## **Supporting Information**

# Pre-treatment of Lignocellulosic Feedstocks Using Biorenewable Alcohols: Towards Complete Biomass Valorisation

Christopher S. Lancefield,\*<sup>a</sup> Isabella Panovic,<sup>a</sup> Peter J. Deuss,<sup>b</sup> Katalin Barta<sup>c</sup> and Nicholas J. Westwood\*<sup>a</sup>

<sup>a</sup> School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews and EaStCHEM, North Haugh, St Andrews, Fife (UK). E-mail: csl9@st-andrews.ac.uk, njw3@st-andrews.ac.uk

<sup>b</sup> Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands

<sup>c</sup> Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

## Contents

| General Information                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pretreatments (0.2 M HCl, 6 hours)                                                                                                                                                                                                                                                                                                                   |
| Models Compound Synthesis                                                                                                                                                                                                                                                                                                                            |
| General Procedures                                                                                                                                                                                                                                                                                                                                   |
| Organosolv Models                                                                                                                                                                                                                                                                                                                                    |
| AcBr/AcOH Model Reactions for Assignment of Whole Cell Wall NMR spectra                                                                                                                                                                                                                                                                              |
| Figure S2 Showing the anti and syn isomers of S9 optimised using the RM1 semi-empirical method as implemented in Spartan'14 (Wavefunction)                                                                                                                                                                                                           |
| Figure S7 <sup>1</sup> H- <sup>13</sup> C HSQC NMR spectra ( <i>d</i> <sub>6</sub> -acetone) of beech organosolv lignins. For each lignin both the aromatic and linkage regions are shown. For a detailed analysis of the spectra see Table 2, entries 1-4 in the main manuscript. For colour coding please see Figure 5 in the main manuscript. S18 |
| Figure S8 <sup>1</sup> H- <sup>13</sup> C HSQC NMR spectra ( <i>d</i> <sub>6</sub> -acetone) of walnut shell organosolv lignins. See Table 2 and Figure 5 for additional analysis and a colour coding key. The green coloured aromatic crosspeaks correspond to H units                                                                              |

| Figure S9 <sup>1</sup> H- <sup>13</sup> C HSQC NMR spectra ( $d_6$ -acetone) of douglas fir organosolv lignins. Please see |
|----------------------------------------------------------------------------------------------------------------------------|
| Table 2 and Figure 5 in the main manuscript for additional details.                                                        |
| Figure S10 Comparison of the <sup>1</sup> H- <sup>13</sup> C HSQC NMR spectra of models: A) S4 (red – GG-OEt) and B)       |
| S6 (black – SS-OEt) with a walnut ethanol lignin (grey) and C) S5 (red – GG-O <sup>n</sup> Bu) and D) S7                   |
| (black - SS-O <sup>n</sup> Bu) with a walnut butanol lignin (grey) in d <sub>6</sub> -acetone showing the characteristic   |
| peaks in the oxygenated aliphatic region indicting $lpha$ -etherification of $eta$ -O-4 units. See above in                |
| ESI for the synthesis of these model compounds21                                                                           |
| Figure S11 GPC analysis of beech organosolv lignins22                                                                      |
| Figure S12 GPC analysis of Douglas fir organosolv lignins.                                                                 |
| Figure S13 GPC analysis of walnut shell organosolv lignins.                                                                |
| Figure S14 Preliminary enzymatic hydrolysis experiments with beech wood. Conditions: pH 5.5                                |
| acetate buffer, 5 wt% loading, 22 FPU/g CTec 2, 50 °C, 24 hrs. Control = no wood/pulp                                      |
| Table S1 GC quantification of acetal monomers from lignin depolymerisation reactionsS26                                    |
| Scheme 1 Acid catalysed depolymerisation and in-situ acetal formation for the production of                                |
| aromatic monomers from lignin                                                                                              |
| NMR Spectra of Model Compounds                                                                                             |
| Lignin Depolymerisation NMR'sS39                                                                                           |
| NMRs of Isolated Acetals                                                                                                   |
| References                                                                                                                 |

