Approaching truly sustainable solar cells by the use of water and cellulose derivatives

Federico Bella,^{1,*} Simone Galliano,² Marisa Falco,^{1,2} Guido Viscardi,² Claudia Barolo^{2,3,*}, Michael Grätzel,⁴ Claudio Gerbaldi¹

1) GAME Lab, CHENERGY Group, Department of Applied Science and Technology -DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 – Torino, Italy

2) Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference

Centre, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 - Torino, Italy

- 3) ICxT Interdepartmental Centre, Università degli Studi di Torino, Lungo Dora Siena 100, 10153 - Torino, Italy
- 4) Laboratory of Photonics and Interfaces, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH1015 - Lausanne, Switzerland

Table S1 containir	– Ioni 1g NaI 0	c conduct .50 M and	ivity at amb different am	ient temp ount of C	erature MC.	of gel (electrolytes
CMC (wt%)	Run	Z (Ω)	σ (S cm ⁻¹)	CMC (wt%)	Run	$\left \begin{array}{c} Z \\ (\Omega) \end{array} \right $	σ (S cm ⁻¹)
3	1	0.63	1.03×10 ⁻²	12.5	1	0.67	9.70×10 ⁻³
	2	0.5	1.30×10 ⁻²		2	0.62	1.05×10 ⁻²
5	1	0.75	8.66×10 ⁻³	15	1	0.56	1.16×10 ⁻²
	2	0.55	1.18×10 ⁻²		2	0.65	9.99×10 ⁻³
7.5	1	0.55	1.18×10 ⁻²	20	1	0.6	1.08×10 ⁻²
	2	0.64	1.02×10^{-2}		2	0.5	1.30×10 ⁻²
10	1	0.58	1.12×10 ⁻²	10*	1	0.81	8.02×10 ⁻³
	2	0.51	1.27×10 ⁻²				

SUPPORTING INFORMATION

* Blank sample containing CMC 10 wt% in deionized water without NaI.

Table S2 – Ionic conductivity at different temperatures of gel electrolytes containing NaI														
0.50 M and diff	0.50 M and different amounts of CMC.													
Т	СМС	5 wt%	CMC 1	10 wt%	CMC 2	20 wt%								
	Z	σ	Z	σ	Z	σ								
(()	(Ω)	(S cm ⁻¹)	(Ω)	(S cm ⁻¹)	(Ω)	(S cm ⁻¹)								
70	0.54	1.20×10 ⁻²	0.49	1.33×10 ⁻²	0.57	1.14×10 ⁻²								
60	0.59	1.10×10 ⁻²	0.56	1.16×10 ⁻²	0.57	1.14×10 ⁻²								
50	0.66	9.84×10 ⁻³	0.59	1.10×10 ⁻²	0.58	1.12×10 ⁻²								
40	0.65	9.99×10 ⁻³	0.59	1.10×10 ⁻²	0.59	1.10×10 ⁻²								
30	0.67	9.70×10 ⁻³	0.59	1.10×10 ⁻²	0.62	1.05×10^{-2}								
20	0.65	9.99×10 ⁻³	0.62	1.05×10 ⁻²	0.64	1.02×10^{-2}								
10	0.71	9.15×10 ⁻³	0.68	9.55×10 ⁻³	0.67	9.70×10 ⁻³								
5	0.78	8.33×10 ⁻³	0.73	8.90×10 ⁻³	0.77	8.44×10 ⁻³								
-10	0.93	6.99×10 ⁻³	0.88	7.38×10 ⁻³	0.95	6.84×10 ⁻³								
-25	12	5.41×10 ⁻⁴	17.8	3.65×10 ⁻⁴	1834.9	3.54×10-6								

Table S	Table S3 – Best performances of aqueous DSSCs at different CMC levels corresponding												
to data	points in	Fig. 4.											
СМС	Sai	mnle	D	av	V	, 0C	J	sc	F	F	PC	CE	
(xx+0/)	Jai	mpic		ay	()	V)	(mA	cm ⁻²)	(%	6)	(%	6)	
(WL 70)	Na	K	Na	K	Na	K	Na	K	Na	K	Na	K	
3.5	Na35B	K35A	6	6	0.356	0.474	0.53	2.28	51	62	0.1	0.67	
4.5	Na45A	K45A	6	0	0.439	0.456	1.98	2.21	60	63	0.52	0.63	
5.5	Na55A	K55B	0	0	0.437	0.453	2.33	2.61	60	61	0.61	0.72	
6.5		K65A		1		0.467		2.33		61		0.66	
7.5	Na75A	K75B	6	0	0.433	0.448	1.76	2.15	59	61	0.45	0.59	
0	B2*	K55A**	2	12	0.543	0.488	2.10	2.70	60	62	0.68	0.81	
0	B1*	K55B**	2	12	0.536	0.450	1.20	2.78	58	59	0.37	0.74	

