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General Information
Commercially available compounds were purchased and used as received unless otherwise stated. 1H 

and 13C spectra were obtained with a Bruker Avance II 400 MHz, Bruker Avance 500 MHz or a Bruker 

Avance III 500 MHz spectrometer with the solvent peak used as the internal standard. Multiplicities 

are described using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet and m 

= multiplet and the J couplings are reported in Hz. NMR spectra were processed using TopSpin 3.1 (PC 

version) or MestReNova. Column chromatography was performed using Merck Geduran® Si 60 silica 

gel. Thin layer chromatography was performed on pre-coated glass plates (Silica Gel 60A, Fluorochem) 

and visualised under UV light (254 nm) or by staining with KMnO4. IR spectra were obtained on a 

Shimadzu IRAffinity-1 FourierTransform IR spectrophotometer as thin films. Analysis was carried out 

using Shimadzu IRsolution v1.50 and only characteristic peaks are reported. Melting points were 

recorded on an Electrothermal 9100 melting point apparatus. Mass spectrometry data were acquired 

through the University of St Andrews School of Chemistry mass spectrometry service or through the 

EPSRC national mass spectrometry service centre (Swansea, UK). 
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Figure S1 Photos showing the consistency of the pulps obtained after high alcohol pretreatments (0.2 
M HCl, 6 hours).
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Models Compound Synthesis
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Model compounds S1-3 were synthesised according to previous reports.1, 2 

General Procedures
General Procedure A: Ethanol substitution of β-O-4 model compound
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To a solution of β-O-4 model compound (1 eq.) in ethanol was added concentrated hydrochloric acid. 

The reaction mixture was then heated to reflux for 16 h. The mixture was then quenched by addition 

of NaHCO3 and extracted with EtOAc (x 3). The combined organic layers were then washed with brine 

and dried MgSO4, then concentrated by rotary evaporation. Quantities of reagents, reactants and 

solvents are specified below for each reaction.

General Procedure B: Butanol substitution of β-O-4 model compound
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To a solution of β-O-4 model compound (1 eq.) in n-butanol was added concentrated hydrochloric 

acid. The reaction mixture was then heated to reflux for 5 h. The mixture was then quenched by 

addition of NaHCO3 and extracted with EtOAc (x 3). The combined organic layers were then washed 
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with brine and dried MgSO4, then concentrated by rotary evaporation. Quantities of reagents, 

reactants and solvents will be specified for each reaction.

Organosolv Models

3-(3,4-Dimethoxyphenyl)-3-ethoxy-2-(2-methoxyphenoxy)propan-1-ol (S4)
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S4 was prepared from β-O-4 model compound S1 (0.25 g, 0.74 mmol, 1 eq.) and hydrochloric acid (12 

M, 0.15 mL) in ethanol (5 mL) using general procedure A. Purification was achieved by column 

chromatography (10-30% EtOAc/petroleum ether), followed by washing with 50 wt% sodium bisulfite 

solution. Compound S4 was obtained as a pale yellow oil (0.21 g, 0.58 mmol, 78%, major:minor = 

2.07:1). 1H NMR (400 MHz, Acetone) δ 7.02 (dt, J = 11.5, 8.4 Hz, 1H, 6), 6.80 – 6.62 (m, 6H, 6 x Ar-H), 

4.77 (dd, J = 22.4, 6.1 Hz, 1H, Hα), 4.20 – 4.11 (m, 1H, Hβ), 3.85 (s, 3H, OCH3), 3.84 (s, 3H, OMe), 3.80 

(s, 3H, OMe), 3.75 – 3.71 (m, 1H, Hγ), 3.59 – 3.50 (m, 1H, Hγ), 3.45 – 3.31 (m, 2H, OCH2), 1.19 (t, J = 

