optimization' module in DMol³. In this technique the optimization starts with the transition state

structure obtained from LST/QST method and is searched for energy maxima along a normal mode using the Newton-Raphson line search algorithm. The transition states obtained were verified by the presence of a single imaginary frequency vibrational mode along the reaction coordinate. Solvent environment was simulated using conductor-like screening model (COSMO) in which solvents were represented by their respective dielectric constant; for water ε =78.54^{8,9}

Periodic plane-wave DFT code as implemented in Vienna Ab initio Simulation Package $(VASP)^{45}$ was utilized to study the water mediated ring opening reaction of 6PP over the γ -Al₂O₃ (110) surface¹⁰. The γ -Al₂O₃ (110) surface was modeled using the bulk γ -Al₂O₃ geometry reported by *Digne et al.* ¹¹. The (110) surface is the most abundant surface in γ -Al₂O₃ consisting nearly 74% of the total surface. The cell parameters for the γ -Al₂O₃ (110) surface are a = 16.83 Å, b = 16.14 Å and $\alpha = \beta = \gamma = 90^{\circ}$. Two neighboring slabs were separated by a vacuum of 15 Å. Two bottom layers of the γ -Al₂O₃ surface were fixed whereas the top-most two layer was allowed to relax. Adsorption and TS energy calculations were performed using the GGA-PW91 exchange-correlation functions as described by Perdew and Wang¹². Ultra-soft pseudopotentials were used to describe the core electrons¹³. Basis sets were expanded to an energy cut-off value of 396 eV. The energy and force convergence criteria for all structural optimization were set to 1x10⁻⁴ eV and 0.05 eV/Å respectively. The surface Brillouin zone was sampled using a 1x1x1 Monkhorst-Pack grid. The activation barriers for 6PP ring opening and subsequent proton transfer steps was calculated using the Nudged Elastic Band (NEB) method with climbing images¹⁴. In the NEB simulation, a set of 8 images between the initial and the final states were optimized along the potential energy surface until the force on each atom was converged to 0.10 eV/Å. The activation energy was calculated as the difference in the energy between the TS and reactant state.

Scheme S1. Fragmentation pattern of nonane-2-en-4-one showing characteristic peaks of m/z values 41, 69 and 84.

Scheme S1 shows the fragmentation pattern of non-2-en-4-one MS acquired under the ionization condition. The m/z value at 140 indicates the base peak of the non-2-en-4-one. α -cleavage of non-2-en-4-one resulting into the loss of prop-2-ene and hexane radicals was attributed to the peaks at 99 and 69 respectively. A second type of fragmentation occurred due to McLafferty rearrangement of the molecular ion, which involves transfer of gamma hydrogen to carbonyl-oxygen with concurrent formation of the alcohol showing distinct peak at m/z value of 84. A peak at 41 indicates the α -cleavage of the base peak into propene.

Figure S1. Fragmentation pattern obtained from the GCMS of (a) 6PP derived non-2-en-4-one and (b) Nist library

Figure S2 (a) ¹H NMR spectra and (b) ¹³C NMR spectra of silica-alumina catalyzed reaction

mixture showing the formation of non-2-en-4-one

Figure S3. ¹H NMR spectrum of **F5N** produced from aldol condensation of furfural with 5nonanone at 443K for 12 h over the CaO-MgO catalyst.

Figure S4. ¹H NMR spectrum of H5N produced from aldol condensation of HMF with 5nonanone at 393 K for 12 h over the CaO-MgO catalyst.

Figure S5. Arrhenius plot for ring opening and decarboxylation of 6pp in non catalytic water, silica-alumina and Υ -alumina catalyzed system. *C* (%) indicates 6PP conversion (%)

Figure 6. (a) XRD pattern and (b) FT-IR spectrum of the mixed oxide CaO-MgO Catalyst.

Figure S7. ¹H NMR spectrum of aldol product obtained from the reaction of HMF with 2-nonanone. ¹H NMR (400 MHz, CDCl₃): δ 7.24 (s, 1H), 6.41 (d, 1H), 6.57 (dd, 1H), 4.59 (s, 1H), 2.34 – 2.38 (m, 2H), 11.49 – 1.53 (m, 4H), 1.22-1.26 (m, 4H), 0.81 – 0.84 (m, 3H) ppm.

Figure S8. ¹H NMR spectrum of aldol product obtained from the reaction of HMF with 4-nonanone. ¹H NMR (400 MHz, CDCl₃): δ 7.27 (s, 1H), 6.60 (d, 1H), 6.43 (dd, 1H), 4.66 (s, 1H), 2.69 – 2.75 (m, 2H), 2.59 – 2.63 (m, 2H), 1.25- 1.48 (m, 6H), 0.88-0.97(m, 3H) ppm.

Figure S9. Recyclability of CaO-MgO catalyst for aldol condensation of HMF with 5-nonanone Reaction conditions: HMF (8 mmol), 5-nonanone (16 mmol), catalyst (100 mg), 393 K and 12 h.