## **General Information**

Commercially available compounds were purchased and used as received unless otherwise stated. <sup>1</sup>H and <sup>13</sup>C spectra were obtained with a Bruker Avance II 400 MHz, Bruker Avance 500 MHz or a Bruker Avance III 500 MHz spectrometer with the solvent peak used as the internal standard. Multiplicities are described using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet and m = multiplet and the J couplings are reported in Hz. NMR spectra were processed using TopSpin 3.1 (PC version) or MestReNova. Column chromatography was performed using Merck Geduran<sup>®</sup> Si 60 silica gel. Thin layer chromatography was performed on pre-coated glass plates (Silica Gel 60A, Fluorochem) and visualised under UV light (254 nm) or by staining with KMnO4. IR spectra were obtained on a Shimadzu IRAffinity-1 FourierTransform IR spectrophotometer as thin films. Analysis was carried out using Shimadzu IRsolution v1.50 and only characteristic peaks are reported. Melting points were recorded on an Electrothermal 9100 melting point apparatus. Mass spectrometry data were acquired through the University of St Andrews School of Chemistry mass spectrometry service or through the EPSRC national mass spectrometry service centre (Swansea, UK).



**Figure S1** Photos showing the consistency of the pulps obtained after high alcohol pretreatments (0.2 M HCl, 6 hours).

# **Models Compound Synthesis**



Model compounds S1-3 were synthesised according to previous reports.<sup>1, 2</sup>

## **General Procedures**

General Procedure A: Ethanol substitution of β-O-4 model compound



To a solution of  $\beta$ -O-4 model compound (1 eq.) in ethanol was added concentrated hydrochloric acid. The reaction mixture was then heated to reflux for 16 h. The mixture was then quenched by addition of NaHCO<sub>3</sub> and extracted with EtOAc (x 3). The combined organic layers were then washed with brine and dried MgSO<sub>4</sub>, then concentrated by rotary evaporation. Quantities of reagents, reactants and solvents are specified below for each reaction.

## General Procedure B: Butanol substitution of β-O-4 model compound



To a solution of  $\beta$ -O-4 model compound (1 eq.) in *n*-butanol was added concentrated hydrochloric acid. The reaction mixture was then heated to reflux for 5 h. The mixture was then quenched by addition of NaHCO<sub>3</sub> and extracted with EtOAc (x 3). The combined organic layers were then washed

with brine and dried MgSO<sub>4</sub>, then concentrated by rotary evaporation. Quantities of reagents, reactants and solvents will be specified for each reaction.

## **Organosolv Models**

## 3-(3,4-Dimethoxyphenyl)-3-ethoxy-2-(2-methoxyphenoxy)propan-1-ol (S4)



**S4** was prepared from β-O-4 model compound **S1** (0.25 g, 0.74 mmol, 1 eq.) and hydrochloric acid (12 M, 0.15 mL) in ethanol (5 mL) using general procedure **A**. Purification was achieved by column chromatography (10-30% EtOAc/petroleum ether), followed by washing with 50 wt% sodium bisulfite solution. Compound **S4** was obtained as a pale yellow oil (0.21 g, 0.58 mmol, 78%, *major:minor* = 2.07:1). <sup>1</sup>**H NMR** (400 MHz, Acetone) δ 7.02 (dt, *J* = 11.5, 8.4 Hz, 1H, 6), 6.80 – 6.62 (m, 6H, 6 x Ar-H), 4.77 (dd, *J* = 22.4, 6.1 Hz, 1H, Hα), 4.20 – 4.11 (m, 1H, Hβ), 3.85 (s, 3H, OCH<sub>3</sub>), 3.84 (s, 3H, OMe), 3.80 (s, 3H, OMe), 3.75 – 3.71 (m, 1H, Hγ), 3.59 – 3.50 (m, 1H, Hγ), 3.45 – 3.31 (m, 2H, OCH<sub>2</sub>), 1.19 (t, *J* = 7.0 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 1.13 – 1.08 (m, 3H, CH<sub>2</sub>CH<sub>3</sub>).