7.0 Hz, 3H, CH2CH3), 1.13 – 1.08 (m, 3H, CH2CH3). 

1H NMR (400 MHz, CDCl3) δ 7.29 (dd, J = 7.8, 1.7 Hz, 1H, minor), 7.02 (ddd, J = 7.7, 7.7, 1.6 Hz, 1H, 

minor), 6.99 – 6.88 (m, 3H major, 4H minor), 6.87 – 6.81 (m, 2H, major, 1H, minor), 6.75 (ddd, J = 7.8, 

7.8, 1.6 Hz, 1H, major), 6.50 (dd, J = 7.8, 1.6 Hz, 1H, major), 4.53 (d, J = 7.5 Hz, 1H, major), 4.50 (d, J = 

7.3 Hz, 1H, minor), 4.18 (ddd, J = 6.9, 6.9, 3.5 Hz, 1H, minor), 4.07 (ddd, J = 7.8, 4.2, 4.2 Hz, 1H, major), 

3.97 – 3.80 (m, 11H, major, 9H, minor), 3.57 – 3.20 (m, 2H, major, 4H, minor), 3.28 – 3.20 (m, 1H, 

major, 1H, minor, -OH), 1.21 (t, 3H, major), 1.19 (t, 3H, minor).

Analytical data are in accordance with those previously reported.3
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2-(2,6-Dimethoxyphenoxy)-3-ethoxy-3-(3,4,5-trimethoxyphenyl)propan-1-ol (S5)

MeO

MeO

O
OEt

HO

OMe

OMe
MeO

2  



S5 was prepared from β-O-4 model compound S2 (0.26 g, 0.66 mmol, 1eq.) and hydrochloric acid (12 

M, 0.15 mL) in ethanol (5 mL) using general procedure A. Purification was achieved by column 

chromatography (10-30% EtOAc/petroleum ether), followed by washing with 50 wt% sodium bisulfite 

solution. Compound S2 was obtained as a pale yellow oil (0.10 g, 0.24 mmol, 36%, major:minor = 

1.7:1). HRMS (ESI) calculated for C22H30O8Na [M + Na]+ 445.1833; found 445.1824. 1H NMR (500 MHz, 

Acetone) δ 7.03 (t, J = 8.2 Hz, 3H, minor), 7.00 (t, J = 8.4 Hz, 1H, major), 6.80 – 6.68 (m, 4H, major, 4H, 

minor), 4.80 (d, J = 5.8 Hz, 1H, minor), 4.74 (d, J = 6.4 Hz, 1H, major), 4.18 (m, 1H, minor), 4.13 (m, 1H, 

major), 3.90 - 3.69 (m, 16H, major, 15H, minor),  3.59 - 3.29 (m, 3H, major, 3H, minor), 3.23 (dd, J = 

11.9, 5.8 Hz, 1H, minor), 1.19 (t, J = 7.0 Hz, 3H, major), 1.10 (t, J = 7.0 Hz, 3H, minor). 13C NMR (126 

MHz, Acetone) δ 153.50, 153.14, 137.58, 137.50, 137.29, 136.05, 135.89, 135.02, 123.67, 123.45, 

105.66, 104.83, 104.64, 86.31, 85.71, 81.72, 80.62, 64.43, 61.38, 59.67, 59.54, 55.55, 55.47, 54.09, 

14.84. IR (thin film) 3508, 2937, 1591, 1492, 1477, 1456, 1419, 1325, 1294, 1253, 1228, 1103.

3-Butoxy-3-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propan-1-ol (S6)

MeO

MeO

O
OBu

HO

OMe
2 





S6 was prepared from β-O-4 model compound S1 (0.26 g, 0.78 mmol, 1 eq.) and hydrochloric acid (12 

M, 0.15 mL) in n-butanol (5 mL) using general procedure B. Purification was achieved by column 

chromatography (10-30% EtOAc/petroleum ether), followed by washing with 50 wt% sodium bisulfite 

solution. Compound S1 was obtained as a pale yellow oil (0.14 g, 0.36 mmol, 46%, major:minor = 
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1:1.1). HRMS (ESI) calculated for C22H30O6Na [M + Na]+ 413.1935; found 413.1921. 1H NMR (500 MHz, 