* Liquid KI 5.5 M + I₂ 50 mM ** Liquid KI 5.5 M + I₂ 50 mM

Na35A condit	A) or Kl ion.	[5.50 M	$I_2 50 \text{ mN}$	A and (CMC 3	.5 wt%	(cell K	35B) sto	red at RT	under	r dark
		Na	35A					K	85B		
Time	Dun	Voc	J _{sc}	FF	PCE	Time	Dun	Voc	J _{sc}	FF	PCE
(d)	Kull	(mV)	(mA cm ⁻²)	(%)	(%)	(d)	Kull	(mV)	(mA cm ⁻²)	(%)	(%)
	1	363	0.45	51	0.08		1	314	0.32	42	0.04
0	2	356	0.44	50	0.08	0	2	313	0.30	44	0.04
	3	353	0.45	50	0.08		3	313	0.30	44	0.04
	1	364	0.59	48	0.10		1	358	0.52	46	0.09
6	2	345	0.59	44	0.09	6	2	356	0.56	47	0.09
	3	337	0.58	41	0.08		3	357	0.57	48	0.10
6	1	394	0.73	56	0.16		1	376	0.80	47	0.14
13	2	385	0.74	56	0.16	13	2	369	0.81	47	0.14
	3	382	0.75	56	0.16		3	370	0.82	48	0.14
	1	390	0.76	56	0.17		1	390	1.04	49	0.20
20	2	386	0.77	56	0.17	20	2	391	1.05	50	0.20
	3	382	0.78	56	0.17		3	391	1.05	50	0.21
	1	388	0.80	57	0.18		1	428	1.30	60	0.33
29	2	383	0.81	57	0.18	28	2	432	1.29	60	0.33
	3	376	0.82	56	0.17		3	432	1.27	59	0.32

Table S4 – Evolution of photovoltaic parameters of aqueous DSSCs sensitized with D131:CDCA = 1:1.18 and filled with NaI 4.50 M, I_2 50 mM and CMC 3.5 wt% (cell Na35A) or KI 5.50 M, I_2 50 mM and CMC 3.5 wt% (cell K35B) stored at RT under dark condition.

Table S5 – Evolution of photovoltaic parameters of aqueous DSSCs sensitized with D131:CDCA = 1:1.18 and filled with NaI 4.50 M, I_2 50 mM and CMC 3.5 wt% (cell Na35B) or KI 5.50 M, I_2 50 mM and CMC 3.5 wt% (cell K35B) stored at 60 °C under dark conditions after 6 days of storage at RT.

		v	Na35B	3						K35A			
Time	Run	Voc	J _{sc}	FF	РСЕ	Time @60 °C	Time	Run	Voc	J _{sc}	FF	PCE	Time @60 °C
(d)		(mV)	(mA cm ⁻²)	(%)	(%)	(d)	(d)		(mV)	(mA cm ⁻²)	(%)	(%)	(d)
	1	348	0.40	49	0.07			1	429	1.19	62	0.32	
0	2	341	0.40	48	0.07	0	0	2	426	1.18	62	0.31	0
	3	340	0.41	48	0.07			3	423	1.19	62	0.31	
	1	369	0.53	51	0.10			1	440	1.14	63	0.32	
6	2	360	0.53	51	0.10	0	1	2	436	1.13	63	0.31	0
	3	356	0.53	51	0.10			3	432	1.12	63	0.30	
	1*	305	1.11	43	0.15			1	481	2.28	62	0.68	
7	2*	324	1.12	44	0.16	1	6	2					0
	3*	333	1.13	44	0.17	7		3	474	2.28	62	0.67	
	1	393	1.12	47	0.21	_		1*	383	1.57	57	0.34	
8	2	389	1.13	47	0.21	1	7	2*	401	1.64	59	0.39	1
	3	386	1.13	46	0.20			3*	409	1.68	59	0.41	
	1*	263	0.35	46	0.04			1	475	1.90	63	0.57	
13	2*	282	0.36	48	0.05	6	8	2	472	1.89	63	0.56	1
	3*	289	0.37	49	0.05			3	468	1.89	63	0.55	
	1	399	1.35	51	0.27			1*	379	1.28	57	0.28	
14	2	396	1.36	51	0.27	6	13	2*	397	1.33	59	0.31	6
	3	391	1.37	51	0.27			3*	404	1.35	59	0.32	
	1*	264	0.29	46	0.04			1	470	1.54	63	0.45	
20	2*	280	0.30	48	0.04	12	14	2	464	1.53	63	0.44	6
	3*	287	0.30	48	0.04)4		3	461	1.51	62	0.43	
	1	389	1.19	50	0.23	23		1*	366	1.03	56	0.21	
21	2	387	1.19	50	0.23	12	20	2*	387	1.07	57	0.24	12
	3	384	1.19	50	0.23			3*	395	1.08	58	0.25	

	1	377	1.02	46	0.18			1	453	1.22	61	0.33	
29	2	375	1.01	46	0.17	20	21	2	449	1.18	61	0.32	12
	3	373	1.01	46	0.17			3	446	1.16	61	0.31	
								1*	371	0.90	54	0.18	
							28	2*	386	0.91	55	0.19	19
								3*	392	0.91	55	0.20	
								1	499	1.79	62	0.55	
							29	2	495	1.77	61	0.54	19
								3	491	1.74	61	0.52	
								1	445	1.04	59	0.27	
							36	2	440	1.01	59	0.26	19
								3	438	0.99	59	0.25	

Table	S6 –	Evoluti	on of ph	otovolt	aic par	ameters	s of ac	ueous l	DSSCs se	nsitized	with
D131:	CDCA =	= 1:1.18	and filled	l with N	NaI 4.50	M, I ₂ 5	0 mM a	and CM	C 4.5 wt%	(cell N	(a45A)
or KI 🗄	5.50 M,	I ₂ 50 m	M and CM	1C 4.5 v	vt% (ce	ll K45B) stored	at RT u	nder dark	conditi	ons.
		Na	a45A					K	45B		
Time	Dun	V _{oc}	J _{sc}	FF	PCE	Time	D	V _{oc}	J _{sc}	FF	PCE
(d)	KUN	(mV)	(mA cm ⁻²)	(%)	(%)	(d)	KUN	(mV)	(mA cm ⁻²)	(%)	(%)
	1	427	1.38	56	0.33		1	326	0.32	43	0.04
0	2	421	1.40	56	0.33	0	2	328	0.33	44	0.05
	3	418	1.42	55	0.33		3	333	0.35	46	0.05
	1	443	1.92	59	0.51		1	394	0.72	49	0.14
6	2	442	1.96	60	0.52	6	2	389	0.77	50	0.15
	3	439	1.98	60	0.52		1 394 2 389 3 387	0.79	50	0.15	
	1	440	1.84	59	0.48		1	406	1.09	51	0.23
13	2	438	1.91	60	0.50	13	2	405	1.09	52	0.23
	3	434	1.92	60	0.50		3	401	1.07	52	0.23
	1	441	1.88	60	0.49		1	429	1.33	58	0.33
20	2	439	1.91	61	0.51	20	2	428	1.33	59	0.34
	3	435	1.93	61	0.51		3	425	1.33	59	0.33
	1	436	1.89	60	0.49		1	408	1.17	51	0.25
29	2	433	1.93	61	0.51	28	2	405	1.18	52	0.25
	3	431	1.94	61	0.51		3	405	1.19	52	0.25

