Supporting Information

Highly efficient metal-free approach to *meta-* and multiple-substituted phenols via a simple oxidation of cyclohexenones

Yu-Feng Liang,[†] Song Song,[†] Lingsheng Ai,[†] Xinwei Li,[†] and Ning Jiao*,^{†,‡}

[†]State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking

University, Xue Yuan Road 38, Beijing 100191, China

*Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry,

East China Normal University, Shanghai 200062, China

E-mail: jiaoning@pku.edu.cn

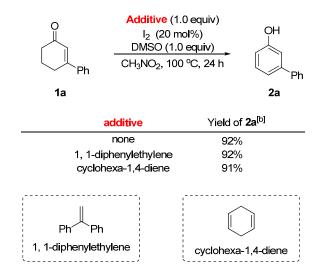

Fax: (+86)10-82805297

Table of Contents

General Remarks	S2
The Effect of Radical Inhibitors	S2
Experimental Section	
Materials Preparation	S3
General Procedure	
Analytical Data for Products	S5
References	S17
¹ H NMR and ¹³ C NMR Spectra	S18

General Remarks

I₂ was purchased from Sigma-Aldrich Chemical Company. DMSO, CH₃NO₂ and other solvents were purchased from Beijing Chemical Works and used as received without further purification. Analysis of crude reaction mixture was done on an Agilent 7890 GC System with an Agilent 5975 Mass Selective Detector. Products were purified by flash chromatography or by preparative thin-layer chromatography on silica gel. ¹H-NMR spectra were recorded on Bruker AVIII-400 spectrometers. Chemical shifts (in ppm) were were calibrated with CDCl₃ (tetramethylsilane, $\delta = 0$ ppm) or CD₃SOCD₃ (dimethyl sulfoxide, $\delta = 2.50$ ppm). ¹³C-NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃ ($\delta = 77.00$ ppm) or CD₃SOCD₃ (dimethyl sulfoxide, $\delta = 39.50$ ppm). Mass spectra were recorded using a PE SCLEX QSTAR spectrometer. High resolution mass spectra were obtained with a Bruker APEX IV Fourier transform ion cyclotron resonance mass spectrometer using electrospray ionisation (ESI). Fourier-transform infrared (FTIR) spectra were obtained with a Nicolet Nexus 470 Fourier transform infrared spectrometer.

The Effect of Radical Inhibitors^[a]

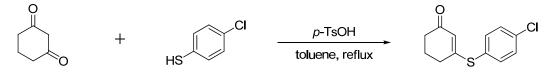
[a] Reaction conditions: **1a** (0.5 mmol), Additive (1.0 equiv), I_2 (20 mol%), DMSO (1.0 equiv), CH₃NO₂ (1 mL) was stirred at 100 °C for 24 h. [b] Isolated yields.

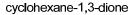
The reactions performed well in the presence of 1,1-diphenylethylene or cyclohexa-1,4-diene producing the desired product 2a in 92% and 91% yields, respectively, which indicate that a radical process might not be involved in the present reaction system.

Experimental Section

1) Materials Preparation

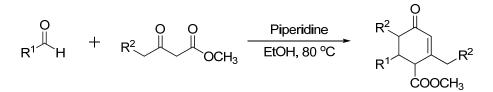
3-ethoxy-2-cyclohexenone


Substrates 3-substituted 2-cyclohexenones **1a-1i**, **1w-1x** were prepared according to the literature¹: 3-ethoxy-2-cyclohexenone (10 mmol, 1.0 equiv) in THF (10 mL) was added dropwise to a solution of a *Grignard* reagent RMgBr (1 M in Et₂O or THF, 1.5-2.0 equiv) at 0 °C under argon. Once the addition was complete, the resulting solution was allowed to warm to room temperature and stirred until TLC indicated complete disappearance of the starting material (2-18 h). The reaction was slowly quenched with diluted aqueous acid (1 M HCl) at 0 °C. The layers were separated, and the aqueous layer extracted with ethyl acetate (3×10 mL). The combined organic layers were washed successively with saturated aqueous NaHCO₃ solution, dried (Na₂SO₄), filtered, and evaporated under reduced pressure. The crude product was purified by flash column chromatography (silica gel, eluent: petroleum ether-ethyl acetate) to yield 3-substituted 2-cyclohexenones.


$$R \xrightarrow{O} Pd(TFA)_2, DMSO \xrightarrow{O} R \xrightarrow{O} R$$

Substrates mono-substituted 2-cyclohexenones **1k-1l**, **1n-1o** were prepared according to the literature²: to a 100 ml round-bottom flask equipped with a stir bar was added $Pd(TFA)_2$ (0.05 equiv) and mono-substituted cyclohexanone (5 mmol). A reflux condenser was place on the flask and sealed with a septum. A balloon was attached via a needle. The flask and balloon were purged and filled with O₂, followed by addition of DMSO (0.1 equiv) and acetic acid (20 ml). The flask was stirred at 80 °C for 12 h. After 12 h, O₂ was vented from the flask. Acetic acid was removed under vacuum using a rotovap. The crude product was purified by flash column chromatography (silica gel, eluent: petroleum ether-ethyl acetate) to yield mono-substituted 2-cyclohexenones.

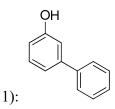
$$R^{1} \xrightarrow{O} R^{2} + \underbrace{O}_{OEt} \xrightarrow{NaOH}_{EtOH, 80 °C} \xrightarrow{O}_{R^{1}} \xrightarrow{COOEt}_{R^{2}} \xrightarrow{NaOH}_{H_{2}O, 80 °C} \xrightarrow{O}_{R^{1}} \xrightarrow{O}_{R^{2}} \xrightarrow$$


Substrates 3,5-diarylcyclohexenones 1q-1r, and 8 were prepared according to the literature³: to a 100 mL three-necked, round-bottomed flask was added chalcone (10 mmol), ethyl acetoacetate (12 mmol, 1.2 equiv), NaOH (0.29 g), and anhydrous ethanol (10 ml). The reaction was heated in an oil bath to reflux with vigorous stirring for an appropriate time until TLC indicated complete disappearance of the starting material (2-5 h). Then 80 ml water was added. And Then NaOH (1.44 g) was following added and continued to reflux (2-5 h). After cooling a period of time, the solution was washed with saturated aqueous NaHCO₃ solution to neutral, dried. The crude product was purified by flash column chromatography (silica gel, eluent: petroleum ether-ethyl acetate) to yield 3,5-diarylcyclohexenones.

4-chlorobenzenethiol

Substrate 3-thioether substituted cyclohexenone 1v was prepared according to the literature⁴: a mixture of cyclohexane-1,3-dione (1.12 g, 10 mmol), 4-chlorobenzenethiol (1.58 g, 11 mmol, 1.1 equiv) and *p*-TsOH (5 mol%) in toluene (10 ml) was refluxed at a Dean-Stark trap until the separation of H₂O had finished (ca. 3 h). The solvent was removed in vacuo and crude product was purified by flash column chromatography (silica gel, eluent: petroleum ether-ethyl acetate) to yield 3-(4-chlorophenylthio) cyclohex-2-enone.