Acetone) δ 7.17 (dd, J = 7.9, 1.5 Hz, 1H, minor), 7.11 – 7.05 (m, 1H, major, 1H, minor), 7.02 – 6.76 (m, 

6H, major, 5H, minor), 4.55 (ap. d, J = 6.2 Hz, 1H, major, 1H, minor), 4.37 – 4.27 (m, 1H, major, 1H, 

minor), 3.89 – 3.71 (m, 11H, major, 9H, minor), 3.69 – 3.53 (m, 1H, minor), 3.48 – 3.39 (m, 1H, minor), 

3.39 – 3.35 (m, 2H, major, 2H, minor), 1.60 – 1.48 (m, 2H, major, 2H, minor), 1.46 – 1.33 (m, 2H, major, 

2H. minor), 0.90 (t, J = 7.0 Hz, 3H, major/minor), 0.87 (t, J = 7.0 Hz, 3H, major/minor). 13C NMR (126 

MHz, Acetone) δ 150.92, 149.04, 148.30, 131.69, 122.14, 120.91, 120.36, 119.87, 118.26, 112.62, 

111.33, 111.10, 85.61, 84.71, 81.50, 80.74, 68.51, 61.30, 60.84, 55.10, 31.87, 19.19, 13.28. IR (thin 

film) 3508, 2931, 1591, 1498, 1456, 1251, 1220, 1091, 1024.

3-Butoxy-2-(2,6-dimethoxyphenoxy)-3-(3,4,5-trimethoxyphenyl)propan-1-ol (S7)
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S7 was prepared from β-O-4 model compound S2 (0.25 g, 0.63 mmol, 1 eq.) and hydrochloric 

acid (12 M, 0.15 mL) in n-butanol (5 mL) using general procedure B. Purification was achieved 

by column chromatography (10-30% EtOAc/petroleum ether), followed by washing with 50 

wt% sodium bisulfite solution. Compound S7 was obtained as a pale yellow oil (0.18 g, 0.39 

mmol, 62%, major:minor = 1.94:1). HRMS (ESI) calculated for C24H34O8Na [M + Na]+ 473.2146; 

found 473.2138; 1H NMR (500 MHz, Acetone) δ 7.03 (t, J = 7.7 Hz, 1H, minor), 7.00 (t, J = 7.7 

Hz, 1H, major), 6.80 (s, 2H, minor), 6.73 (s, 2H, major), 6.72 (d, J = 8.2 Hz, 2H, minor), 6.67 (d, 

J = 8.4 Hz, 2H, major), 4.80 (d, J = 5.7 Hz, 1H, minor), 4.72 (d, J = 6.4 Hz, 1H, major), 4.18 (td, J 

= 5.8, 3.2 Hz, 1H, minor), 4.13 (ddd, J = 6.6, 4.0, 2.8 Hz, 1H, major), 3.91 – 3.76 (m, 13H, major, 

12H, minor ), 3.74 (s, 3H, minor), 3.73 (s, 3H, major), 3.55 – 3.50 (m, 1H, major, 1H, minor), 

3.49 – 3.36 (m, 2H, major, 2H, minor ), 3.23 (dd, J = 11.5, 6.0 Hz, 1H, minor), 1.67 – 1.26 (m, 
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4H, major, 4H, minor), 0.92 (t, J = 7.4 Hz, 3H, major), 0.88 (t, J = 7.3 Hz, 3H, minor). 13C NMR 

(126 MHz, Acetone) δ 153.51, 153.12, 137.49, 135.86, 134.98, 123.67, 105.67, 104.85, 86.31, 

85.75, 81.74, 80.74, 68.75, 61.36, 59.67, 55.46, 31.90, 19.23, 13.32. IR (thin film) 3510, 2933, 