Table S7 – Evolution of photovoltaic parameters of aqueous DSSCs sensitized with D131:CDCA = 1:1.18 and filled with NaI 4.50 M, I_2 50 mM and CMC 4.5 wt% (cell Na45B) or KI 5.50 M, I_2 50 mM and CMC 4.5 wt% (cell K45A) stored at 60 °C under dark conditions after 6 days of storage at RT.

		v	Na45E	3						K45A			
Time	Run	Voc	J _{sc}	FF	РСЕ	Time @60 °C	Time	Run	Voc	J _{sc}	FF	PCE	Time @60 °C
(d)		(mV)	(mA cm ⁻²)	(%)	(%)	(d)	(d)		(mV)	(mA cm ⁻²)	(%)	(%)	(d)
	1	409	1.28	57	0.30			1	465	2.23	63	0.65	
0	2	404	1.30	56	0.29	0	0	2	460	2.22	63	0.64	0
	3	400	1.30	55	0.29			3	456	2.21	63	0.63	
	1	421	1.68	60	0.42			1	443	1.13	63	0.32	
6	2	419	1.71	60	0.43	0	1	2	439	1.13	63	0.31	0
	3	416	1.72	60	0.43			3	437	1.13	63	0.31	
	1*	353	2.22	58	0.45			1	475	1.97	63	0.59	
7	2*	369	2.29	59	0.50	1	6	2	469	1.97	63	0.58	0
	3*	379	2.34	60	0.53			3	390	1.26	58	0.29	
	1	435	2.48	62	0.67			1*	405	1.32	60	0.32	
8	2	431	2.48	62	0.66	1	7	2*	412	1.35	61	0.34	1
	3	428	2.47	62	0.65			3*	473	1.52	63	0.46	
	1*	362	1.63	57	0.33			1	470	1.51	64	0.45	
13	2*	371	1.67	57	0.35	6	8	2	465	1.51	63	0.44	1
	3*	376	1.69	58	0.37			3	386	1.06	58	0.24	
	1	426	1.74	60	0.45			1*	399	1.09	59	0.26	
14	2	421	1.74	60	0.44	6	13	2*	407	1.11	60	0.27	6
	3	417	1.73	60	0.43			3*	472	1.25	64	0.38	
	1*	355	1.32	55	0.26			1	469	1.23	63	0.37	
20	2*	362	1.34	56	0.27	12	14	2	465	1.23	63	0.36	6
	3*	367	1.35	56	0.28	8		3	381	0.88	57	0.19	
	1	421	1.45	58	0.36	5 6		1*	395	0.89	58	0.20	
21	2	415	1.43	58	0.34	12	20	2*	401	0.90	58	0.21	12
	3	410	1.41	58	0.34			3*	459	1.02	62	0.29	

	1	409	1.21	56	0.28			1	455	0.99	62	0.28	
29	2	404	1.19	55	0.27	20	21	2	451	0.97	62	0.27	12
	3	400	1.18	55	0.26			3	384	0.80	57	0.17	
								1*	397	0.81	57	0.18	
							28	2*	403	0.81	58	0.19	19
								3*	451	0.90	60	0.24	
								1	450	0.88	60	0.24	
							29	2	447	0.87	60	0.23	19
								3	451	0.88	60	0.24	
								1	449	0.86	60	0.23	
							36	2	446	0.85	60	0.23	19
								3	469	1.23	63	0.37	

Table S8 – Evolution of photovoltaic parameters of aqueous DSSCs sensitized with													
D131:	CDCA =	= 1:1.18	and filled	l with N	aI 4.50	$\mathbf{M}, \mathbf{I}_2 5$	0 mM a	nd CMC	C 5.5 wt%	(cell N	la55A)		
or KI :	5.50 M,	I ₂ 50 mN	A and CM	1C 5.5 v	vt% (ce	ll K45B) stored	at RT u	nder dark	condit	tions.		
		Na	55A					K4	5B				
Time	Dur	V _{oc}	J _{sc}	FF	PCE	Time	D	V _{oc}	J _{sc}	FF	PCE		
(d)	Kun	(mV)	(mA cm ⁻²)	(%)	(%)	(d)	Kun	(mV)	(mA cm ⁻²)	(%)	(%)		
	1	443	2.30	59	0.60		1	461	2.60	60	0.73		
0	2	440	2.32	60	0.61	0	2	458	2.61	61	0.72		
	3	437	2.33	60	0.61	1	3	453	2.61	61	0.72		
	1	442	2.17	60	0.58		1	458	2.31	60	0.63		
6	2	441	2.19	61	0.59	1	2	456	2.32	61	0.64		
	3	438	2.20	61	0.59		3	453	2.34	61	0.64		
	1	430	1.58	59	0.40		1	449	1.87	59	0.50		
13	2	427	1.61	59	0.41	6	2	448	1.90	60	0.51		
	3	424	1.63	59	0.41		3	446	1.91	61	0.52		
	1	438	2.04	61	0.54		1	438	1.64	59	0.42		
20	2	436	2.06	61	0.55	13	2	438	1.68	60	0.44		
	3	432	2.08	61	0.55		3	436	1.70	60	0.45		
	1	441	2.13	61	0.58		1	430	1.48	58	0.37		
29	2	435	2.14	61	0.57	20	2	429	1.50	59	0.38		
	3	431	2.14	62	0.57		3	427	1.52	60	0.39		
							1	431	1.39	58	0.35		
						28	2	431	1.42	59	0.36		
							3	428	1.44	60	0.37		
							1	428	1.36	58	0.34		
						36	2	429	1.39	59	0.35		
							3	427	1.40	60	0.36		