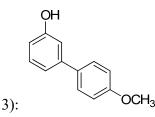
Substrates multiple-substituted 2-cyclohexenones **1s-1u** were prepared according to the literature⁵: piperidine (2 mmol, 40 mol%) was added to a solution of aldehyde (5 mmol) and methyl acetoacetate (10 mmol) in EtOH (8 mL). The resulting mixture was stirred at 80 °C for 6 h. The reaction mixture was then quenched with aqueous NH₄Cl solution, extracted with diethyl ether, and washed with brine. The organic layer was dried with

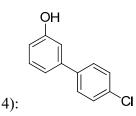

anhydrous MgSO₄. The solution was concentrated by rotary evaporation, and the residue was purified by flash column chromatography (silica gel, eluent: petroleum ether-ethyl acetate) to yield multiple-substituted 2-cyclohexenones.

2) General Procedure

1a (86 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 μ l, 1.0 equiv), CH₃NO₂ (1.0 mL) were added to a 25 mL tube with a magnetic bar. Then the tube was sealed with a cap, and the mixture was stirred at 100 °C for 24 h. After cooling down to room temperature, the solution was diluted with ethyl acetate (10 mL) and washed with 0.1 mol/L Na₂S₂O₃ (5 mL) aqueous solution, extracted with ethyl acetate (3×5 mL), and evaporated under vacuum. The crude reaction mixture was purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1) to get the desired phenol product **2a**.

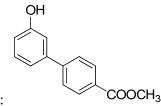
3a (56 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (1.0 mL) were added to a 25 mL tube with a magnetic bar. The mixture was stirred under air at 80 °C for 24 h. After cooling down to room temperature, the solution was diluted with ethyl acetate (10 mL) and washed with 0.1 mol/L Na₂S₂O₃ (5 mL) aqueous solution, extracted with ethyl acetate (3×5 mL), and evaporated under vacuum. The crude reaction mixture was purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 5:1) to get the desired phenol product **4a**.


Analytical Data for Products


3-Phenylphenol (2a).⁶ The reaction of 3-phenylcyclohexenone **1a** (86 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 μ l, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 78 mg (92%) of **2a** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2a**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, *J* = 7.2 Hz, 2 H), 7.41 (t, *J* = 7.2 Hz, 2 H), 7.35-7.27 (m, 2 H), 7.16 (d, *J* = 8.0 Hz, 1 H), 7.05 (t, *J* = 2.0 Hz, 1 H), 6.82-6.79 (s, 1 H), 5.16 (brs, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 155.7, 142.9, 140.6, 129.9, 128.7, 127.4, 127.0, 119.7, 114.1, 114.0 ppm; HRMS m/z (ESI) calcd for C₁₂H₁₁O (M + H)⁺ 171.0804, found 171.0804.

2): OH

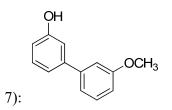
4'-Methylbiphenyl-3-ol (2b).⁷ The reaction of 3-*p*-tolylcyclohex-2-enone **1b** (93 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 µl, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 86 mg (94%) of **2b** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2b**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, *J* = 8.0 Hz, 2 H), 7.26 (t, *J* = 8.0 Hz, 1 H), 7.20 (d, *J* = 8.0 Hz, 2 H), 7.14 (d, *J* = 8.0 Hz, 1 H), 7.02 (s, 1 H), 6.77 (d, *J* = 8.0 Hz, 1 H), 5.14 (brs, 1 H), 2.36 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 155.6, 142.8, 137.7, 137.2, 129.9, 129.4, 126.8, 119.5, 113.9, 113.8, 21.0 ppm; MS (70 ev): m/z (%): 115.1 (15), 65.1 (30), 184.1 (M⁺, 100).



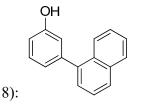
4'-Methoxybiphenyl-3-ol (2c).⁷ The reaction of 3-(4-methoxyphenyl)cyclohex-2-enone **1c** (101 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 µl, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 95 mg (95%) of **2c** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2c**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, *J* = 8.4 Hz, 2 H), 7.26 (t, *J* = 8.0 Hz, 1 H), 7.11 (d, *J* = 7.6 Hz, 1 H), 6.99 (s, 1 H), 6.94 (d, *J* = 8.4 Hz, 1 H), 6.78-6.75 (m, 1 H), 5.18 (brs, 1 H), 3.82 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 159.1, 155.7, 142.5, 133.2, 129.9, 128.1, 119.3, 114.2, 113.7, 113.6, 55.3 ppm; MS (70 ev): m/z (%): 128.1 (30), 157.1 (40), 185.0 (50), 200.1 (M⁺, 100).

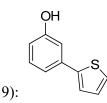
4'-Chlorobiphenyl-3-ol (2d).⁷ The reaction of 3-(4-chlorophenyl)cyclohex-2-enone **1d** (103 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 μ l, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 96 mg (94%) of **2d** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2d**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 8.8 Hz, 2 H), 7.34 (d, *J* = 8.4 Hz, 2 H),

7.27 (t, J = 7.6 Hz, 1 H), 7.10 (d, J = 7.6 Hz, 1 H), 6.99 (s, 1 H), 6.83-6.80 (m, 1 H), 5.38 (brs, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 155.6, 141.7, 138.9, 133.5, 130.1, 128.8, 128.2, 119.6, 114.5, 113.9 ppm; MS (70 ev): m/z (%): 115.0 (10), 141.1 (15), 204.0 (M⁺, 100).



5):

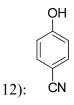

Methyl 3'-hydroxybiphenyl-4-carboxylate (2e).⁷ The reaction of methyl 4-(3-oxocyclohex-1-enyl)benzoate 1e (115 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 µl, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 99 mg (87%) of **2e** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2e**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, *J* = 8.4 Hz, 2 H), 7.61 (d, *J* = 8.4 Hz, 2 H), 7.32 (t, *J* = 8.0 Hz, 1 H), 7.17 (d, *J* = 7.6 Hz, 1 H), 7.11 (s, 1 H), 6.91-6.88 (m, 1 H), 5.81 (brs, 1 H), 3.94 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 167.3, 156.2, 145.3, 141.5, 130.1, 130.0, 128.8, 127.0, 119.6, 115.2, 114.2, 52.2 ppm; MS (70 ev): m/z (%): 115.0 (15), 139.1 (20), 197.0 (100), 228.1 (M⁺, 70).