Entry	Cycle Number	Amount of basic site /mmolg ⁻¹
1	1	3.0
2	2	2.84
3	3	2.78
4	4	2.51

 Table S1 Measured basicity of the fresh and recovered CaO-MgO catalyst

Table S2. Structural co-ordinates of reactant, product and TS in ring-opening reaction of 6PP in non-catalytic water

1a

Atom#	Х	Y	Ζ
C1	-2.07581	2.785815	0.012918
C2	-1.59585	1.456974	-0.11319
C3	-0.29962	1.252444	-0.4845
C4	0.105868	3.654378	-0.60076
C5	-1.25519	3.856431	-0.22648
C6	0.40587	-0.04785	-0.66799
C7	-0.33919	-1.27751	-0.15095
C8	0.503912	-2.54801	-0.27045
C9	-0.18464	-3.78638	0.305506
C10	0.67804	-5.04378	0.21468
011	0.521215	2.315408	-0.72862
012	1.933046	5.645009	1.616418
013	0.972367	4.506765	-0.82402
H14	-3.11076	2.953093	0.307352
H15	-2.24175	0.607411	0.084619
H16	-1.59541	4.884021	-0.13072
H17	2.471143	4.923583	1.983973
H18	1.383881	0.035927	-0.16992
H19	0.63434	-0.16407	-1.73997
H20	-1.28089	-1.40922	-0.70435
H21	-0.61113	-1.12077	0.903702
H22	1.463311	-2.3944	0.249371
H23	0.753826	-2.72559	-1.32873
H24	-1.1381	-3.94948	-0.22082
H25	-0.44561	-3.59349	1.357921
H26	0.912254	-5.28912	-0.83071
H27	0.173821	-5.9124	0.658981
H28	1.63163	-4.90397	0.743492
H29	1.629411	5.288784	0.75326

 $\mathsf{TS}_{\mathtt{la}}$

Atom#	Х	Y	Ζ
C1	-1.96774	2.899685	0.19241
C2	-1.43484	1.57885	0.208516
C3	-0.15239	1.365968	-0.18249

C4	0.190781	3.731945	-0.48133
C5	-1.18354	3.955627	-0.17008
06	0.630203	2.434142	-0.5656
07	1.124334	4.629728	1.04489
C8	0.56842	0.069306	-0.34054
C9	-0.24735	-1.18039	-0.0069
C10	0.580939	-2.46011	-0.14611
C11	-0.20348	-3.72532	0.205539
C12	0.639464	-4.99682	0.107595
013	0.919088	4.560854	-1.24403
H14	-3.00981	3.06005	0.462382
H15	-2.05843	0.731062	0.475585
H16	-1.5402	4.98161	-0.19065
H17	1.754224	3.991362	1.427334
H18	1.477408	0.102153	0.280176
H19	0.927687	0.017252	-1.3809
H20	-1.12526	-1.24127	-0.66741
H21	-0.63049	-1.11108	1.022187
H22	1.467126	-2.39179	0.50476
H23	0.961622	-2.54222	-1.17684
H24	-1.07707	-3.80772	-0.45988
H25	-0.60508	-3.62795	1.226325
H26	1.026878	-5.1377	-0.91129
H27	0.054705	-5.88899	0.36959
H28	1.503057	-4.9509	0.786212
H29	1.40974	4.952676	-0.38946

1b

Atom#	Х	Y	Ζ
C1	-2.02535	2.481406	-0.38409
C2	-1.45192	1.162231	-0.39675
C3	-0.10279	1.02646	-0.33663
C4	0.230923	3.479942	-0.61772
C5	-1.24786	3.584811	-0.45057
C6	0.674513	-0.24971	-0.24679
C7	-0.15728	-1.5295	-0.2019
C8	0.709216	-2.78828	-0.14292
C9	-0.1086	-4.08015	-0.10606
C10	0.757799	-5.3376	-0.06489
011	0.724924	2.113331	-0.29944

012	0.966013	4.334326	0.198913
013	0.576591	3.760923	-1.9465
014	0.109919	3.931182	2.724736
H15	-3.1075	2.584124	-0.3007
H16	-2.0871	0.281656	-0.3998
H17	-1.64975	4.595948	-0.42479
H18	0.666115	4.180646	1.143291
H19	1.320348	-0.19039	0.644468
H20	1.367679	-0.28591	-1.10269
H21	-0.80489	-1.57982	-1.0902
H22	-0.8261	-1.5056	0.671318
H23	1.36081	-2.74384	0.744819
H24	1.381685	-2.8091	-1.01548
H25	-0.76684	-4.11431	-0.98835
H26	-0.77476	-4.06027	0.770478
H27	1.40994	-5.39623	-0.94781
H28	0.144352	-6.24764	-0.03954
H29	1.404179	-5.34337	0.823901
H30	1.534682	3.956408	-1.9584
H31	0.580975	3.168299	3.105134
H32	-0.80992	3.620015	2.634956

$\rm TS_{1b}$

Atom#	Х	Y	Ζ
C1	-1.87043	2.447131	-0.25849
C2	-1.1337	1.248999	-0.15244
C3	0.182991	1.036134	0.285227
C4	-0.08242	4.110816	-0.76362
C5	-1.42284	3.748284	-0.41883
06	0.973326	1.920523	0.818351
07	0.618193	4.984598	-0.13125
C8	0.783094	-0.37056	0.1688
C9	-0.12333	-1.57988	-0.10503
C10	0.667647	-2.89393	-0.11119
C11	-0.19914	-4.14059	-0.32059
C12	0.608725	-5.4439	-0.31405
013	0.442125	3.558429	-1.86997
H14	-2.95238	2.345621	-0.11534
H15	-1.73747	0.346195	-0.21021
H16	-2.0868	4.55454	-0.10382