Г

Table S9 – Evolution of photovoltaic parameters of aqueous DSSCs sensitized with D131:CDCA = 1:1.18 and filled with NaI 4.50 M, I₂ 50 mM and CMC 5.5 wt% (cell K55A) stored at 60 °C under dark condition after 6 days of storage at ambient temperature.

			Na55E	;						K55A			
Time	Run	Voc	J _{sc}	FF	РСЕ	Time @60 °C	Time	Run	Voc	J _{sc}	FF	РСЕ	Time @60 °C
(d)		(mV)	(mA cm ⁻²)	(%)	(%)	(d)	(d)		(mV)	(mA cm ⁻²)	(%)	(%)	(d)
	1	445	2.10	58	0.56			1	452	2.13	57	0.55	
0	2	442	2.12	59	0.55	0	0	2	449	2.13	57	0.55	0
	3	438	2.14	59	0.55			3	445	2.12	57	0.54	
	1	439	1.90	59	0.49			1	448	2.12	57	0.54	
6	2	437	1.92	60	0.50	0	1	2	448	2.15	58	0.56	0
	3	435	1.93	60	0.50			3	447	2.16	58	0.56	
	1*	388	2.10	58	0.48			1	437	1.65	55	0.40	
7	2*	404	2.18	59	0.52	1	6	2	438	1.68	57	0.42	0
	3*	412	2.22	59	0.54	4		3	436	1.70	58	0.43	
	1	455	2.60	62	0.74	_		1*	362	1.40	55	0.28	
8	2	451	2.60	62	0.73	1	7	2*	380	1.49	58	0.33	1
	3	447	2.59	62	0.72			3*	389	1.55	59	0.35	
	1*	382	1.77	59	0.40			1	447	1.72	60	0.46	
13	2*	391	1.79	59	0.41	6	8	2	446	1.73	61	0.47	1
	3*	397	1.81	59	0.42			3	443	1.72	61	0.47	
	1	450	1.93	62	0.54			1*	400	1.81	57	0.41	
14	2	445	1.91	61	0.52	6	13	2*	416	1.89	59	0.46	6
	3	441	1.90	61	0.51			3*	424	1.93	60	0.49	
	1*	381	1.49	58	0.33			1	494	2.18	62	0.67	
20	2*	389	1.49	58	0.34	12	14	2	490	2.15	62	0.66	6
	3*	394	1.50	58	0.34	34		3	486	2.14	62	0.64	
	1	372	0.38	59	0.08	34 08		1*	396	1.59	57	0.36	
21	2	368	0.37	59	0.08	12	20	2*	415	1.65	58	0.40	12
	3	364	0.37	59	0.08			3*	424	1.69	59	0.42	

	1	434	1.40	56	0.34			1	494	1.94	61	0.58	
29	2	430	1.36	55	0.32	20	21	2	490	1.92	61	0.57	12
	3	428	1.35	55	0.32			3	485	1.90	61	0.56	
								1*	415	1.55	57	0.36	
							28	2*	432	1.60	58	0.40	19
								3*	437	1.62	58	0.41	
								1	488	1.77	59	0.51	
							29	2	487	1.75	59	0.50	19
								3	483	1.73	59	0.49	
								1	490	1.76	59	0.50	
							36	2	488	1.74	58	0.49	19
								3	484	1.73	58	0.49	

Table S10 – Evolution of photovoltaic parameters of aqueous DSSCs sensitized with D131:CDCA = 1:1.18 and filled with KI 5.50 M, I_2 50 mM and CMC 6.5 wt% (cell K65B) stored at RT under dark conditions.

	K65B											
Time	Run	V _{oc}	J _{sc}	FF	РСЕ							
(d)		(mV)	(mA cm ⁻²)	(%)	(%)							
	1	461	2.08	57	0.55							
0	2	452	2.09	56	0.53							
	3	447	2.09	56	0.53							
	1	470	2.17	60	0.61							
1	2	464	2.16	60	0.60							
	3	459	2.16	60	0.59							
6	1	464	2.02	60	0.56							
	2	462	2.04	60	0.57							
	3	459	2.04	60	0.57							
	1	469	1.93	60	0.55							
13	2	466	1.94	61	0.55							
	3	462	1.95	61	0.55							
	1	467	1.86	60	0.52							
20	2	463	1.87	61	0.52							
	3	459	1.87	60	0.52							
	1	466	1.80	60	0.50							
28	2	464	1.82	61	0.51							
	3	461	1.82	61	0.51							
	1	471	1.76	60	0.50							
36	2	466	1.77	61	0.50							
-	3	462	1.77	61	0.50							

Table S11 – Evolution of photovoltaic parameters of aqueous DSSCs sensitized with D131:CDCA = 1:1.18 and filled with KI 5.50 M, I_2 50 mM and CMC 6.5 wt% (cell K65A) stored at 60 °C under dark condition after 6 days of storage at ambient temperature.