3'-Hydroxybiphenyl-4-carbonitrile (2f).⁷ The reaction of 4-(3-oxocyclohex-1-enyl)benzonitrile 1f (99 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 μ l, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 87 mg (90%) of 2f purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). 2f: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8.4 Hz, 2 H), 7.66 (d, *J* = 8.4 Hz, 2 H), 7.34 (t, *J* = 8.0 Hz, 1 H), 7.15 (d, *J* = 7.6 Hz, 1 H), 7.06 (s, 1 H), 6.90-6.88 (m, 1 H), 5.05 (brs, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 156.2, 145.2, 140.8, 132.5, 130.3, 127.7, 119.7, 118.8, 115.6, 114.1, 111.1 ppm; MS (70 ev): m/z (%): 140.0 (15), 166.0 (20), 195.1 (M⁺, 100).

3'-Methoxybiphenyl-3-ol (2g).⁷ The reaction of 3-(3-methoxyphenyl)cyclohex-2-enone **1g** (101 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 µl, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 86 mg (86%) of **2g** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2g**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.25 (m, 2 H), 7.13 (t, *J* = 6.0 Hz, 2 H), 7.08 (t, *J* = 2.4 Hz, 1 H), 7.03 (t, *J* = 2.4 Hz, 1 H), 6.90-6.87 (m, 1 H), 6.82-6.79 (m, 1 H), 5.36 (brs, 1 H), 3.83 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 155.7, 142.7, 142.2, 129.9, 129.7, 119.7, 119.6, 114.3, 114.1, 112.9, 112.7, 55.3 ppm; MS (70 ev): m/z (%): 128.1 (20), 157.1 (20), 170.1 (15), 200.1 (M⁺, 100).

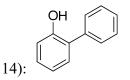
3-(Naphthalen-1-yl)phenol (2h). The reaction of 3-(naphthalen-1-yl)cyclohex-2-enone **1h** (111 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 µl, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 101 mg (92%) of **2h** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2h**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.92-7.82 (m, 3 H), 7.50-7.45 (m, 2 H), 7.39 (t, *J* = 7.2 Hz, 2 H), 7.32 (t, *J* = 7.6 Hz, 1 H), 7.04 (d, *J* = 7.2 Hz, 1 H), 6.93 (s, 1 H), 6.88 (d, *J* = 8.0 Hz, 1 H), 5.20 (brs, 1 H),; ¹³C NMR (100 MHz, CDCl₃): δ 155.3, 142.3, 139.7, 133.7, 131.4, 129.4, 128.2, 127.7, 126.7, 126.0, 125.9, 125.7, 125.3, 122.6, 117.0, 114.1 ppm; MS (70 ev): m/z (%): 189.1 (30), 201.0 (20), 220.1 (M⁺, 100).

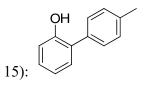
3-(Thiophen-2-yl)phenol (2i).⁸ The reaction of 3-(thiophen-2-yl)cyclohex-2-enone **1i** (89 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 μ l, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 72 mg (82%) of **2i** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2i**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.27-7.17 (m, 4 H), 7.08 (s, 1 H), 7.05 (t, *J* = 4.4 Hz, 1 H), 6.75 (d, *J* = 8.0 Hz, 1 H), 5.13 (brs, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 155.7, 143.8, 135.9, 130.1, 127.9, 124.9, 123.3, 118.6, 114.4, 112.7 ppm; MS (70 ev): m/z (%): 115.0 (15), 147.0 (20), 176.0 (M⁺, 100).


OH 10): OH

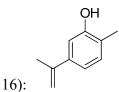
Phenol (2j).⁶ The reaction of cyclohex-2-enone **1j** (48 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 μ l, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 41 mg (88%) of **2j** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2j**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.23 (t, *J* = 8.0 Hz, 2 H), 6.93 (t, *J* = 7.2 Hz, 1 H), 6.82 (t, *J* = 8.0 Hz, 2 H), 5.08 (brs, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 155.3, 129.6, 120.8, 115.2 ppm; MS (70 ev): m/z (%): 55.1 (10), 66.1 (40), 94.1 (M⁺, 100).

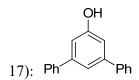
11):

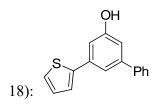

Biphenyl-4-ol (2k).⁶ The reaction of 4-phenylcyclohex-2-enone **1k** (86 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 μ l, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 78 mg (92%) of **2k** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2k**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.53 (t, *J* = 6.8 Hz, 2 H), 7.47 (d, *J* = 8.8 Hz, 2 H), 7.41 (t, *J* = 7.2 Hz, 2 H), 7.30 (t, *J* = 7.2 Hz, 1 H), 6.90 (t, *J* = 8.8 Hz, 2 H), 4.82 (brs, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 154.9, 140.7, 134.0, 128.7, 128.3, 126.7, 115.6 ppm; MS (70 ev): m/z (%): 115.1 (20), 141.1 (20), 170.1 (M⁺, 100).

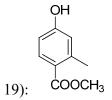

4-Hydroxybenzonitrile (21).⁹ The reaction of 4-oxocyclohex-2-enecarbonitrile **11** (61 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 μ l, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 52 mg (88%) of **21** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **21**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 8.8 Hz, 2 H), 6.93 (d, *J* = 8.8 Hz, 2 H), 6.30 (brs, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 134.3, 119.1, 116.4, 103.3 ppm; MS (70 ev): m/z (%): 64.0 (20), 91.0 (20), 119.0 (M⁺, 100).

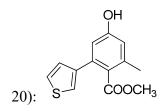
OH 13):

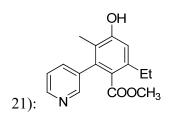

m-Cresol (2m).⁶ The reaction of 3-methylcyclohex-2-enone 1m (55 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 μ l, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 33 mg (61%) of 2m purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). 2m: colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.11 (t, *J* = 8.0 Hz, 1 H), 6.74 (d, *J* = 7.6 Hz, 1 H), 6.65-6.62 (m, 2 H), 5.07 (brs, 1 H), 2.29 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 155.3, 139.8, 129.4, 121.5, 116.0, 112.2, 21.2 ppm; MS (70 ev): m/z (%): 79.1 (50), 90.1 (10), 108.1 (M⁺, 100).


Biphenyl-2-ol (2n).⁷ The reaction of 2-phenylcyclohex-2-enone **1n** (86 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (70 µl, 2.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 64 mg (75%) of **2n** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2n**: white solid; ¹H NMR (400 MHz, CDCI₃): δ 7.51-7.48 (m, 4 H), 7.42-7.38 (m, 1 H), 7.29-7.23 (m, 2 H), 7.02-6.97 (m, 2 H), 5.20 (brs, 1 H); ¹³C NMR (100 MHz, CDCI₃): δ 152.3, 137.0, 130.2, 129.2, 129.1, 129.0, 128.1, 127.8, 120.8, 115.8 ppm; MS (70 ev): m/z (%): 115.1 (40), 141.1 (50), 170.1 (M⁺, 100).