H17	0.469677	4.693977	1.130704
H18	1.368858	-0.55754	1.083181
H19	1.537807	-0.31747	-0.63976
H20	-0.63811	-1.46859	-1.07243
H21	-0.90967	-1.64461	0.664209
H22	1.210886	-2.99915	0.844963
H23	1.440865	-2.86263	-0.8995
H24	-0.74322	-4.05554	-1.27803
H25	-0.97036	-4.18559	0.4685
H26	1.368242	-5.44079	-1.11386
H27	-0.03796	-6.32448	-0.46969
H28	1.135585	-5.57997	0.645661
H29	1.408944	3.773472	-1.85222
O30	0.494316	4.015301	2.072597
H31	0.59771	3.031844	1.554389
H32	-0.40117	4.04936	2.463729

1c

Atom#	Х	Y	Ζ
C1	-1.79	2.45	0.00
C2	-1.06	1.21	0.07
C3	0.23	0.92	0.44
C4	-0.28	4.25	-1.02
C5	-1.48	3.72	-0.38
C6	0.80	-0.46	0.41
C7	-0.10	-1.61	-0.05
C8	0.64	-2.94	-0.07
C9	-0.23	-4.12	-0.48
C10	0.52	-5.45	-0.51
011	1.14	1.79	0.92
012	-0.09	5.45	-1.21
013	0.62	3.31	-1.44
014	0.71	4.22	2.04
H15	-2.85	2.33	0.28
H16	-1.69	0.33	-0.08
H17	-2.25	4.48	-0.27
H18	0.78	5.03	1.50
H19	1.20	-0.68	1.41
H20	1.69	-0.42	-0.24
H21	-0.50	-1.40	-1.05

H22	-0.97	-1.68	0.62
H23	1.07	-3.14	0.93
H24	1.50	-2.87	-0.75
H25	-0.66	-3.93	-1.48
H26	-1.09	-4.20	0.21
H27	1.36	-5.41	-1.22
H28	-0.13	-6.28	-0.80
H29	0.94	-5.69	0.48
H30	1.35	3.81	-1.86
H31	0.78	2.70	1.13
H32	-0.16	4.29	2.46

Table S3. Structural co-ordinates of reactant, product and TS in ring-opening reaction of 6PP in γ -alumina

2a

Atom#	Х	Y	Ζ
Al1	2.31	5.03	1.37
Al2	6.55	7.01	0.03
Al3	6.55	3.18	3.00
Al4	2.36	0.88	3.67
Al5	1.04	3.19	3.02
Al6	5.23	0.87	3.66
Al7	5.26	5.03	1.36
Al8	1.02	7.01	0.03
Al9	7.99	1.07	1.14
Al10	8.01	0.96	3.91
Al11	7.97	6.11	2.97
Al12	3.77	6.79	5.00
Al13	3.79	7.11	0.08
Al14	3.78	2.18	1.27
Al15	3.80	3.48	4.63
Al16	7.99	4.10	0.12
Al17	2.34	13.16	1.44
Al18	6.55	15.07	0.03
Al19	6.56	11.27	3.05
Al20	2.34	9.05	3.77
Al21	0.98	11.27	3.04
A122	5.19	9.05	3.77
Al23	5.22	13.16	1.43
Al24	1.02	15.07	0.03

Al25	7.99	9.13	1.14
Al26	7.96	8.97	3.90
Al27	7.98	14.22	2.98
Al28	3.78	14.70	4.14
Al29	3.79	15.18	0.08
A130	3.78	10.23	1.18
Al31	3.77	11.50	3.47
Al32	7.99	12.17	0.12
A133	10.72	5.03	1.37
Al34	14.97	7.01	0.03
Al35	14.92	3.19	3.02
Al36	10.79	0.92	3.69
Al37	9.50	3.20	3.05
A138	13.63	0.90	3.65
A139	13.68	5.03	1.36
Al40	9.43	7.01	0.03
Al41	16.41	1.07	1.14
Al42	16.40	0.95	3.90
Al43	16.41	6.12	2.98
Al44	12.13	6.70	4.70
Al45	12.20	7.11	0.08
Al46	12.20	2.18	1.27
Al47	12.23	3.59	4.66
Al48	16.41	4.10	0.12
Al49	10.76	13.16	1.44
A150	14.97	15.07	0.03
Al51	14.98	11.27	3.05
A152	10.74	9.03	3.66
A153	9.37	11.27	3.03
Al54	13.61	9.04	3.72
A155	13.64	13.16	1.43
Al56	9.43	15.07	0.03
Al57	16.41	9.13	1.14
A158	16.39	8.98	3.91
A159	16.39	14.22	2.98
A160	12.19	14.73	4.12
Al61	12.20	15.18	0.08
A162	12.19	10.23	1.18
A163	12.18	11.50	3.47
A164	16.41	12.17	0.12
01	5.14	7.76	4.86

02	1.06	5.04	2.85
03	5.18	6.90	1.14
04	0.98	5.19	0.15
05	0.89	0.87	22.42
06	5.14	3.28	1.70
07	0.92	1.20	2.73
08	5.25	2.57	4.40
09	6.68	0.87	22.42
O10	2.44	3.28	1.72
011	6.67	1.20	2.72
012	2.34	2.58	4.40
013	2.39	7.75	4.86
014	6.51	5.02	2.84
015	2.39	6.90	1.14
016	6.60	5.19	0.15
017	7.96	7.31	4.22
018	7.99	7.08	1.30
019	3.79	1.07	0.04
O20	3.79	1.03	2.70
O21	3.78	5.10	5.01
O22	3.79	5.11	0.12
O23	7.99	2.96	1.39
O24	8.00	2.81	4.13
O25	5.17	15.55	4.53
O26	0.96	13.08	2.81
O27	5.19	14.99	1.13
O28	0.98	13.26	0.15
O29	0.89	8.93	22.42
O30	5.06	11.37	1.79
O31	0.91	9.24	2.75
O32	5.20	10.83	4.29
O33	6.68	8.93	22.42
O34	2.50	11.36	1.78
O35	6.62	9.25	2.75
O36	2.32	10.82	4.28
O37	2.40	15.57	4.55
O38	6.58	13.08	2.82
O39	2.38	14.99	1.14
O40	6.60	13.26	0.15
O41	7.98	15.43	4.23
042	7.99	15.15	1.30