•	K65A												
Time	Run	V _{oc}	J _{sc}	FF	РСЕ	Time @60 °C							
(d)		(mV)	(mA cm ⁻²)	(%)	(%)	(d)							
	1	470	2.13	60	0.60								
0	2	457	2.11	59	0.57	0							
	3	451	2.11	59	0.56								
	1	475	2.34	61	0.67								
1	2	470	2.33	61	0.67	0							
	3	467	2.33	61	0.66								
	1	475	2.16	61	0.63								
6	2	472	2.16	61	0.63	0							
	3	469	2.17	61	0.62								
	1*	401	1.83	59	0.43								
7	2*	414	1.90	61	0.48	1							
	3*	421	1.95	61	0.50								
	1	413	1.85	59	0.45	1							
8	2	426	1.90	60	0.48								
	3	434	1.94	61	0.51								
	1*	481	2.14	63	0.65								
13	2*	478	2.14	64	0.65	6							
	3*	474	2.13	63	0.64								
	1	505	2.18	64	0.70								
14	2	498	2.16	64	0.69	6							
	3	495	2.15	64	0.68								
	1*	429	1.68	60	0.43								
20	2*	440	1.71	60	0.45	12							
	3*	444	1.73	60	0.46								
	1	499	1.94	63	0.61	-							
21	2	495	1.91	62	0.59	12							
	3	488	1.90	62	0.58								
	1*	420	1.56	59	0.39								
28	2*	420	1.56	59	0.39	19							
	3*	439	1.61	60	0.42								
	1	487	1.76	61	0.53								
29	2	484	1.73	61	0.51	19							
	3	481	1.72	61	0.50								
	1	495	1.74	62	0.53								
36	2	491	1.71	61	0.51	19							
	3	486	1.69	61	0.50								

Table S12 – Evolution of photovoltaic parameters of aqueous DSSCs sensitized with
D131:CDCA = 1:1.18 and filled with NaI 4.50 M, I_2 50 mM and CMC 7.5 wt% (cell
Na75A) or KI 5.50 M, I ₂ 50 mM and CMC 7.5 wt% (cell K75B) stored at ambient
temperature under dark condition.

		Na	175A			K75B						
Time	Dur	V _{oc}	J _{sc}	FF	PCE	Time	Dur	V _{oc}	J _{sc}	FF	PCE	
(d)	Run	(mV)	(mA cm ⁻²)	(%)	(%)	(d)	Kun	(mV)	(mA cm ⁻²)	(%)	(%)	
	1	420	1.52	53	0.34		1	456	2.13	61	0.59	
0	2	420	1.54	53	0.34	0	2	452	2.14	61	0.59	
	3	419	1.55	54	0.35		3	448	2.15	61	0.59	
	1	437	1.73	59	0.44		1	459	1.88	61	0.53	
6	2	438	1.75	59	0.45	1	2	455	1.89	61	0.53	
	3	433	1.76	59	0.45		3	451	1.89	61	0.52	
	1	439	2.07	60	0.55		1	437	1.51	59	0.39	
13	2	437	2.10	61	0.56	6	2	437	1.54	60	0.41	
	3	434	2.12	61	0.56		3	435	1.55	61	0.41	
	1	422	1.54	59	0.39		1	440	1.42	59	0.37	
20	2	418	1.54	60	0.39	13	2	439	1.45	60	0.38	
	3	416	1.57	59	0.39		3	436	1.46	61	0.39	
	1	426	1.55	59	0.39		1	438	1.36	59	0.35	
29	2	421	1.57	60	0.40	20	2	436	1.40	60	0.37	
	3	417	1.58	60	0.39		3	432	1.40	61	0.37	
							1	437	1.30	59	0.34	
						28	2	436	1.32	60	0.35	
							3	435	1.33	61	0.35	
							1	438	1.25	59	0.33	
						36	2	437	1.28	60	0.34	
							3	434	1.30	60	0.34	

Table S13 – Evolution of photovoltaic parameters of aqueous DSSCs sensitized with D131:CDCA = 1:1.18 and filled with NaI 4.50 M, I₂ 50 mM and CMC 7.5 wt% (cell Na75B) or KI 5.50 M, I₂ 50 mM and CMC 7.5 wt% (cell K75A) stored at 60 °C under dark condition after 6 days of storage at ambient temperature.

			Na75B	8						K75A															
Time	Run	Voc	J _{sc}	FF	РСЕ	Time @60 °C	Time	Run	Voc	J _{sc}	FF	РСЕ	Time @60 °C												
(d)		(mV)	(mA cm ⁻²)	(%)	(%)	(d)	(d)		(mV)	(mA cm ⁻²)	(%)	(%)	(d)												
	1	381	0.58	52	0.11			1	443	2.090	56	0.52													
0	2	376	0.60	52	0.12	0	0	0	0	0	0	0	0	2	418	0.885	57	0.21	0						
	3	376	0.62	51	0.12			3	414	0.889	57	0.21													
	1	430	1.52	59	0.38			1	421	0.647	60	0.16													
6	2	429	1.54	58	0.39	0	6	2	420	0.655	60	0.17	0												
	3	427	1.55	58	0.39			3	417	0.661	60	0.17													
	1*	388	2.10	58	0.48			1*	389	1.28	57	0.29													
7	2*	404	2.18	59	0.52	1	1	1	1	1	1	1	1	1	7	2*	401	1.34	59	0.32	1				
	3*	412	2.22	59	0.54			3*	409	1.38	59	0.34													
	1	470	2.44	62	0.71			1	392	1.18	59	0.27													
8	2	467	2.44	62	0.71	1	8	2	403	1.22	60	0.29	1												
	3	463	2.44	62	0.70			3	409	1.24	60	0.31													
	1*	418	2.03	59	0.50			1*	473	1.56	63	0.46													
13	2*	426	2.06	59	0.52	6	6	6	6	6	6	6	6	6	6	6	6	6	13	2*	469	1.56	63	0.46	6
	3*	429	2.08	59	0.53			3*	465	1.56	62	0.45													
	1	475	2.22	61	0.64			1	477	1.42	63	0.42													
14	2	472	2.21	61	0.63	6	14	2	473	1.40	63	0.41	6												
	3	469	2.20	60	0.62			3	469	1.38	63	0.40													
	1*	400	1.74	56	0.39			1*	390	1.04	58	0.24													
20	2*	408	1.76	57	0.41	12	20	2*	403	1.07	59	0.25	12												
	3*	413	1.78	57	0.42			3*	410	1.08	59	0.26													
	1	461	1.91	57	0.50			1	466	1.21	61	0.35													
21	2	459	1.89	57	0.50		21	2	461	1.16	61	0.33	12												
	3	456	1.88	57	0.49			3	456	1.15	61	0.32													