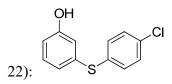

4'-Methylbiphenyl-2-ol (20).¹⁰ The reaction of 2-*p*-tolylcyclohex-2-enone **10** (93 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (70 μ l, 2.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 69 mg (75%) of **20** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **20**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, *J* = 7.6 Hz, 2 H), 7.28 (d, *J* = 8.0 Hz, 2 H), 7.24-7.20 (m, 2 H), 7.00-6.95 (m, 2 H), 5.23 (brs, 1 H), 2.39 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 152.4, 137.6, 134.0, 130.1, 129.9, 128.9, 128.7, 128.0, 120.7, 115.6, 21.1 ppm; HRMS m/z (ESI) calcd for C₁₃H₁₃O (M + H)⁺ 185.0961, found 185.0961.


2-Methyl-5-(prop-1-en-2-yl)phenol (2p).⁵ The reaction of carvone **1p** (75 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (1.0 mL), at 80 °C for 8 h, afforded 57 mg (77%) of **2p** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2p**: colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.06 (d, *J* = 7.6 Hz, 1 H), 6.96 (dd, *J* = 1.6, 7.6 Hz, 1 H), 6.87 (d, *J* = 1.6 Hz, 1 H), 5.30 (brs, 1 H), 5.01-4.97 (m, 2 H), 2.22 (s, 3 H), 2.08 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 153.4, 142.6, 140.4, 130.7, 123.0, 117.9, 112.0, 111.8, 21.6, 15.4 ppm; MS (70 ev): m/z (%): 77.1 (40), 108.1 (50), 133.1 (60), 148.1 (M⁺, 100).

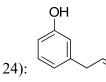

3,5-Diphenylphenol (**2q**).⁶ The reaction of 3,5-diphenylcyclohex-2-enone **1q** (124 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 μ l, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 107 mg (87%) of **2q** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2q**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 7.2 Hz, 4 H), 7.41-7.36 (m, 5 H), 7.32 (t, *J* = 7.2 Hz, 2 H), 7.02 (d, *J* = 1.2 Hz, 2 H), 5.47 (brs, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 156.0, 143.3, 140.6, 128.7, 127.5, 127.1, 118.9, 113.0 ppm; HRMS m/z (ESI) calcd for C₁₈H₁₅O (M + H)⁺ 247.1117, found 247.1119.


5-(Thiophen-2-yl)biphenyl-3-ol (**2r**).¹¹ The reaction of 3-phenyl-5-(thiophen-2-yl) cyclohex-2-enone **1r** (127 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 μ l, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 120 mg (95%) of **1r** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **1r**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.55 (t, *J* = 7.2 Hz, 2 H), 7.43-7.39 (m, 3 H), 7.34 (t, *J* = 7.2 Hz, 1 H), 7.29 (d, *J* = 3.6 Hz, 1 H), 7.26 (d, *J* = 5.2 Hz, 1 H), 7.05-7.03 (m, 2 H), 6.95 (s, 1 H), 5.31 (brs, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 156.0, 143.7, 143.5, 140.3, 136.2, 128.7, 127.9, 127.6, 127.1, 125.0, 123.5, 117.7, 113.3, 111.7 ppm; HRMS m/z (ESI) calcd for C₁₆H₁₃OS (M + H)⁺ 253.0682, found 253.0683.

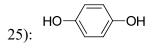
Methyl 4-hydroxy-2-methylbenzoate (2s).⁵ The reaction of methyl 2-methyl-4oxocyclohex-2-enecarboxylate **1s** (84 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 μ l, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 60 mg (72%) of **2s** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2s**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 9.2 Hz, 1 H), 6.78 (s, 1 H), 6.72-6.70 (m, 2 H), 3.87 (s, 3 H), 2.55 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 168.3, 159.3, 143.4, 133.3, 121.2, 118.4, 112.7, 51.8, 22.1 ppm; HRMS m/z (ESI) calcd for C₉H₁₁O₃ (M + H)⁺ 167.0703, found 167.0703.



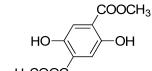
Methyl 4-hydroxy-2-methyl-6-(thiophen-3-yl)benzoate (2t). The reaction of methyl 2-methyl-4-oxo-6-(thiophen-3-yl)cyclohex-2-enecarboxylate **1t** (125 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 µl, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 90 mg (73%) of **2t** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2t**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.28 (m, 1 H), 7.18 (dd, J = 1.6, 3.2 Hz, 1 H), 7.05 (dd, J = 1.2, 4.8 Hz, 1 H), 6.66 (d, J = 2.4 Hz, 1 H), 6.58 (d, J = 2.0 Hz, 1 H), 6.23 (brs, 1 H), 3.65 (s, 3 H), 2.28 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 171.2, 156.4, 140.8, 137.7, 136.6, 127.6, 125.6, 125.2, 122.2, 116.0, 113.7, 52.1, 19.7 ppm; HRMS m/z (ESI) calcd for C₁₃H₁₂NaO₃S (M + Na)⁺ 271.0399, found 271.0400.


Methyl 6-ethyl-4-hydroxy-3-methyl-2-(pyridin-3-yl)benzoate (2u). The reaction of methyl 2-ethyl-5-methyl-4-oxo-6-(pyridin-3-yl)cyclohex-2-enecarboxylate **1u** (137 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 μ l, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 106 mg (78%) of **2u** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2u**: white solid; ¹H NMR (400 MHz,

CDCl₃): δ 11.03 (s, 1 H), 8.84 (d, J = 1.6 Hz, 1 H), 8.57 (dd, J = 1.6, 4.2 Hz, 1 H), 7.77 (d, J = 8.0 Hz, 1 H), 7.37-7.34 (m, 1 H), 6.84 (brs, 1 H), 3.57 (s, 3 H), 2.72 (q, J = 7.2 Hz, 2 H), 2.33 (s, 3 H), 1.21 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 170.5, 157.1, 148.1, 147.1, 142.6, 138.2, 136.4, 133.9, 124.3, 124.0, 123.4, 113.8, 51.7, 24.5, 14.6, 11.2 ppm; HRMS m/z (ESI) calcd for C₁₆H₁₈NO₃ (M + H)⁺ 272.1281, found 272.1274.

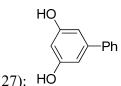

3-(4-Chlorophenylthio)phenol (2v). The reaction of 3-(4-chlorophenylthio)cyclohex-2enone **1v** (119 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 µl, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 100 mg (85%) of **2v** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2v**: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.25 (m, 4 H), 7.16 (t, *J* = 8.0 Hz, 1 H), 6.88-6.86 (m, 1 H), 6.74 (t, *J* = 6.4 Hz, 1 H), 6.71-6.88 (m, 1 H), 5.09 (brs, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 156.0, 137.0, 133.5, 133.4, 132.7, 130.3, 129.3, 122.9, 117.1, 114.3 ppm; HRMS m/z (ESI) calcd for C₁₂H₁₀ClOS (M + H)⁺ 237.0135, found 237.0138.