1591, 1477, 1325, 1294, 1253, 1226, 1105, 1029.
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AcBr/AcOH Model Reactions for Assignment of Whole Cell Wall NMR spectra

Syringaresinol dimethyl ether (S8)
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To a solution of syringaresinol S3 (500 mg, 1.19 mmol) in acetone (10 mL) was added Cs2CO3 (1.23 g, 

3.78 mmol, 2.00 eq.) followed by methyl iodide (1.76 mL, 28.3 mmol, 15.0 eq.). The mixture was then 

heated at reflux for 16 hours and then allowed to cool to room temperature before being filtered 

through a plug of Celite and concentrated in vacuo to give the product syringaresinol dimethyl ether 

(S8) as a white solid (531 mg, 100%). Crystallisation from EtOH gave colourless needles (451 mg). M.p. 

110-111 °C (lit.4 119-120 °C). 1H NMR (500 MHz, CDCl3) δ 6.57 (s, 4H, 2 x H2, 2 x H6), 4.75 (d, J = 4.0 

Hz, 2H, 2 x H), 4.36 – 4.25 (m, 2H, 2 x H), 3.94 (dd, J = 9.3, 3.3 Hz, 2H, 2 x H), 3.88 (s, 12H, 4 x OMe), 

3.84 (s, 6H, s, 2 x OMe), 3.15 – 3.04 (m, 2H, 2 x H). Analytical data are in accordance with those 

previously reported.4

rel. ((1S,2R)-3-(Bromomethyl)-6,7,8-trimethoxy-1-(3,4,5-trimethoxyphenyl)-1,2-dihydronaphthalen 

-2-yl)methyl acetate (S9) and rel. ((1S,2R)-1-(4-acetoxy-3,5-dimethoxyphenyl)-3-(bromomethyl)-

6,7,8-trimethoxy-1,2-dihydronaphthalen-2-yl)methyl acetate (S10)
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To a solution of acetyl bromide in acetic acid (1:3, 4 mL) was added syringaresinol dimethyl ether 

(S8) (98 mg, 0.22 mmol, 1.0 eq.) and the mixture was stirred at 50 °C for 1 hour. The mixture was 
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then concentrated in vacuo and purified by column chromatography (10-20% EtOAc/petroleum 

ether) to give, in order of elution, S9 (26 mg, 21%), a mixture of S9 and S10 (46 mg), and S10 (26 mg, 

20%) as colourless oils. 

S9: HRMS (ESI) calculated for C26H31O8Br79Na [M + Na]+ 573.1095; found 573.1087. 1H NMR (500 MHz, 

Acetone-d6) δ 6.80 (s, 1H, H7), 6.78 (s, 1H, H2), 6.41 (s, 2H, H2’/6’), 4.46 (d, J = 1.1 Hz, 1H, H7’), 4.33 

(dd, J = 10.1, 1.0 Hz, 1H, H9), 4.29 (d, J = 10.1 Hz, 1H, H9), 4.18 (dd, J = 10.8, 5.4 Hz, 1H, H9’), 3.93 – 

3.88 (m, 1H, H9’), 3.86 (s, 3H, OMe), 3.79 (s, 3H, OMe), 3.70 (s, 6H, 2xOMe), 3.64 (s, 3H, OMe), 3.62 

(s, 3H, OMe), 3.00 (ddd, J = 8.5, 5.4, 1.3 Hz, 1H, H8’), 2.01 (s, 3H, OAc). 13C NMR (126 MHz, Acetone) δ 

170.9 (CH3COOR), 153.9 (C5’/3’), 152.7, 143.8 (C4), 140.3 (C1’), 138.0 (C4’), 134.1 (C8), 129.9 (C7), 

129.1 (C1 or C6), 121.9 (C1 or C6), 107.9 (C2), 106.3 (C6’/2’), 65.4 (9’), 61.0 (OMe), 60.8 (OMe), 60.5 

(OMe), 56.3 (2xOMe), 44.0 (C8’), 40.1 (C7’), 38.1 (C9), 20.7 (OAc). IR (thin film) 2938, 1737, 1587, 1489, 

1454, 1406, 1344, 1220, 1200, 1120, 1095, 1028, 995. 