<sup>1</sup>**H NMR** (400 MHz, CDCl3) δ 7.29 (dd, J = 7.8, 1.7 Hz, 1H, *minor*), 7.02 (ddd, J = 7.7, 7.7, 1.6 Hz, 1H, *minor*), 6.99 – 6.88 (m, 3H *major*, 4H *minor*), 6.87 – 6.81 (m, 2H, *major*, 1H, *minor*), 6.75 (ddd, J = 7.8, 7.8, 1.6 Hz, 1H, *major*), 4.53 (d, J = 7.5 Hz, 1H, *major*), 4.50 (d, J = 7.3 Hz, 1H, *minor*), 4.18 (ddd, J = 6.9, 6.9, 3.5 Hz, 1H, *minor*), 4.07 (ddd, J = 7.8, 4.2, 4.2 Hz, 1H, *major*), 3.97 – 3.80 (m, 11H, *major*, 9H, *minor*), 3.57 – 3.20 (m, 2H, *major*, 4H, *minor*), 3.28 – 3.20 (m, 1H, *major*, 1H, *minor*, -OH), 1.21 (t, 3H, *major*), 1.19 (t, 3H, *minor*).

Analytical data are in accordance with those previously reported.<sup>3</sup>

#### 2-(2,6-Dimethoxyphenoxy)-3-ethoxy-3-(3,4,5-trimethoxyphenyl)propan-1-ol (S5)



**S5** was prepared from β-O-4 model compound **S2** (0.26 g, 0.66 mmol, 1eq.) and hydrochloric acid (12 M, 0.15 mL) in ethanol (5 mL) using general procedure A. Purification was achieved by column chromatography (10-30% EtOAc/petroleum ether), followed by washing with 50 wt% sodium bisulfite solution. Compound **S2** was obtained as a pale yellow oil (0.10 g, 0.24 mmol, 36%, major:minor = 1.7:1). **HRMS** (ESI) calculated for  $C_{22}H_{30}O_8Na$  [M + Na]<sup>+</sup> 445.1833; found 445.1824. <sup>1</sup>**H NMR** (500 MHz, Acetone) δ 7.03 (t, J = 8.2 Hz, 3H, minor), 7.00 (t, J = 8.4 Hz, 1H, major), 6.80 – 6.68 (m, 4H, major, 4H, minor), 4.80 (d, J = 5.8 Hz, 1H, minor), 4.74 (d, J = 6.4 Hz, 1H, major), 4.18 (m, 1H, minor), 4.13 (m, 1H, major), 3.90 - 3.69 (m, 16H, major, 15H, minor), 3.59 - 3.29 (m, 3H, major, 3H, minor), 3.23 (dd, J = 11.9, 5.8 Hz, 1H, minor), 1.19 (t, J = 7.0 Hz, 3H, major), 1.10 (t, J = 7.0 Hz, 3H, minor). <sup>13</sup>C NMR (126 MHz, Acetone) δ 153.50, 153.14, 137.58, 137.50, 137.29, 136.05, 135.89, 135.02, 123.67, 123.45, 105.66, 104.83, 104.64, 86.31, 85.71, 81.72, 80.62, 64.43, 61.38, 59.67, 59.54, 55.55, 55.47, 54.09, 14.84. **IR** (thin film) 3508, 2937, 1591, 1492, 1477, 1456, 1419, 1325, 1294, 1253, 1228, 1103.

#### 3-Butoxy-3-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propan-1-ol (S6)



**S6** was prepared from  $\beta$ -O-4 model compound **S1** (0.26 g, 0.78 mmol, 1 eq.) and hydrochloric acid (12 M, 0.15 mL) in *n*-butanol (5 mL) using general procedure B. Purification was achieved by column chromatography (10-30% EtOAc/petroleum ether), followed by washing with 50 wt% sodium bisulfite solution. Compound **S1** was obtained as a pale yellow oil (0.14 g, 0.36 mmol, 46%, *major:minor* =