3-Vinylphenol (2w).¹² The reaction of 3-vinylcyclohex-2-enone **1w** (61 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (70 µl, 2.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 8 h, afforded 27 mg (45%) of **2w** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2w**: colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.19 (t, *J* = 7.6 Hz, 1 H), 6.98 (d, *J* = 7.6 Hz, 1 H), 6.88 (s, 1 H), 6.74-6.62 (m, 2 H), 5.72 (d, *J* = 18.0 Hz, 1 H), 5.24 (d, *J* = 10.8 Hz, 1 H), 4.80 (brs, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 155.6, 139.3, 136.4, 129.7, 119.1, 114.8, 114.3, 112.7 ppm; MS (70 ev): m/z (%): 65.0 (20), 91.1 (80), 120.1 (M⁺, 100).

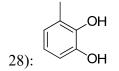


3-Allylphenol (2x).¹³ The reaction of 3-allylcyclohex-2-enone **1x** (68 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (70 μ l, 2.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 8 h, afforded 33 mg (49%) of **2x** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **2x**: colorless liquid; ¹H NMR (400 MHz, CDCl₃):

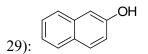
δ 7.15 (t, J = 7.6 Hz, 1 H), 6.89 (d, J = 8.0 Hz, 1 H), 6.79 (s, 1 H), 6.66 (dd, J = 2.4, 8.0 Hz, 1 H), 6.34 (d, J = 15.6 Hz, 1 H), 6.27-6.16 (m, 1 H), 4.79 (brs, 1 H), 1.87-1.85 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 155.5, 139.7, 130.6, 129.6, 126.2, 118.7, 113.7, 112.4, 18.3 ppm; MS (70 ev): m/z (%): 77.0 (30), 105.1 (30), 134.1 (M⁺, 100).

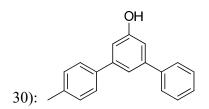


1,4-Dihydroxybenze (4a).¹⁴ The reaction of methyl cyclohexane-1,4-dione **3a** (56 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (1.0 mL), at 80 °C for 12 h, afforded 45 mg (82%) of **4a** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 5:1). **4a**: white solid; ¹H NMR (400 MHz, CD₃SOCD₃): δ 8.60 (s, 2 H), 6.56 (s, 4 H); ¹³C NMR (100 MHz, CD₃SOCD₃): δ 149.7, 115.6 ppm; MS (70 ev): m/z (%): 53.0 (30), 81.0 (40), 110.0 (M⁺, 100).

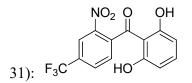


26): H₃COOC


Dimethyl 2,5-dihydroxyterephthalate (4b).¹⁵ The reaction of dimethyl 2,5-dioxocyclohexane-1,4-dicarboxylate **3b** (114 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (1.0 mL), at 80 °C for 12 h, afforded 98 mg (87%) of **4b** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **4b**: yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 10.03 (s, 2 H), 7.43 (s, 2 H), 3.96 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ 169.4, 152.8, 118.2, 117.6, 52.7 ppm; MS (70 ev): m/z (%): 134.0 (30), 162.0 (80), 194.0 (100), 226.0 (M⁺, 30).

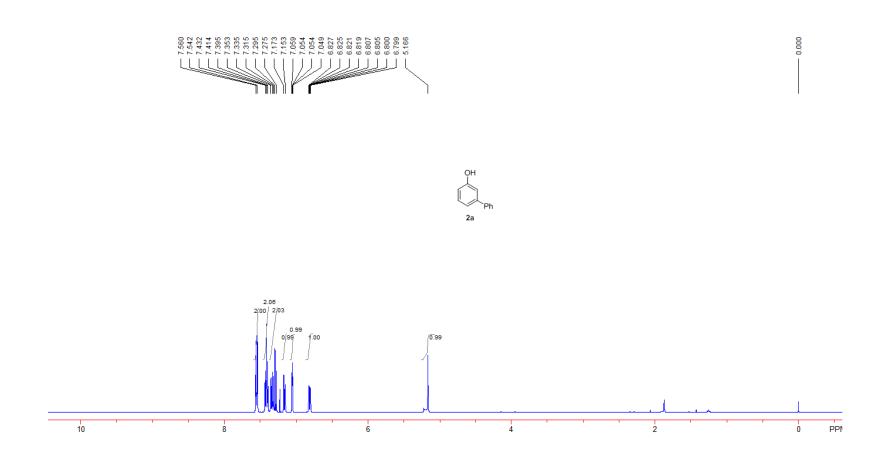

Biphenyl-3,5-diol (4c).¹⁶ The reaction of methyl 5-phenylcyclohexane-1,3-dione **3c** (94 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (1.0 mL), at 80 °C for 12 h, afforded 84 mg (90%) of **4c** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 5:1). **4c**: white solid; ¹H NMR (400 MHz, CD₃SOCD₃): δ 9.39 (s, 2 H), 7.54 (d, *J* = 7.6 Hz, 2 H), 7.41 (t, *J* = 7.2 Hz, 2 H), 7.31 (t, *J* = 7.6 Hz, 1 H), 6.51 (s, 2 H), 6.29 (s, 1 H); ¹³C NMR (100 MHz, CD₃SOCD₃): δ 158.9, 142.3, 140.7, 128.8, 127.4, 126.5, 105.0, 101.8 ppm; MS (70 ev): m/z (%): 115.0 (10), 128.1 (10), 186.1 (M⁺, 100).

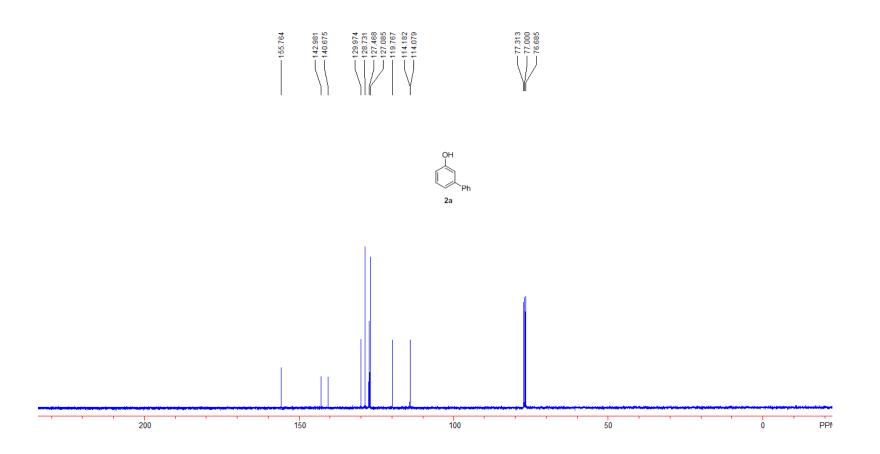
3-Methylbenzene-1,2-diol (4d).¹⁷ The reaction of 3-methylcyclohexane-1,2-dione **3d** (63 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (1.0 mL), at 80 °C for 12 h, afforded 16 mg (26%) of **4d** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 5:1). **4d**: white solid; ¹H NMR (400 MHz, CD₃Cl₃): δ 6.70 (s, 2 H), 5.14 (s, 2 H), 2.25 (s, 6 H); ¹³C NMR (100 MHz, CD₃Cl₃): δ 142.9, 142.0, 124.4, 122.9, 120.1, 112.9, 15.4 ppm. The yield of product **4d** is really not good (26% yield). We have tried to employ the GC-MS as well as ¹H NMR method to find some byproduct. However, no obvious byproduct was detected. The starting material **3d** is fully converted, whereas affording product **4d** in low yield. When **4d** was tested as substrate under the standard conditions, 87% of **4d** could be isolated. And thus the low reaction yield is not attributed to the unstable of **4d** under the standard conditions. On the basis of above results, we think that probably because of the easy decomposition character of reaction intermediate, such as α -iodo cyclohexenone **B** (see the proposed mechanism in Text), leading the low yield of product **4d**.