	1	448	1.66	49	0.37			1*	403	0.93	57	0.21	
29	2	445	1.65	50	0.37	19	28	2*	410	0.93	58	0.22	19
	3	443	1.64	51	0.37			3*	415	0.93	58	0.23	
								1	458	1.05	59	0.28	
							29	2	453	1.02	59	0.27	19
								3	449	1.00	59	0.26	
								1	458	1.04	59	0.28	
							36	2	453	1.02	59	0.27	19
								3	449	0.99	59	0.26	

Table S14 – List of the weak aspects of 100% aqueous electrolytes present in the literature with respect to the hydrogel proposed in this work.

	1						
Components	J _{sc} (mA cm ⁻²)	V _{oc} (V)	FF	PCE (%)	PCE loss (%)	Ref.	Weak points with respect to this work
NaI 0.10 M and I ₂ 10 mM	1.92	0.498	0.55	0.529	-	[1]	Not stable. Less efficient.
LiI 0.10 M, I ₂ 10 mM, 0.5 wt% к-carrageenan and HNO ₃ (pH 2)	2.69	0.442	0.48	0.586	-	[2]	Not stable. Less efficient. Strongly acidic.
KI 0.50 M and I ₂ 25 mM	2.14	0.44	0.64	0.6	-	[3]	Not stable. Less efficient.
KI 0.50 M and I_2 25 mM	3.61	0.47	0.65	1.1	50% (75 d, dark, RT)	[3]	Not stable.
PMII 2.0 M, I ₂ 50 mM, GuSCN 0.10 M, TBP 0.50 M and Triton X-100 1%	2.28	0.66	0.79	1.16	-	[4]	Not stable. It contains petroleum-derived and toxic additives. Based on our experience, TBP is not soluble in H ₂ O [5]
KI 4.0 M, I ₂ 20 mM, HNO ₃ (pH 4) and BMPP (saturated)	3.97	0.481	0.68	1.34	-	[6]	Not stable.
[Co(bpy) ₃]Cl ₂ 0.13 M, [Co(bpy) ₃]Cl ₃ 40 mM, NMBI 0.80 M	3.4	0.63	0.68	1.4	25% (200 h, 1 sun, RT)	[7]	Less stable. It contains heavy metals and petroleum-derived/toxic additives.
Acrylic acid : Gelatin : $(NH_4)_2S_2O_8 = 10:1:0.08$ polymerized at 80 °C, then swollen in LiI 0.50 M and I ₂ 50 mM	4.3	0.59	0.71	1.80	20% (2 h, dark)	[8]	Less stable. It requires a thermal treatment.
NaI 2.0 M, I ₂ 20 mM, GuSCN 0.50 M and CDCA until saturation	4.91	0.62	0.64	1.88	-	[9]	Not stable.
TEMPOL 1.0 M and NaBF ₄ 1.0 M	4.5	0.69	0.64	2.1	-	[10]	Not stable.
PMII 2.0 M, I ₂ 50 mM, GuSCN 0.10 M, TBP 0.50 M	3.78	0.68	0.82	2.1	-	[4]	Not stable. It contains petroleum-derived and toxic additives. Based on our

and Triton X-100 1%							experience, TBP is not soluble in H_2O [5].
KI 4.0 M, I ₂ 20 mM and CDCA until saturation	4.86	0.600	0.76	2.20	-	[11]	Not stable.
PMII 2.0 M, I ₂ 50 mM, GuSCN 0.10 M, TBP 0.50 M and Triton X-100 1%	4.7	0.74	0.69	2.4	-	[12]	Not stable. It contains petroleum-derived and toxic additives. Based on our experience, TBP is not soluble in H ₂ O [5].
TT-EMI ⁺ 0.20 M, DTT 0.20 M, TBP 0.50 M and 1% Triton X-100	7.2	0.65	0.55	2.6	37% (4 h, 1 sun, RT)	[13]	Not stable. It contains petroleum-derived and toxic additives. Based on our experience, TBP is not soluble in H ₂ O [5].
NaI 2.0 M, I ₂ 20 mM, GuSCN 0.50 M and CDCA until saturation	7.34	0.59	0.63	2.64	-	[9]	Not stable.
KI 2.0 M, I_2 10 mM and CDCA until saturation	6.85	0.650	0.67	3.01	-	[11]	Not stable.
NaI 2.0 M, I ₂ 20 mM, GuSCN 1.0 M, HNO ₃ (pH 3) and CDCA until saturation	8.5	0.59	0.63	3.08	-	[9]	Not stable. Strongly acidic.
GuI 8.0 M, I ₂ 20 mM, CDCA (sat.) and SiO ₂ (5 wt%)	8.20	0.75	0.51	3.13	37% (1200 h, outdoor)	[14]	Lower amount of renewable components. Lack of thermal stability test.
[Co(phen) ₃]Cl ₂ 0.13 M, [Co(phen) ₃]Cl ₃ 40 mM, NMBI 0.80 M	6.3	0.75	0.73	3.4	45% (200 h, 1 sun, RT)	[7]	Less stable. It contains heavy metals and petroleum-derived/toxic additives.
TT-EMI ⁺ 0.20 M, DTT 0.60 M, TBP 0.50 M and 1% Triton X-100	9.5	0.61	0.59	3.5	-	[13]	Not stable. It contains petroleum-derived and toxic additives.
NaI 2.0 M, I ₂ 0.20 M, GuSCN 0.10 M and FC-134 0.2 wt%	10.97	0.53	0.68	3.96	63% (50 d, 1 sun, RT, UV filter)	[15]	Less stable.

