Supporting Information for

Fully enzymatic esterification/transesterification sequence for the preparation of symmetrical and unsymmetrical trehalose diacyl conjugates

Sunchu Prabhakar^{a,b}, Thomas Vivès^{a,b}, Vincent Ferrières^{a,b}, Thierry Benvegnu^{a,b},

Laurent Legentil^{a,b*} and Loïc Lemiègre^{a,b*}

- (a) Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
- (b) Université Bretagne Loire, France

^{*} Corresponding author: Tel.: +33 223 238 133; Fax: +33 223 238 046. *E-mail address*: <u>loic.lemiegre@ensc-rennes.fr</u>; <u>laurent.legentil@ensc-rennes.fr</u>

Enzyme activity after thermal or microwave exposure

The enzyme activity was monitored thanks to a colorimetric assay corresponding to the enzymatic hydrolysis of p-nitrophenyl linoleate that produces the UV-vis *p*-nitrophenolate (λ = 405nm).

The enzyme was exposed to a temperature of 46°C and to microwave irradiation and both experiments were compared to enzyme activity of an untouched enzyme.

Reactants:

	Reactant	MW	Masse	n (mmol)	Volume (µL)	С	Volume total
			(mg)				
1	pNP linoleate	401.55	7,3	0.032		0.1	2 mL
3	CalB		0.3		300		

Solvents:

Name	Volume (µL)
Phosphate buffer pH 8	300
DMSO	30

Untouched enzyme (Absorbance vs time (min))

Microwave exposition (Absorbance vs time (min))

Enzyme kinetics

Lipase-catalyzed esterification of linoeic acid with trifluoroethanol was investigated varying acid concentration between 0.2 and 2 mol.L⁻¹ and alcohol concentration between 0.5 and 3 mol.L⁻¹.

Briefly, to a suspension of Imb CalB (30 mg) in tBuOH was added M.S. 4A (30 mg) and linoleic acid. After 5 min. stirring at 46 °C trifluoroethanol was added. The different tubes were sealed and shacked at 250 rpm. 100μ L of the reaction media was withdrawn at 19, 34, 49 and 64 min. Each sample was dissolved in 900 μ L MeOH to which was added 50 μ L of a solution of methyl myristate in MeOH (from a 10 mg.mL⁻¹ solution). Each sample was analyzed using a GC2014 gas chromatograph (Shimadzu) equipped with a flame ionization detector (FID). The column used was a DB-23 (Agilent J&W Scientific), 30 m x 0.25 mm, 0.25 μ m film thickness with helium as carrier gas at constant linear velocity u=36 cm/sec. The oven temperature started at 80°C during 4.5 min, increased by 4°C/min until 280°C and held it during 8 min. Concentration of trifluoroethyl linoleate was determined thanks to a calibration curve with methyl myristate as internal standard. The quantified data obtained for 10% conversion was plotted to calculate initial rates of the reaction.

The reaction rate calculated from primary plots of substrate concentration versus time were used to construct the Lineweaver-Burk plot (Figure 1). A set of parallel lines was obtained indicating a ping-pong bi-bi mechanism with no significant inhibition within the studied concentration range. Consequently the kinetic parameters were obtained according to the simplified expression:

 $\frac{1}{V0} = \left[1 + \frac{Km(acid)}{[acid]} + \frac{Km(OH)}{[OH]}\right] \frac{1}{Vmax}$

Where Km(acid) and Km(OH) are the Michaelis-Menten constant with respect to linoleic acid and trifluoroethanol, Vmax is the maximum esterification rate and [acid] and [OH] represent the initial concentration of linoleic acid and trifluoroethanol respectively. The slopes of the parallel lines of figure 1 are independent of the alcohol concentration yielding an average value of $K_{m(Acid)}/V_{max} = 10.2$ mg.min. The y-axis intercepts from figure 1 when plotted against the reciprocal of trifluoroethanol concentration. The corresponding plot (Figure 2) gave a slope of 13.5 mg.min ($K_{m(OH)}/V_{max}$) and intercept the y-axis at 14 mol⁻¹.L.mg.min. It allowed to calculate both $K_{m(Acid)} = 0.7$ mol.L⁻¹ and $K_{m(OH)} = 0.9$ mol.L⁻¹.

prsunchu-2R-17-3.11.fid A4-C13CPD64 CDCL3+MEOD {C:\spectres} passeur 27