043	3.79	9.14	0.04
O44	3.76	9.22	2.76
O45	3.76	13.28	3.10
O46	3.79	13.18	0.12
O47	7.98	11.03	1.41
O48	7.97	10.83	4.16
O49	13.51	7.73	4.80
O50	9.39	5.01	2.82
051	13.60	6.90	1.14
052	9.39	5.19	0.15
053	9.30	0.87	22.42
054	13.55	3.28	1.70
055	9.34	1.21	2.73
056	13.66	2.60	4.36
057	15.09	0.87	22.42
O58	10.85	3.28	1.72
059	15.08	1.19	2.71
O60	10.77	2.62	4.38
061	10.77	7.71	4.70
O62	15.00	5.01	2.81
O63	10.80	6.90	1.14
O64	15.01	5.19	0.15
O65	16.38	7.31	4.25
O66	16.41	7.08	1.30
O67	12.20	1.07	0.04
O68	12.19	1.01	2.68
O69	12.19	5.17	3.95
O70	12.20	5.11	0.12
O71	16.40	2.96	1.39
072	16.40	2.80	4.12
073	13.58	15.57	4.51
074	9.38	13.08	2.81
075	13.60	14.99	1.13
O76	9.39	13.26	0.15
077	9.30	8.93	22.42
078	13.47	11.37	1.79
079	9.29	9.25	2.71
080	13.61	10.80	4.27
081	15.09	8.93	22.42
082	10.91	11.36	1.78
083	15.06	9.24	2.75

084	10.74	10.79	4.25
085	10.81	15.58	4.55
O86	14.99	13.08	2.82
087	10.80	14.99	1.14
088	15.01	13.26	0.15
089	16.40	15.43	4.23
O90	16.41	15.15	1.30
091	12.20	9.14	0.04
092	12.19	9.20	2.71
093	12.18	13.28	3.10
O94	12.20	13.18	0.12
O95	16.40	11.03	1.41
O96	16.38	10.84	4.16
O97	11.86	6.22	7.04
O98	12.24	4.06	6.46
O99	14.46	5.47	7.99
O100	14.46	5.82	10.87
O101	15.10	8.01	6.96
C1	11.29	5.45	9.61
C2	11.31	6.81	9.27
C3	11.62	7.20	8.00
C4	11.96	4.86	7.38
C5	11.63	4.49	8.70
C6	11.71	8.60	7.52
C7	11.13	9.67	8.45
C8	11.15	11.05	7.79
C9	10.51	12.16	8.64
C10	10.53	13.51	7.93
H1	11.00	5.16	10.62
H2	11.10	7.58	10.00
H3	11.66	3.44	8.92
H4	11.23	8.64	6.53
H5	12.78	8.81	7.33
H6	11.69	9.70	9.39
H7	10.09	9.40	8.70
H8	10.63	11.00	6.83
H9	12.19	11.33	7.56
H10	11.04	12.23	9.60
H11	9.47	11.89	8.88
H12	11.55	13.84	7.72
H13	10.06	14.29	8.55

H14	9.97	13.47	6.98
H15	14.49	5.56	8.96
H16	14.72	6.36	7.64
H17	15.35	6.18	11.04
H18	14.45	4.95	11.29
H19	16.00	7.78	6.67
H20	14.55	7.87	6.14

$TS_{2a} \\$

Atom#	Х	Y	Ζ
Al1	2.31	5.03	1.37
Al2	6.55	7.01	0.03
Al3	6.56	3.18	2.99
Al4	2.36	0.88	3.67
Al5	1.03	3.19	3.02
Al6	5.23	0.87	3.64
Al7	5.26	5.03	1.36
Al8	1.02	7.01	0.03
Al9	7.99	1.07	1.14
A110	8.02	0.96	3.91
Al11	7.98	6.11	2.97
Al12	3.78	6.78	5.00
Al13	3.79	7.11	0.08
Al14	3.78	2.18	1.27
Al15	3.80	3.48	4.62
Al16	7.99	4.10	0.12
Al17	2.34	13.16	1.44
A118	6.55	15.07	0.03
Al19	6.58	11.26	3.05
Al20	2.36	9.05	3.77
Al21	0.99	11.27	3.05
Al22	5.21	9.05	3.77
Al23	5.22	13.16	1.43
Al24	1.02	15.07	0.03
Al25	7.99	9.13	1.14
Al26	7.99	8.97	3.90
Al27	7.99	14.22	2.98
A128	3.78	14.70	4.13
Al29	3.79	15.18	0.08
A130	3.78	10.23	1.18