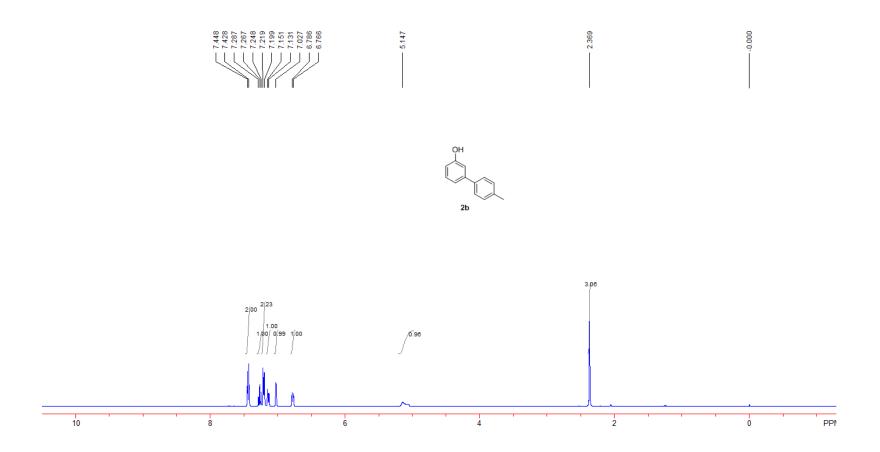


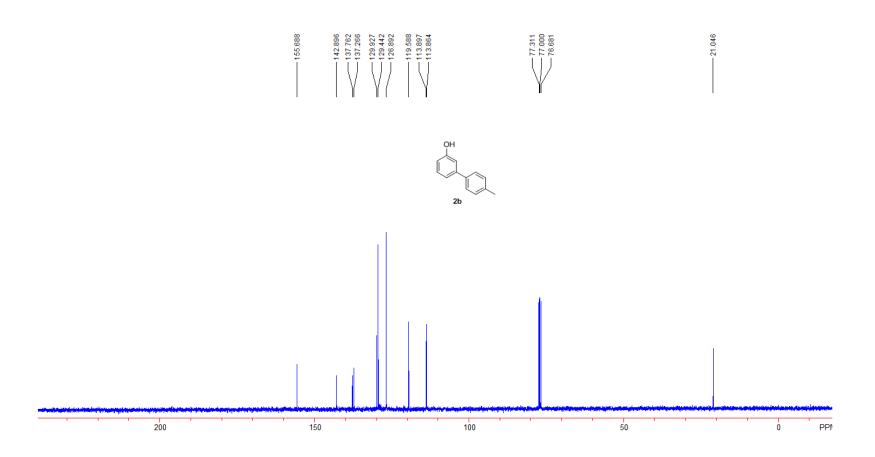
Naphthalen-2-ol (4e).¹⁸ The reaction of methyl 2-tetralone **3e** (73 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (1.0 mL), at 80 °C for 12 h, afforded 48 mg (66%) of **4e** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **4e**: white solid; ¹H NMR (400 MHz, CD₃Cl₃): δ 7.77-7.37 (m, 2 H), 7.67 (d, *J* = 8.4 Hz, 1 H), 7.42 (t, *J* = 8.0 Hz, 1 H), 7.32 (t, *J* = 8.0 Hz, 1 H), 7.14 (d, *J* = 2.4 Hz, 1 H), 7.09 (dd, *J* = 2.4, 8.8 Hz, 1 H), 4.95 (s, 1 H); ¹³C NMR (100 MHz, CD₃Cl₃): δ 153.2, 134.5, 129.8, 128.9, 127.7, 126.5, 126.3, 123.6, 117.6, 109.4 ppm; MS (70 ev): m/z (%): 89.1 (10), 115.1 (70), 144.1 (M⁺, 100).

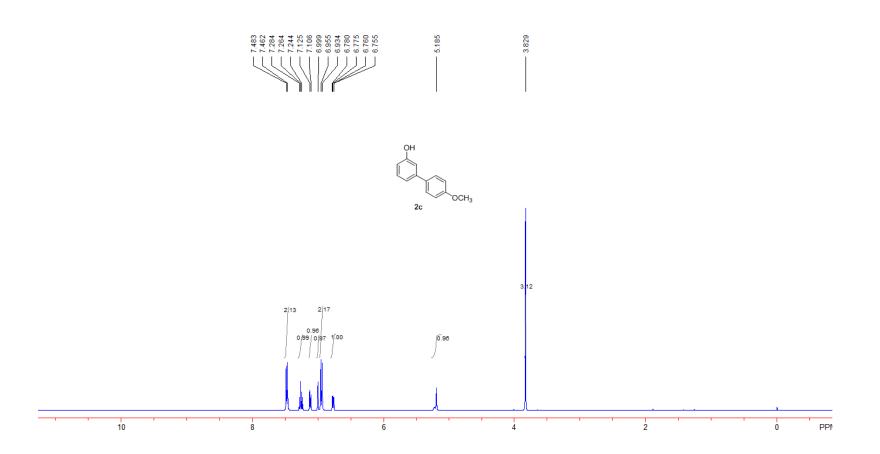
(4'-Methylphenyl)-5-phenylphenol (7).⁶ The reaction of 3-(4'-methylphenyl)-5-phenylcyclohexenone 8 (132 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (35 μ l, 1.0 equiv), in CH₃NO₂ (1.0 mL), at 100 °C for 24 h, afforded 112 mg (86%) of 7 purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). 7: white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, *J* = 7.2 Hz, 2 H), 7.49 (d, *J* = 8.0 Hz,