GuI 8.0 M, I ₂ 20 mM and CDCA until saturation	10.02	0.61	0.67	4.06	-	[9]	Not stable.
$\begin{array}{c} K_{4}Fe(CN)_{6} \ 0.40 \ M, \ K_{3}Fe(CN)_{6} \\ 40 \ mM, \ KCl \ 0.10 \ M, \ Trizma- \\ HCl \ buffer \ 50 \ mM \ (pH \ 8) \ and \\ Tween \ 20 \ 0.1\% \end{array}$	7.2	0.76	0.75	4.1	50% (2 h)	[16]	Not stable.
[Co(bpy) ₃] ²⁺ 0.20 M, [Co(bpy) ₃] ³⁺ 40 mM, NMBI 0.70 M, PEG 300 1% and Gelatin 15%	7.9	0.70	0.74	4.1	25% (120 d, dark)	[17]	It contains heavy metals and petroleum- derived/toxic additives.
[Co(bpy) ₃] ²⁺ 0.20 M, [Co(bpy) ₃] ³⁺ 40 mM, NMBI 0.70 M and PEG 300 1%	8.3	0.68	0.72	4.2	10% (90 d, dark)	[18]	It contains heavy metals and petroleum- derived/toxic additives.
TEMPO 0.15 M, TEMPOBF ₄ 50 mM, LiClO ₄ 0.10 M and NMBI 0.20 M	5.78	0.955	0.75	4.14	-	[19]	Not stable.
[Co(phen) ₃]Cl ₂ 0.13 M, [Co(phen) ₃]Cl ₃ 60 mM, NMBI 0.80 M	8.6	0.75	0.72	4.8	45% (200 h, 1 sun, RT)	[7]	Less stable. It contains heavy metals and petroleum-derived/toxic additives.
TEMPO 0.40 M, NOBF ₄ 0.40 M, LiI 0.10 M, I ₂ 50 mM, DMPII 0.60 M, GuSCN 0.10 M and Tween 20 0.1%	9.56	0.77	0.67	4.96	-	[20]	Not stable.
[Co(bpy) ₃] ²⁺ 0.20 M, [Co(bpy) ₃] ³⁺ 40 mM, NMBI 0.70 M NMBI and PEG 300 1%	9.8	0.69	0.74	5	Gain 2% (2 d, dark)	[18]	Less stable. It contains heavy metals and petroleum-derived/toxic additives.
[Co(bpy-pz) ₃]Cl ₂ 0.13 M, [Co(bpy-pz) ₃]Cl ₃ 60 mM, NMBI 0.80 M	81	0.90	0.76	5.5	-	[7]	Not stable. It contains heavy metals and petroleum-derived/toxic additives.
[Co(bpy) ₃](NO ₃) ₂ 0.20 M, [Co(bpy) ₃](NO ₃) ₃ 40 mM,	10.17	0.821	0.68	5.64	0% (500 h, dark)	[21]	It contains heavy metals and petroleum- derived/toxic additives.

NMBI 0.70 M and PEG 300 1							
wt%							
JC-IL 0.40 M and NOBF ₄ 0.40 M	9.87	0.88	0.68	5.97	-	[22]	Not stable.

Fig. S1. A) Arrhenius plot showing the ionic conductivity data in the temperature range of -25/+70 °C, for aqueous NaI 0.50 M gels containing different amounts of CMC. The corresponding R^2 values are 0.87 (5 wt%), 0.93 (10 wt%) and 0.95 (20 wt%).; **B)** Differential scanning calorimetry (DSC) trace of the 10 wt% CMC-containing electrolyte: a T_g value equal to +62 °C emerges. The T_g is above the standard operating temperature of DSSCs, therefore we collected almost all ionic conductivity data below the T_g . This means that the VTF behavior cannot be invoked, since it is related to semirandom motion of short polymer segments occurring when electrolytes work in a temperature exceeding the T_g . Thus, we likely attribute the ionic conductivity vs. temperature trend to a mixed Arrhenius / Non-Arrhenius behaviour.