Al31	3.79	11.49	3.47
Al32	7.99	12.17	0.12
A133	10.72	5.03	1.37
Al34	14.97	7.01	0.03
Al35	14.91	3.19	3.02
Al36	10.80	0.92	3.71
A137	9.53	3.20	3.08
A138	13.63	0.89	3.65
A139	13.68	5.03	1.36
Al40	9.43	7.01	0.03
Al41	16.41	1.07	1.14
Al42	16.40	0.96	3.90
Al43	16.41	6.12	2.97
Al44	12.10	6.71	4.95
Al45	12.20	7.11	0.08
Al46	12.20	2.18	1.27
Al47	12.27	3.57	4.81
Al48	16.41	4.10	0.12
Al49	10.76	13.16	1.44
Al50	14.97	15.07	0.03
Al51	14.99	11.27	3.05
Al52	10.75	9.01	3.68
Al53	9.40	11.26	3.04
Al54	13.61	9.04	3.75
Al55	13.64	13.16	1.43
Al56	9.43	15.07	0.03
Al57	16.41	9.13	1.14
Al58	16.41	8.98	3.89
Al59	16.40	14.22	2.98
A160	12.19	14.72	4.11
Al61	12.20	15.18	0.08
Al62	12.19	10.23	1.18
Al63	12.19	11.49	3.47
Al64	16.41	12.17	0.12
01	5.15	7.76	4.87
O2	1.05	5.04	2.85
03	5.18	6.90	1.14
04	0.98	5.19	0.15
05	0.89	0.87	22.42
06	5.14	3.28	1.70
07	0.92	1.21	2.73

08	5.26	2.58	4.37
09	6.68	0.87	22.42
O10	2.44	3.28	1.72
011	6.68	1.20	2.72
012	2.34	2.58	4.40
013	2.39	7.75	4.86
014	6.52	5.02	2.84
015	2.39	6.90	1.14
016	6.60	5.19	0.15
017	7.97	7.31	4.22
018	7.99	7.08	1.30
019	3.79	1.07	0.04
O20	3.79	1.03	2.69
O21	3.78	5.10	5.01
O22	3.79	5.11	0.12
O23	7.99	2.96	1.39
O24	8.01	2.81	4.13
O25	5.17	15.55	4.52
O26	0.97	13.08	2.81
O27	5.19	14.99	1.13
O28	0.98	13.26	0.15
O29	0.89	8.93	22.42
O30	5.06	11.37	1.79
O31	0.93	9.23	2.75
O32	5.22	10.83	4.29
O33	6.68	8.93	22.42
O34	2.50	11.36	1.78
O35	6.64	9.25	2.75
O36	2.34	10.82	4.29
O37	2.41	15.56	4.55
O38	6.58	13.08	2.82
O39	2.38	14.99	1.14
O40	6.60	13.26	0.15
O41	7.98	15.43	4.23
O42	7.99	15.15	1.30
O43	3.79	9.14	0.04
O44	3.78	9.22	2.76
O45	3.77	13.28	3.10
O46	3.79	13.18	0.12
O47	7.98	11.03	1.41
O48	8.00	10.83	4.16

O49	13.49	7.78	4.91
O50	9.41	5.02	2.83
051	13.60	6.90	1.14
052	9.39	5.19	0.15
053	9.30	0.87	22.42
O54	13.55	3.28	1.70
055	9.35	1.21	2.75
O56	13.67	2.58	4.36
O57	15.09	0.87	22.42
O58	10.85	3.28	1.72
O59	15.08	1.19	2.71
O60	10.80	2.61	4.43
O61	10.77	7.76	4.79
O62	14.99	5.02	2.81
O63	10.80	6.90	1.14
O64	15.01	5.19	0.15
O65	16.37	7.31	4.26
O66	16.41	7.08	1.30
O67	12.20	1.07	0.04
O68	12.19	1.00	2.68
O69	12.20	5.19	4.21
O70	12.20	5.11	0.12
O71	16.40	2.96	1.39
072	16.40	2.81	4.12
073	13.59	15.56	4.51
O74	9.38	13.08	2.81
O75	13.60	14.99	1.13
O76	9.39	13.26	0.15
O77	9.30	8.93	22.42
O78	13.47	11.37	1.79
O79	9.31	9.24	2.72
O80	13.63	10.81	4.28
O81	15.09	8.93	22.42
082	10.91	11.36	1.78
083	15.06	9.23	2.75
O84	10.76	10.78	4.26
085	10.82	15.58	4.55
O86	15.00	13.08	2.82
087	10.80	14.99	1.14
088	15.01	13.26	0.15
089	16.41	15.43	4.23

O90	16.41	15.15	1.30
091	12.20	9.14	0.04
092	12.20	9.20	2.73
093	12.18	13.28	3.10
094	12.20	13.18	0.12
095	16.40	11.03	1.41
096	16.40	10.83	4.15
097	11.94	6.25	7.01
O98	12.46	4.00	6.59
099	14.14	5.38	7.87
O100	14.48	5.77	10.67
O101	14.96	7.62	6.97
C1	11.26	5.47	9.60
C2	11.38	6.84	9.26
C3	11.69	7.24	8.01
C4	12.30	4.89	7.47
C5	11.71	4.52	8.74
C6	11.74	8.67	7.57
C7	11.11	9.70	8.51
C8	11.12	11.11	7.88
C9	10.46	12.22	8.71
C10	10.48	13.57	7.99
H1	10.78	5.19	10.53
H2	11.14	7.62	9.98
H3	11.61	3.45	8.92
H4	11.25	8.73	6.59
H5	12.79	8.94	7.38
H6	11.63	9.73	9.48
H7	10.07	9.42	8.73
H8	10.63	11.06	6.90
H9	12.17	11.40	7.68
H10	10.96	12.31	9.69
H11	9.42	11.94	8.92
H12	11.50	13.90	7.79
H13	10.00	14.35	8.59
H14	9.94	13.53	7.04
H15	14.29	5.44	8.85
H16	14.46	6.29	7.49
H17	15.35	6.14	10.91
H18	14.31	5.06	11.30
H19	15.87	7.49	6.66