S10: HRMS (ESI) calculated for C27H31O9Br79Na [M + Na]+ 601.1044; found 601.1033.  1H NMR (500 

MHz, Acetone-d6) δ 6.83 – 6.80 (m, 1H, H7), 6.78 (s, 1H, H2), 6.48 (s, 2H, H2’/6’), 4.53 – 4.47 (m, 1H, 

H7’), 4.37 – 4.27 (m, 2H, H9), 4.20 (dd, J = 10.9, 5.3 Hz, 1H, H9’), 3.92 (dd, J = 10.9, 8.4 Hz, 1H, H9’), 

3.86 (s, 3H, OMe), 3.79 (s, 3H, OMe), 3.68 (s, 6H, 2xOMe), 3.64 (s, 3H, OMe), 3.03 (ddd, J = 8.4, 5.4, 

1.3 Hz, 1H, H8’), 2.16 (s, 3H, ArOAc), 2.00 (s, 3H, OAc). 13C NMR (126 MHz, Acetone) δ 170.9 

(CH3COOR), 168.5 (CH3COOAr), 153.8 (Q), 152.7 (C3’/C5’), 143.8 (C4), 143.1 (C1’), 134.1 (C8), 130.0 

(C7), 129.0 (C1 or C6), 128.3 (C4’), 121.6 (C1 or C6), 108.0 (C2), 105.4 (C2’/6’), 65.3 (C9’), 61.0 (OMe), 

60.9 (OMe), 56.3 (2xOMe), 43.8 (C8’), 40.3 (C7’), 37.9 (C9), 20.7 (CH3OOR), 20.3 (CH3OOAr). IR (thin 

film) 2939, 1765, 1738, 1598, 1456, 1408, 1346, 1219, 1197, 1122, 1097, 1030. 

The molecular ion observed for these compounds [M + Na]+ on MS analysis was found to be quite 

weak. This was assigned to the reactivity under the ionisation conditions of the allyl bromide 

substituent. Indeed, when the mass spectral analysis was performed in methanol the mass of the 

major observed compound was consistent with substitution of the bromide with methanol (For S9 

observed m/z [M(OMe) + Na]+ 525.2079; theorectical m/z  525.2095. For S10 observed m/z [M(OMe) 

+ Na]+ 553.2028; theorectical m/z 553.2044.

The stereochemistry of S9 and S10 was tentatively assigned based on the small coupling constant 

observed between H7’ and H8’. This indicated that the anti geometry is likely based on the predicted 

dihedral angles of the anti and syn isomers (Figure S3). 
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Figure S2 Showing the anti and syn isomers of S9 optimised using the RM1 semi-empirical method as 

implemented in Spartan’14 (Wavefunction). 

General Procedure C

To a stirred solution/suspension of model substrate (50-100 mg) in AcOH (75 mL/g) was added AcBr 

(25 mL/g) and the mixture stirred at 50 °C for 3 hours. The mixture was then concentrated in vacuo 

and used for 2D HSQC NMR analysis without further purification. Model substrates used: D-xylose, D-

glucose, cellulose filter paper (Fisherbrand, qualitative), cellobiose, S-G--O-41 and S-G--O-4 /-2 

model polymers.
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D-Xylose gave -bromotriacetylxylose (2,3,4-tri-O-acetyl- a-D-xylopyranosyl bromide) as the major 

product as identified by 1H NMR.