Fig. S2. A) Bode (modulus = open triangles; phase = filled triangles) and **B)** Nyquist plots of a dummy cell filled with aqueous NaI 0.50 M, I_2 30 mM and CMC 10 wt%. The spectra of a dummy cell filled with aqueous NaI 1.5 M + I_2 50 mM are shown for comparison. The spectra were fitted according to Eq. 2 and the equivalent circuit is shown in panel B. according to:

$$Z(\omega) = R_s + \frac{1}{\frac{1}{\left(R_{ct} + Z_d\right)} + T_{Pt}(i\omega)^{\varphi_{Pt}}}$$
(Eq. S1)

where R_S is the series resistance, R_{ct} is the charge transfer resistance at the TiO₂/electrolyte interface, Z_d is the impedance due to ionic diffusion, ω is the frequency of the applied smallamplitude modulated potential, T_{Pt} and φ_{Pt} are the parameters of the constant phase element (CPE) used to describe the double layer capacitance at the Pt/electrolyte interface (C_{Pt} , accounting for the corresponding depressed semicircle in the Nyquist plot). The constraint $0.90 \le \varphi_{Pt} \le 1$ was applied and the double layer capacitance was calculated from the CPE as follows [23]:

$$C_{Pt} = \sqrt[\varphi_{Pt}]{\frac{T_{Pt}}{\sqrt{\frac{R^{(\varphi_{Pt}-1)}}{Pt}}}}$$
(Eq. S2)

where R_{Pt} is the AC resistance to charge transfer at the Pt/electrolyte interface.

Fig. S3. Transmittance of: i) The hydrogel electrolyte proposed in this work (blue curve); ii) The metal-free sensitizer chosen for DSSCs (red curve). It emerges the typical absorption in the near-UV region due to the iodine-based redox couple, and the absorption at low wavelength typical of a yellow dye as D131. This allows to obtain solar cells with a high transmittance (>70%) above 550 nm, which accounts for their suitability in building-integrated applications.

References

[1] H. Zhang, Y. Wang, P. Liu, Y. Li, H. G. Yang, T. An, P. K. Wong, D. Wang, Z. Tang and H. Zhao, *Nano Energy*, 2015, **13**, 124-130.

[2] M. Kaneko, T. Nomura and C. Sasaki, Macromol. Rapid Commun., 2003, 24, 444-446.

[3] H. Saito, S. Uegusa, T. N. Murakami, N. Kawashima and T. Miyasaka, *Electrochemistry*, 2004, **72**, 310-316.

[4] H. Choi, B. S. Jeong, K. Do, M. J. Ju, K. Song and J. Ko, New J. Chem., 2013, 37, 329-336.

[5] F. Bella, S. Galliano, M. Falco, G. Viscardi, C. Barolo, M. Grätzel and C. Gerbaldi, *Chem. Sci.*, 2016, 7, 4880-4890.

[6] R. Cisneros, M. Beley, F. Lapicque and P. C. Gros, *Eur. J. Inorg. Chem.*, 2016, **2016**, 33-39.

[7] H. Ellis, R. Jiang, S. Ye, A. Hagfeldt and G. Boschloo, *Phys. Chem. Chem. Phys.*, 2016, **18**, 8419-8427.

[8] S. Zhang, G. Y. Dong, B. Lin, J. Qu, N. Y. Yuan, J. N. Ding and Z. Gu, *Sol. Energy*, 2016, **127**, 19-27.

[9] C. Law, O. Moudam, S. Villarroya-Lidon and B. C. O'Regan, J. Mater. Chem., 2012, 22, 23387-23394.

[10] R. Kato, F. Kato, K. Oyaizu and H. Nishide, *Chem. Lett.*, 2014, **43**, 480-482.

[11] V. Leandri, H. Ellis, E. Gabrielsson, L. Sun, G. Boschloo and A. Hagfeldt, *Phys. Chem. Chem. Phys.*, 2014, **16**, 19964-19971.

[12] C. H. Law, S. C. Pathirana, X. Li, A. Y. Anderson, P. R. F. Barnes, A. Listorti, T. H. Ghaddar and B. O'Regan, *Adv. Mater.*, 2010, **22**, 4505-4509.

[13] H. Tian, E. Gabrielsson, P. W. Lohse, N. Vlachopoulos, L. Kloo, A. Hagfeldt and L. Sun, *Energy Environ. Sci.*, 2012, **5**, 9752-9755.

[14] O. Moudam and A. El Gamouz, Org. Electron., 2016, 36, 7-11.

[15] H. Zhang, L. Qiu, D. Xu, W. Zhang and F. Yan, J. Mater. Chem. A, 2014, 2, 2221-2226.

[16] T. Daeneke, Y. Uemura, N. W. Duffy, A. J. Mozer, N. Koumura, U. Bach and L. Spiccia, *Adv. Mater.*, 2012, **24**, 1222-1225.

[17] W. Xiang, D. Chen, R. A. Caruso, Y. B. Cheng, U. Bach and L. Spiccia, *ChemSusChem*, 2015, **8**, 3704-3711.

[18] W. Xiang, F. Huang, Y. B. Cheng, U. Bach and L. Spiccia, Energy Environ. Sci., 2013,

6, 121-127.

[19] W. Yang, M. Söderberg, A. I. K. Eriksson and G. Boschloo, *RSC Adv.*, 2015, **5**, 26706-26709.

[20] R. Y. Y. Lin, T. M. Chuang, F. L. Wu, P. Y. Chen, T. C. Chu, J. S. Ni, M. S. Fan, Y. H. Lo, K. C. Ho and J. T. Lin, *ChemSusChem*, 2015, **8**, 105-113.

[21] C. Dong, W. Xiang, F. Huang, D. Fu, W. Huang, U. Bach, Y. B. Cheng, X. Li and L. Spiccia, *Angew. Chem. Int. Ed.*, 2014, **53**, 6933-6937.

[22] R. Y. Y. Lin, F. L. Wu, C. T. Li, P. Y. Chen, K. C. Ho and J. T. Lin, *ChemSusChem*, 2015, **8**, 2503-2513.

[23] J. Macdonald and E. Barsoukov, *Impedance spectroscopy: theory experiment and applications*. 2nd edition, Hoboken (New Jersey): John Wiley & Sons, Inc; 2005.