-	
')	h
1.	1)
_	~

Atom#	X	Y	Z
Al1	2.31	5.03	1.37
Al2	6.55	7.01	0.03
Al3	6.59	3.18	2.98
Al4	2.36	0.88	3.67
Al5	1.03	3.19	3.01
Al6	5.24	0.87	3.64
Al7	5.26	5.03	1.36
Al8	1.02	7.01	0.03
A19	7.99	1.07	1.14
A110	8.03	0.96	3.91
Al11	7.99	6.11	2.97
Al12	3.78	6.78	5.00
Al13	3.79	7.11	0.08
Al14	3.78	2.18	1.27
Al15	3.81	3.47	4.61
Al16	7.99	4.10	0.12
Al17	2.34	13.16	1.44
Al18	6.55	15.07	0.03
A119	6.59	11.26	3.05
Al20	2.38	9.04	3.77
Al21	1.01	11.28	3.06
Al22	5.23	9.04	3.77
Al23	5.22	13.16	1.43
Al24	1.02	15.07	0.03
Al25	7.99	9.13	1.14
Al26	8.00	8.96	3.91
Al27	7.99	14.22	2.98
Al28	3.78	14.70	4.13
Al29	3.79	15.18	0.08
A130	3.78	10.23	1.18
Al31	3.81	11.49	3.48
Al32	7.99	12.17	0.12
Al33	10.72	5.03	1.37
Al34	14.97	7.01	0.03
A135	14.90	3.19	3.04
Al36	10.81	0.92	3.72

Al37	9.56	3.22	3.12
Al38	13.63	0.89	3.64
A139	13.68	5.03	1.36
Al40	9.43	7.01	0.03
Al41	16.41	1.07	1.14
Al42	16.40	0.96	3.90
Al43	16.40	6.12	2.97
Al44	12.00	6.69	5.20
Al45	12.20	7.11	0.08
Al46	12.20	2.18	1.27
Al47	12.28	3.50	4.94
Al48	16.41	4.10	0.12
A149	10.76	13.16	1.44
A150	14.97	15.07	0.03
Al51	15.01	11.28	3.04
A152	10.76	9.03	3.68
A153	9.40	11.27	3.03
Al54	13.62	9.07	3.69
Al55	13.64	13.16	1.43
Al56	9.43	15.07	0.03
Al57	16.41	9.13	1.14
Al58	16.43	8.99	3.90
A159	16.40	14.23	2.99
A160	12.19	14.73	4.11
Al61	12.20	15.18	0.08
Al62	12.19	10.23	1.18
Al63	12.20	11.52	3.47
Al64	16.41	12.17	0.12
01	5.14	7.76	4.87
02	1.05	5.04	2.85
03	5.18	6.90	1.14
04	0.98	5.19	0.15
05	0.89	0.87	22.42
06	5.14	3.28	1.70
07	0.92	1.21	2.73
08	5.26	2.58	4.36
09	6.68	0.87	22.42
O10	2.44	3.28	1.72
011	6.69	1.20	2.72
012	2.34	2.58	4.40
013	2.39	7.74	4.86

014	6.53	5.02	2.83
015	2.39	6.90	1.14
016	6.60	5.19	0.15
017	7.96	7.30	4.22
018	7.99	7.08	1.30
019	3.79	1.07	0.04
O20	3.79	1.03	2.69
O21	3.78	5.10	5.00
O22	3.79	5.11	0.12
O23	7.99	2.96	1.39
O24	8.02	2.82	4.13
O25	5.17	15.56	4.51
O26	0.97	13.08	2.82
O27	5.19	14.99	1.13
O28	0.98	13.26	0.15
O29	0.89	8.93	22.42
O30	5.06	11.37	1.79
031	0.95	9.23	2.75
032	5.25	10.82	4.29
033	6.68	8.93	22.42
O34	2.50	11.36	1.78
035	6.65	9.24	2.75
O36	2.36	10.82	4.29
O37	2.40	15.57	4.55
O38	6.59	13.08	2.81
O39	2.38	14.99	1.14
O40	6.60	13.26	0.15
O41	7.98	15.43	4.23
O42	7.99	15.15	1.30
O43	3.79	9.14	0.04
O44	3.80	9.22	2.76
O45	3.77	13.28	3.10
O46	3.79	13.18	0.12
O47	7.98	11.03	1.41
O48	8.01	10.83	4.16
O49	13.50	7.79	4.88
O50	9.44	5.03	2.84
051	13.60	6.90	1.14
052	9.39	5.19	0.15
053	9.30	0.87	22.42
054	13.55	3.28	1.70

055	9.37	1.22	2.76
O56	13.67	2.57	4.35
057	15.09	0.87	22.42
O58	10.85	3.28	1.72
059	15.09	1.19	2.70
O60	10.81	2.59	4.45
061	10.77	7.77	4.75
O62	14.98	5.03	2.82
O63	10.80	6.90	1.14
O64	15.01	5.19	0.15
O65	16.33	7.32	4.27
O66	16.41	7.08	1.30
O67	12.20	1.07	0.04
O68	12.20	1.00	2.68
O69	12.18	5.15	4.50
O70	12.20	5.11	0.12
O71	16.40	2.96	1.39
072	16.40	2.81	4.12
073	13.59	15.56	4.51
O74	9.38	13.08	2.81
O75	13.60	14.99	1.13
O76	9.39	13.26	0.15
O77	9.30	8.93	22.42
O78	13.47	11.37	1.79
O79	9.31	9.25	2.71
O80	13.64	10.81	4.27
O81	15.09	8.93	22.42
082	10.91	11.36	1.78
083	15.08	9.23	2.75
084	10.77	10.80	4.25
085	10.82	15.58	4.57
O86	15.00	13.08	2.82
087	10.80	14.99	1.14
088	15.01	13.26	0.15
089	16.40	15.44	4.23
O90	16.41	15.15	1.30
O91	12.20	9.14	0.04
092	12.21	9.15	2.70
093	12.19	13.29	3.09
O94	12.20	13.18	0.12
095	16.40	11.03	1.41