O Br

OAc
OAc

AcO

O OH

OH
OH

HO

1H NMR (400 MHz, Chloroform-d) δ 6.54 (d, J = 4.0 Hz, 1H), 5.52 (t, J = 9.7 Hz, 1H), 5.00 (dq, J = 8.9, 5.8 

Hz, 1H), 4.74 (dd, J = 10.0, 3.9 Hz, 1H), 4.01 (dd, J = 11.4, 5.9 Hz, 1H), 3.84 (t, J = 11.1 Hz, 1H), 2.09 – 

2.03 (m, 9H). Analytical data are consistent with those previously reported.5

1H NMR (400 MHz, Acetone-d6) δ 6.75 (d, J = 3.8 Hz, 1H), 5.54 (t, J = 9.8 Hz, 1H), 5.13 (ddd, J = 10.9, 

9.6, 6.0 Hz, 1H), 4.93 (dd, J = 10.0, 3.9 Hz, 1H), 4.13 (dd, J = 11.5, 5.9 Hz, 1H), 3.84 (ddd, J = 11.5, 10.9, 

0.8 Hz, 1H), 2.08 – 2.02 (m, 9H).

D-Glucose gave -bromotetraacetylglucose as the major product as identified by 1H NMR.

O Br

OAc
OAc

AcO

O OH

OH
OH

HO

HO AcO

1H NMR (300 MHz, Chloroform-d) δ 6.62 (d, J = 4.0 Hz, 1H), 5.56 (t, J = 9.8 Hz, 1H), 5.17 (t, J = 9.8 Hz, 

1H), 4.84 (dd, J = 9.8, 4.0 Hz, 1H), 4.41 – 4.23 (m, 2H), 4.19 – 4.06 (m, 1H), 2.16 – 1.99 (m, 12H). 

Analytical data are consistent with those previously reported.6

1H NMR (400 MHz, Acetone) δ 6.78 (d, J = 3.9 Hz, 1H), 5.55 (t, J = 10.0 Hz, 1H), 5.24 (t, J = 10.0 Hz, 1H), 

4.96 (dd, J = 10.0, 3.9 Hz, 1H), 4.40 – 4.26 (m, 2H), 4.22 – 4.13 (m, 1H), 2.12 – 1.96 (m, 12H).
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Figure S3 Comparison of the 1H-13C HSQC NMR spectra (d6-acetone) obtained from: A) beech wood 
after AcBr/AcOH treatment (red) with the crude reaction mixtures obtained from B) D-glucose, C) filter 
paper, D) D-xylose and E) cellobiose (blue) after the same treatment.
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Figure S4 A comparison of a selected region of the 1H-13C HSQC NMR spectrum of beech cell walls (red) 
overlaid with that of S-G -O-4 polymer, S-G -/-O-4 polymer and syringaresinol dimethyl ether 
(blue) following AcBr/AcOH treatment.
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Preparation of butyl D-xylose and butyl D-mannose

Butyl D-Xylose ((2R/S,3R,4S,5R)-2-butoxytetrahydro-2H-pyran-3,4,5-triol)

(R)O O

OH
OH

HO

(S)O O

OH
OH

HO

D-Xylose (100 mg) was heated at reflux in 95% n-BuOH/5% H2O containing 0.2 M HCl (10 mL) for 6 

hours. The reaction mixture was then concentrated in vacuo to give the product (mixture of anomers 

ca. 2:1) as a viscous very pale yellow oil which was characterised without further purification. 

13C NMR (101 MHz, D2O) δ 102.9, 98.2, 75.8, 73.2, 73.0, 71.3, 70.4, 69.4, 69.2, 68.1, 65.1, 61.0, 30.9, 

30.8, 18.8, 18.5, 13.2, 13.1. Analytical data are consistent with those previously reported.7

Butyl -D-Mannose ((2S,3S,4S,5S,6R)-2-butoxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol)

O
HO

O

OH
OH

HO

D-Mannose (100 mg) was heated at reflux in 95% n-BuOH/5% H2O containing 0.2 M HCl (10 mL) for 6 

hours. The reaction mixture was then concentrated in vacuo to give the product as a viscous 

colourless oil which was characterised without further purification. The crude mixture appeared to 

contain essentially exclusively the  isomer.