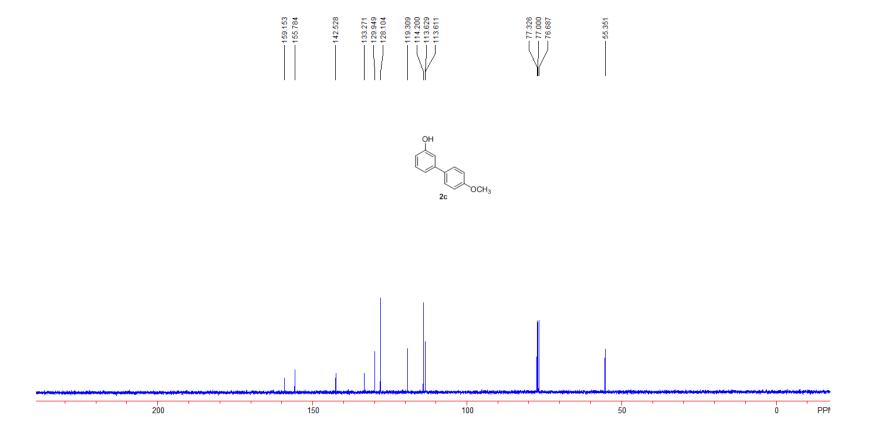

2 H), 7.41 (t, J = 7.6 Hz, 2 H), 7.37-7.32 (m, 2 H), 7.22 (d, J = 7.6 Hz, 2 H), 7.00 (s, 2 H), 5.21 (brs, 1 H), 2.38 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 156.0, 143.33, 143.30, 140.7, 137.7, 137.4, 129.4, 128.7, 127.5, 127.1, 126.9, 118.7, 112.8, 112.7, 21.0 ppm; HRMS m/z (ESI) calcd for C₁₉H₁₇O (M + H)⁺261.1274, found 261.1276.

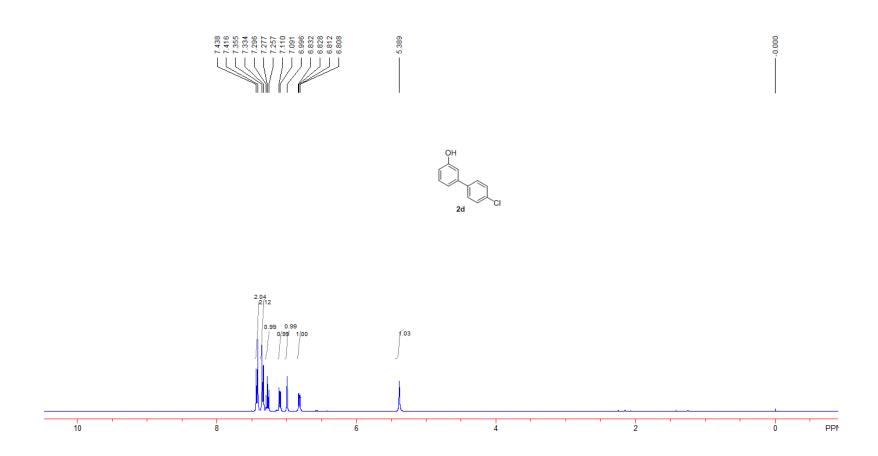

(2,6-Dihydroxyphenyl)(2-nitro-4-(trifluoromethyl)phenyl)methanone (10). The reaction of 2-(2-nitro-4-(trifluoromethyl)benzoyl)cyclohexane-1,3-dione 9 (165 mg, 0.5 mmol), I₂ (26 mg, 20 mol%), DMSO (1.0 mL), at 60 °C for 24 h, afforded 118 mg (72%) of **10** purified by column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 10:1). **10**: yellow solid; ¹H NMR (400 MHz, CD₃Cl₃): δ 8.88 (brs, 2 H), 8.45 (s, 1 H), 7.97 (d, *J* = 8.0 Hz, 1 H), 7.49 (d, *J* = 8.0 Hz, 1 H), 7.32-7.25 (m, 1 H), 6.35 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CD₃Cl₃): δ 196.0, 160.7, 145.2, 141.8, 138.0, 132.0 (q, *J* = 34.4 Hz), 130.9 (q, *J* = 2.7 Hz), 127.9, 122.6 (q, *J* = 272.2 Hz), 121.2 (q, *J* = 3.4 Hz), 108.9, 108.5 ppm; HRMS m/z (ESI) calcd for C₁₄H₉F₃NO₅ (M + H)⁺ 328.0427, found 328.0429.

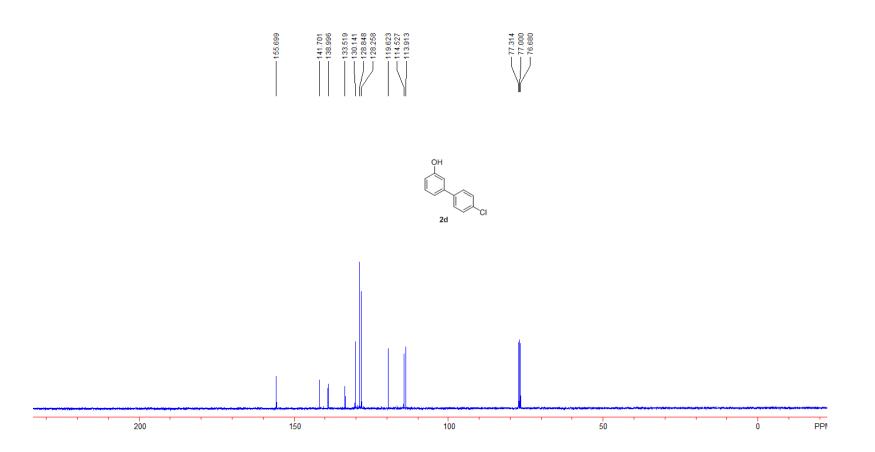

References:

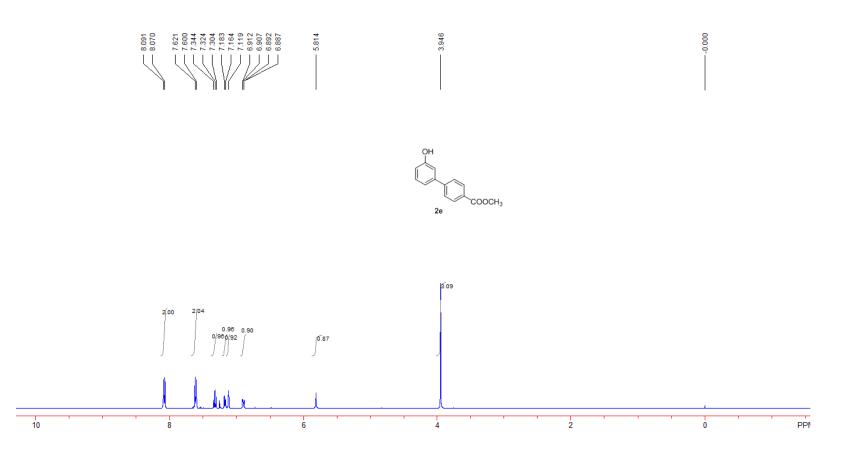

- (1) (a) G. F. Woods and I. W. Tucker, *J. Am. Chem. Soc.*, 1948, **70**, 2174; (b) G. F. Woods, P. H. Griswold, B. H. Armbrecht, D. I. Blumenthal and R. Plapinger, *J. Am. Chem. Soc.*, 1949, **71**, 2028;
 (c) O. Lifchist, M. Mahlau, C. M. Reisinger, A. Lee, C. Farès, I. Polyak, G. Gopakumar, W. Thiel and B. List, *J. Am. Chem. Soc.*, 2013, **135**, 6677.
- (2) T. Diao and S. S. Stahl, J. Am. Chem. Soc., 2011, 133, 14566.
- (3) J. T. Li, Y. Cui, G. F. Chen and Z. L. Cheng, Syn. Commun., 2003, 33, 353.
- (4) H.-J. Hemmerling and G. Reiss, Synthesis, 2009, 6, 985.
- (5) D. B. Ramachary, K. Ramakumar and V. V. Narayana, J. Org. Chem., 2007, 72, 1458.
- (6) Y. Izawa, D. Pun and S. S. Stahl, Science, 2011, 333, 209.
- (7) Y. Izawa, C. Zheng and S. S. Stahl, Angew. Chem., Int. Ed., 2013, 52, 3672.
- (8) K. Kikushima and Y. Nishina, RSC Adv., 2013, 3, 20150.
- (9) H. Yang, Y. Li, M. Jiang, J. Wang and H. Fu, Chem. Eur. J., 2011, 17, 5652.
- (10) K. Yang, J. Zhang, Y. Li, B. Cheng, L. Zhao and H. Zhai, Org. Lett., 2013, 15, 808.
- (11) J. Zhang, Q. Jiang, D. Yang, X. Zhao, Y. Dong and R. Liu, Chem. Sci., 2015, 6, 4674.
- (12) E. Nomura, A. Hosoda, H. Mori and H. Taniguchi, Green Chem., 2005, 7, 863.
- (13) J. H. P. Tyman and P. B. Payne, J. Chem. Res., 2006, 11, 691.
- (14) R. Bernini, A. Coratti, G. Provenzano, G. Fabrizi and D. Tofani, Tetrahedron, 2005, 61, 1821.
- (15) L. Hintermann and K. Suzuki, Synthesis, 2008, 14, 2303.
- (16) G. C. Dol, P. C. J. Kamer and P. W. N. M. van Leeuwen, Eur. J. Org. Chem., 1998, 359.
- (17) C. Huang, N. Ghavtadze, B. Chattopadhyay and V. Gevorgyan, J. Am. Chem. Soc., 2011, 133, 17630.
- (18) F. C. Gozzo, S. A. Fernandes, D. C. Rodrigues, M. N. Eberlin and A. J. Marsaioli, J. Org. Chem., 2003, 68, 5493.

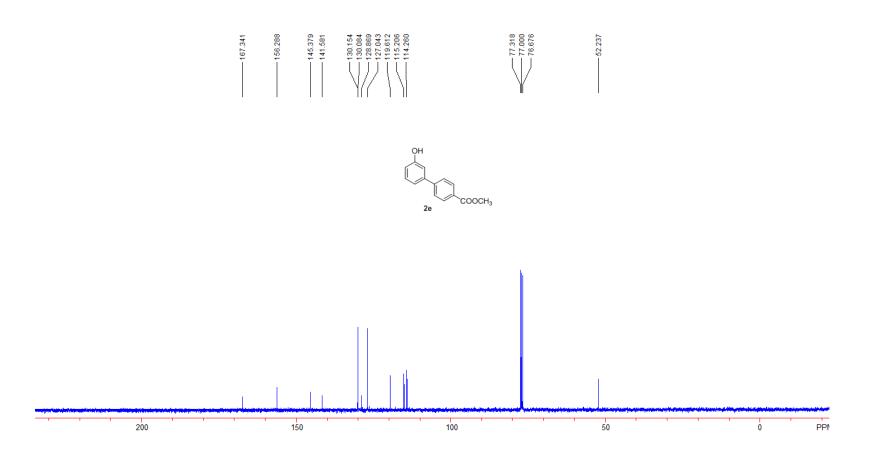


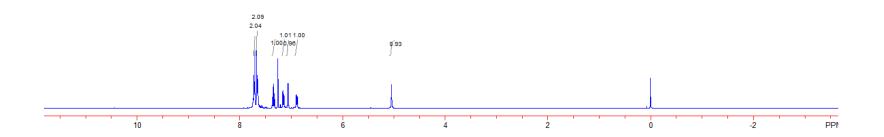

S18

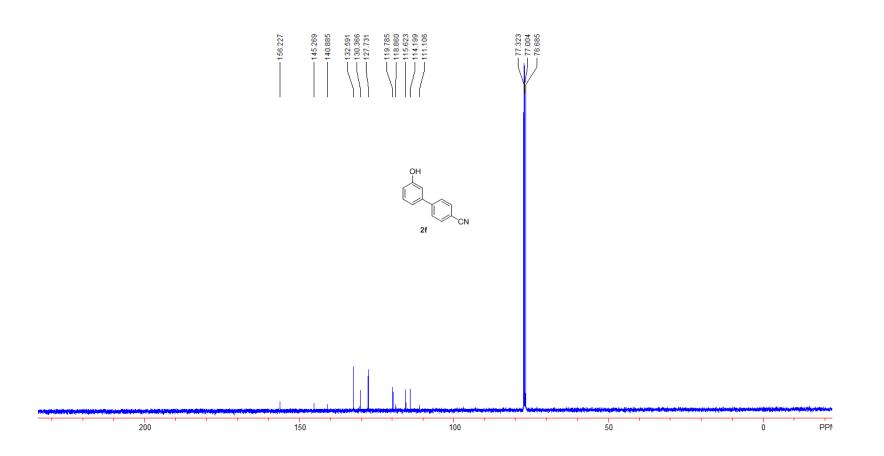


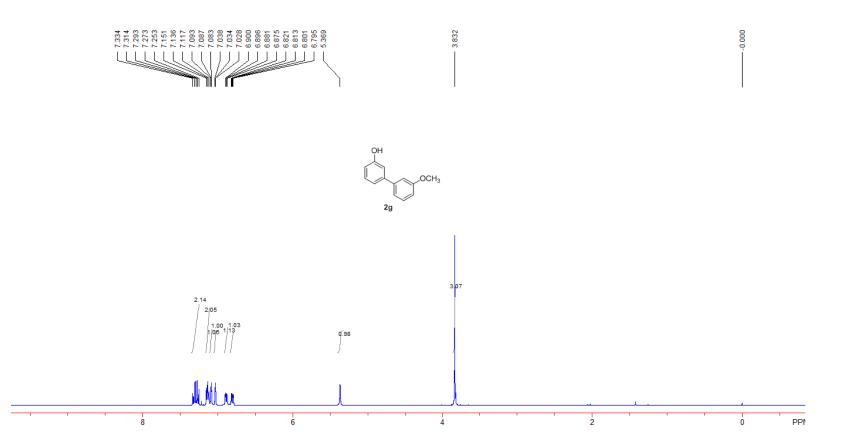













T