096	16.42	10.83	4.15
097	12.11	6.56	6.98
O98	12.56	3.49	6.77
099	13.91	4.79	7.97
O100	14.50	5.66	10.47
0101	15.03	7.76	7.04
C1	11.29	5.44	9.49
C2	11.45	6.82	9.20
C3	11.77	7.36	7.97
C4	12.72	4.21	7.80
C5	11.72	4.31	8.84
C6	11.74	8.83	7.66
C7	11.08	9.82	8.59
C8	11.09	11.21	7.96
C9	10.40	12.31	8.77
C10	10.42	13.65	8.03
H1	10.62	5.24	10.32
H2	11.13	7.53	9.97
H3	11.22	3.36	9.05
H4	11.27	8.91	6.67
H5	12.78	9.13	7.48
H6	11.59	9.84	9.57
H7	10.04	9.51	8.78
H8	10.60	11.16	6.97
H9	12.13	11.50	7.76
H10	10.89	12.41	9.75
H11	9.36	12.02	8.97
H12	11.45	13.99	7.84
H13	9.92	14.44	8.61
H14	9.90	13.58	7.06
H15	14.02	5.13	8.90
H16	14.56	7.03	7.50
H17	15.30	6.11	10.79
H18	14.13	5.18	11.23
H19	15.90	7.41	6.79
H20	14.18	7.73	5.62

2c

Atom# X	Y	Ζ
---------	---	---

Al1	2.31	5.03	1.37
Al2	6.55	7.01	0.03
Al3	6.58	3.18	2.98
Al4	2.36	0.87	3.66
Al5	1.03	3.19	3.01
Al6	5.24	0.88	3.65
Al7	5.26	5.03	1.36
Al8	1.02	7.01	0.03
Al9	7.99	1.07	1.14
Al10	8.03	0.97	3.90
Al11	8.00	6.12	2.97
Al12	3.80	6.78	4.99
Al13	3.79	7.11	0.08
Al14	3.78	2.18	1.27
Al15	3.80	3.47	4.62
Al16	7.99	4.10	0.12
Al17	2.34	13.16	1.44
Al18	6.55	15.07	0.03
Al19	6.59	11.27	3.05
A120	2.37	9.05	3.78
Al21	1.00	11.27	3.06
Al22	5.23	9.04	3.76
Al23	5.22	13.16	1.43
Al24	1.02	15.07	0.03
Al25	7.99	9.13	1.14
Al26	8.01	8.97	3.91
Al27	8.00	14.22	2.98
Al28	3.80	14.70	4.12
Al29	3.79	15.18	0.08
Al30	3.78	10.23	1.18
Al31	3.80	11.50	3.47
Al32	7.99	12.17	0.12
A133	10.72	5.03	1.37
Al34	14.97	7.01	0.03
Al35	14.90	3.20	3.05
A136	10.81	0.91	3.71
Al37	9.55	3.21	3.11
A138	13.64	0.90	3.66
A139	13.68	5.03	1.36
Al40	9.43	7.01	0.03
Al41	16.41	1.07	1.14

Al42	16.40	0.97	3.90
Al43	16.41	6.12	2.97
Al44	12.24	6.80	5.23
Al45	12.20	7.11	0.08
Al46	12.20	2.18	1.27
Al47	12.27	3.48	5.01
Al48	16.41	4.10	0.12
Al49	10.76	13.16	1.44
A150	14.97	15.07	0.03
Al51	15.01	11.27	3.04
A152	10.79	9.04	3.79
A153	9.42	11.26	3.05
A154	13.63	9.04	3.67
A155	13.64	13.16	1.43
Al56	9.43	15.07	0.03
A157	16.41	9.13	1.14
A158	16.42	8.98	3.90
A159	16.41	14.22	2.98
A160	12.21	14.72	4.11
Al61	12.20	15.18	0.08
Al62	12.19	10.23	1.18
Al63	12.21	11.51	3.47
Al64	16.41	12.17	0.12
01	5.18	7.74	4.84
02	1.04	5.03	2.84
03	5.18	6.90	1.14
04	0.98	5.19	0.15
05	0.89	0.87	22.42
06	5.14	3.28	1.70
07	0.92	1.21	2.72
08	5.26	2.58	4.38
09	6.68	0.87	22.42
O10	2.44	3.28	1.72
011	6.69	1.21	2.72
012	2.34	2.58	4.39
013	2.43	7.76	4.88
014	6.54	5.03	2.82
015	2.39	6.90	1.14
016	6.60	5.19	0.15
017	8.03	7.30	4.23
018	7.99	7.08	1.30