1H NMR (400 MHz, CDCl3) δ 4.82 (s, 1H), 4.07 – 3.71 (m, 5H), 3.65 (dt, J = 11.5, 6.9 Hz, 1H), 3.53 (s, 1H), 

3.41 (q, J = 7.3 Hz, 1H), 1.56 (pt, J = 6.9, 3.7 Hz, 2H), 1.38 (dtd, J = 15.3, 7.0, 5.1 Hz, 2H), 0.94 (dt, J = 

11.9, 7.4 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 100.2, 72.4, 71.7, 71.1, 67.6, 66.3, 61.1, 31.6, 19.4, 14.0. 

Analytical data are consistent with those previously reported.8

1H NMR (400 MHz, D2O) δ 4.71 (s, 1H), 3.82 – 3.71 (m, 2H), 3.67 – 3.56 (m, 3H), 3.56 – 3.45 (m, 2H), 

3.40 (dt, J = 9.9, 6.0 Hz, 1H), 1.57 – 1.36 (m, 2H), 1.33 – 1.16 (m, 2H), 0.78 (t, J = 7.4 Hz, 3H). 13C NMR 

(101 MHz, D2O) δ 99.6, 72.6, 70.6, 70.1, 67.5, 66.7, 60.9, 30.6, 18.8, 13.1.