019	3.79	1.07	0.04
O20	3.80	1.03	2.69
O21	3.79	5.10	5.00
O22	3.79	5.11	0.12
O23	7.99	2.96	1.39
O24	8.02	2.82	4.13
O25	5.19	15.56	4.52
O26	0.98	13.09	2.81
O27	5.19	14.99	1.13
O28	0.98	13.26	0.15
O29	0.89	8.93	22.42
O30	5.06	11.37	1.79
031	0.94	9.24	2.76
032	5.24	10.82	4.28
O33	6.68	8.93	22.42
O34	2.50	11.36	1.78
O35	6.66	9.24	2.75
O36	2.36	10.83	4.29
O37	2.42	15.56	4.54
O38	6.60	13.08	2.81
O39	2.38	14.99	1.14
O40	6.60	13.26	0.15
O41	8.01	15.44	4.22
O42	7.99	15.15	1.30
O43	3.79	9.14	0.04
O44	3.79	9.22	2.76
045	3.79	13.28	3.09
O46	3.79	13.18	0.12
O47	7.98	11.03	1.41
O48	8.00	10.83	4.17
O49	13.64	7.78	4.80
O50	9.45	5.03	2.84
051	13.60	6.90	1.14
052	9.39	5.19	0.15
053	9.30	0.87	22.42
054	13.55	3.28	1.70
055	9.37	1.23	2.75
O56	13.67	2.58	4.39
057	15.09	0.87	22.42
058	10.85	3.28	1.72
059	15.08	1.20	2.72

O60	10.81	2.60	4.45
O61	10.91	7.86	4.98
062	14.96	5.03	2.83
063	10.80	6.90	1.14
O64	15.01	5.19	0.15
O65	16.41	7.31	4.25
O66	16.41	7.08	1.30
O67	12.20	1.07	0.04
O68	12.21	1.01	2.69
O69	12.22	5.16	4.80
O70	12.20	5.11	0.12
071	16.40	2.96	1.39
072	16.41	2.82	4.12
073	13.61	15.56	4.52
074	9.39	13.08	2.81
075	13.60	14.99	1.13
O76	9.39	13.26	0.15
O77	9.30	8.93	22.42
O78	13.47	11.37	1.79
O79	9.36	9.25	2.77
O80	13.65	10.80	4.26
O81	15.09	8.93	22.42
082	10.91	11.36	1.78
O83	15.09	9.24	2.72
O84	10.78	10.84	4.29
O85	10.84	15.57	4.56
O86	15.01	13.08	2.81
O87	10.80	14.99	1.14
O88	15.01	13.26	0.15
O89	16.43	15.44	4.22
O90	16.41	15.15	1.30
O91	12.20	9.14	0.04
O92	12.18	9.20	2.73
O93	12.21	13.29	3.08
O94	12.20	13.18	0.12
O95	16.40	11.03	1.41
O96	16.41	10.83	4.16
O97	12.70	6.87	7.21
O98	12.45	3.36	6.89
O99	13.91	4.46	8.15
O100	14.43	5.82	10.76

O101	14.89	8.14	6.93
C1	11.12	5.47	9.39
C2	11.30	6.87	9.14
C3	11.94	7.55	8.16
C4	12.67	4.06	7.91
C5	11.60	4.31	8.87
C6	11.89	9.01	7.90
C7	11.06	9.94	8.78
C8	11.03	11.32	8.13
C9	10.29	12.40	8.91
C10	10.30	13.74	8.17
H1	10.32	5.30	10.12
H2	10.73	7.51	9.81
H3	11.06	3.40	9.11
H4	11.52	9.09	6.86
H5	12.93	9.38	7.84
H6	11.49	10.00	9.79
H7	10.04	9.55	8.88
H8	10.58	11.23	7.13
H9	12.07	11.66	7.96
H10	10.75	12.52	9.90
H11	9.25	12.08	9.09
H12	11.32	14.08	7.99
H13	9.79	14.52	8.74
H14	9.80	13.66	7.19
H15	13.97	4.93	9.02
H16	13.68	7.33	7.20
H17	15.37	6.02	10.95
H18	14.09	5.39	11.56
H19	15.70	7.60	6.94
H20	14.54	8.05	5.95

References

- 1 Y. H. Taufiq-Yap, H. V. Lee, M. Z. Hussein and R. Yunus, *Biomass and Bioenergy*, 2011, **35**, 827–834.
- 2 Y. H. Taufiq-Yap, H. V. Lee, M. Z. Hussein and R. Yunus, *Biomass and Bioenergy*, 2011, **35**, 827–834.
- 3 W. A. Dietz, J. Chromatogr. Sci., 1967, 5, 68–71.
- 4 S. De, S. Dutta and B. Saha, *Green Chem.*, 2011, **13**, 2859.

- 5 B. Delley, J. Chem. Phys., 1990, **92**, 508.
- 6 L. Wang and M. P. Teter, *Phys. Rev. B*, 1992, **45**, 13244–13249.
- 7 T. A. Halgren and W. N. Lipscohlb, *Chem. Phys. Lett.*, 1977, **49**, 225–232.
- 8 A. Klamt and G. Schuurmann, J. Chem. Soc. Perkin Trans. 2, 1993, 799–805.
- 9 B. Delley, *Mol. Simul.*, 2006, **32**, 117–123.
- 10 G. Kresse and J. Furthmüller, *Comput. Mater. Sci.*, 1996, 6, 15–50.
- 11 M. Digne, P. Sautet, P. Raybaud, P. Euzen and H. Toulhoat, J. Catal., 2004, 226, 54–68.
- 12 J. Melorose, R. Perroy and S. Careas, *Phys. Rev. B*, 1995, **45**, 244–249.
- 13 D. Vanderbilt, *Phys. Rev. B*, 1990, **41**, 7892–7895.
- 14 G. Henkelman, B. P. Uberuaga and H. Jonsson, J. Chem. Phys., 2000, 113, 9901–9904.