S16

Figure S5 Comparison of 13C NMR spectra (D2O) obtained from the aqueous soluble fraction from butanol pretreatment of walnut shell and beech sawdust 
with D-xylose and the prepared sample of butyl xylose (mixture of anomers).
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Figure S6 Comparison of 13C NMR spectra (D2O) obtained from the aqueous soluble fraction from butanol pretreatment of Douglas fir with the prepared 
sample of butyl xylose (mixture of anomers), commercially available D-mannose and the prepared sample of butyl -D-mannose. 
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Figure S7 1H-13C HSQC NMR spectra (d6-acetone) of beech organosolv lignins. For each lignin both the aromatic and linkage regions are shown. For a detailed 
analysis of the spectra see Table 2, entries 1-4 in the main manuscript. For colour coding please see Figure 5 in the main manuscript.
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Figure S8 1H-13C HSQC NMR spectra (d6-acetone) of walnut shell organosolv lignins. See Table 2 and Figure 5 for additional analysis and a colour coding key. 
The green coloured aromatic cross-peaks correspond to H units.
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Figure S9 1H-13C HSQC NMR spectra (d6-acetone) of douglas fir organosolv lignins. Please see Table 2 and Figure 5 in the main manuscript for additional details.
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Figure S10 Comparison of the 1H-13C HSQC NMR spectra of models: A) S4 (red – GG-OEt) and B) S6 
(black – SS-OEt) with a walnut ethanol lignin (grey) and C) S5 (red – GG-OnBu) and D) S7 (black - SS-
OnBu) with a walnut butanol lignin (grey) in d6-acetone showing the characteristic peaks in the 
oxygenated aliphatic region indicting -etherification of -O-4 units. See above in ESI for the synthesis 
of these model compounds.
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Figure S11 GPC analysis of beech organosolv lignins.
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Figure S12 GPC analysis of Douglas fir organosolv lignins.
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Figure S13 GPC analysis of walnut shell organosolv lignins.
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Figure S14 Preliminary enzymatic hydrolysis experiments with beech wood. Conditions: pH 5.5 acetate buffer, 5 wt% loading, 22 FPU/g CTec 2, 50 oC, 24 hrs. 
Control = no wood/pulp 
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Table S1 GC quantification of acetal monomers from lignin depolymerisation reactions
Entry Lignin Cat. P1 Wt% P2 Wt% P3 Wt% Tot. P1-3 (Wt%) +/- (Stdev) H : G : S (rel%)
1a Subicat Bi(OTf)3 0.0 0.6 0.9 1.5 0 : 39 : 61
1b Subicat Bi(OTf)3 0.0 1.2 1.7 2.8 0 : 41 : 59
1av Subicat Bi(OTf)3 0.0 0.9 1.3 2.1 (+/- 1.0) 0 : 40 : 60
2a Walnut EtOH Bi(OTf)3 2.3 8.5 6.9 17.8 13 : 48 : 39
2b Walnut EtOH Bi(OTf)3 2.3 8.8 7.4 18.5 13 : 47 : 40
2av Walnut EtOH Bi(OTf)3 2.3 8.7 7.9 18.1 (+/- 0.5) 13 : 48 : 39
3a Beech EtOH Bi(OTf)3 0.0 8.3 10.4 18.8 0 : 44 : 56
3b Beech EtOH Bi(OTf)3 0.0 6.9 8.4 15.3 0 : 45 : 55
3av Beech EtOH Bi(OTf)3 0.0 7.6 9.4 17.0 (+/- 2.5) 0 : 45 : 55
4a Douglas Fir EtOH Bi(OTf)3 0.3 12.2 0.0 12.5 2 : 98 : 0
4b Douglas Fir EtOH Bi(OTf)3 0.2 9.8 0.0 10.0 2 : 98 : 0
4av Douglas Fir EtOH Bi(OTf)3 0.3 11.0 0.0 11.3 (+/- 1.8) 2 : 98 : 0
5a Walnut Butanol Bi(OTf)3 0.4 3.9 5.5 9.8 4 : 39 : 57
5b Walnut Butanol Bi(OTf)3 0.4 4.0 5.8 10.2 4 : 39 : 57
5av Walnut Butanol Bi(OTf)3 0.4 4.0 5.7 10.0 (+/- 0.3) 4 : 39 : 57
6a Beech Butanol Bi(OTf)3 0.0 3.1 6.7 9.7 0 : 32 : 68
6b Beech Butanol Bi(OTf)3 0.0 3.1 6.8 9.9 0 : 31 :69
6av Beech Butanol Bi(OTf)3 0.0 3.1 6.7 9.8 (+/- 0.2) 0 : 32 : 68
7a Douglas Fir Butanol Bi(OTf)3 0.1 8.6 0.0 8.8 1 : 99 : 0
7b Douglas Fir Butanol Bi(OTf)3 0.1 7.9 0.0 8.0 1 : 99 : 0
7av Douglas Fir Butanol Bi(OTf)3 0.1 8.2 0.0 8.4 (+/- 0.5) 1 : 99 : 0
8a Walnut Butanol MsOH 0.5 4.3 4.5 9.2 5 : 46 : 49
8b Walnut Butanol MsOH 0.3 3.4 3.6 7.3 5 : 46 : 49
8av Walnut Butanol MsOH 0.4 3.8 4.0 8.2 (+/- 1.4) 5 : 46 : 49
9a Walnut Butanol TsOH 0.4 3.6 3.9 7.8 4 : 46 : 50
9b Walnut Butanol TsOH 0.3 3.2 3.4 6.9 5 : 46 : 49
9av Walnut Butanol TsOH 0.4 3.4 3.6 7.4 (+/- 0.7) 4 : 46 : 50
10a Walnut Butanol Bi(OTf)3 0.3 2.6 3.6 6.2 4 : 40 : 56
10b Walnut Butanol Bi(OTf)3 0.3 2.3 3.0 5.3 5 : 41 : 54
10av Walnut Butanol Bi(OTf)3 0.3 2.4 3.3 6.0 (+/- 0.7) 5 : 40 : 55
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Scheme 1 Acid catalysed depolymerisation and in-situ acetal formation for the production of aromatic monomers from lignin.



S28

NMR Spectra of Model Compounds
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Lignin Depolymerisation NMR’s
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NMRs of Isolated Acetals
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