1:1.1). **HRMS** (ESI) calculated for C<sub>22</sub>H<sub>30</sub>O<sub>6</sub>Na [M + Na]<sup>+</sup> 413.1935; found 413.1921. <sup>1</sup>**H** NMR (500 MHz, Acetone) δ 7.17 (dd, *J* = 7.9, 1.5 Hz, 1H, *minor*), 7.11 – 7.05 (m, 1H, *major*, 1H, *minor*), 7.02 – 6.76 (m, 6H, *major*, 5H, *minor*), 4.55 (ap. d, *J* = 6.2 Hz, 1H, *major*, 1H, *minor*), 4.37 – 4.27 (m, 1H, *major*, 1H, *minor*), 3.89 – 3.71 (m, 11H, *major*, 9H, *minor*), 3.69 – 3.53 (m, 1H, *minor*), 3.48 – 3.39 (m, 1H, *minor*), 3.39 – 3.35 (m, 2H, *major*, 2H, *minor*), 1.60 – 1.48 (m, 2H, *major*, 2H, *minor*), 1.46 – 1.33 (m, 2H, *major*, 2H. *minor*), 0.90 (t, *J* = 7.0 Hz, 3H, *major/minor*), 0.87 (t, *J* = 7.0 Hz, 3H, *major/minor*). <sup>13</sup>C NMR (126 MHz, Acetone) δ 150.92, 149.04, 148.30, 131.69, 122.14, 120.91, 120.36, 119.87, 118.26, 112.62, 111.33, 111.10, 85.61, 84.71, 81.50, 80.74, 68.51, 61.30, 60.84, 55.10, 31.87, 19.19, 13.28. **IR** (thin film) 3508, 2931, 1591, 1498, 1456, 1251, 1220, 1091, 1024.





**S7** was prepared from β-O-4 model compound **S2** (0.25 g, 0.63 mmol, 1 eq.) and hydrochloric acid (12 M, 0.15 mL) in *n*-butanol (5 mL) using general procedure B. Purification was achieved by column chromatography (10-30% EtOAc/petroleum ether), followed by washing with 50 wt% sodium bisulfite solution. Compound **S7** was obtained as a pale yellow oil (0.18 g, 0.39 mmol, 62%, *major:minor* = 1.94:1). **HRMS** (ESI) calculated for  $C_{24}H_{34}O_8Na$  [M + Na]<sup>+</sup> 473.2146; found 473.2138; <sup>1</sup>H NMR (500 MHz, Acetone) δ 7.03 (t, J = 7.7 Hz, 1H, *minor*), 7.00 (t, J = 7.7 Hz, 1H, *major*), 6.80 (s, 2H, *minor*), 6.73 (s, 2H, *major*), 6.72 (d, J = 8.2 Hz, 2H, *minor*), 6.67 (d, J = 8.4 Hz, 2H, *major*), 4.80 (d, J = 5.7 Hz, 1H, *minor*), 4.72 (d, J = 6.4 Hz, 1H, *major*), 4.18 (td, J = 5.8, 3.2 Hz, 1H, *minor*), 4.13 (ddd, J = 6.6, 4.0, 2.8 Hz, 1H, *major*), 3.91 – 3.76 (m, 13H, *major*, 12H, *minor*), 3.74 (s, 3H, *minor*), 3.73 (s, 3H, *major*), 3.55 – 3.50 (m, 1H, *major*, 1H, *minor*), 3.49 – 3.36 (m, 2H, *major*, 2H, *minor*), 3.23 (dd, J = 11.5, 6.0 Hz, 1H, *minor*), 1.67 – 1.26 (m,

4H, *major*, 4H, *minor*), 0.92 (t, J = 7.4 Hz, 3H, *major*), 0.88 (t, J = 7.3 Hz, 3H, *minor*). <sup>13</sup>**C NMR** (126 MHz, Acetone) δ 153.51, 153.12, 137.49, 135.86, 134.98, 123.67, 105.67, 104.85, 86.31, 85.75, 81.74, 80.74, 68.75, 61.36, 59.67, 55.46, 31.90, 19.23, 13.32. **IR** (thin film) 3510, 2933, 1591, 1477, 1325, 1294, 1253, 1226, 1105, 1029.

## AcBr/AcOH Model Reactions for Assignment of Whole Cell Wall NMR spectra

Syringaresinol dimethyl ether (S8)



To a solution of syringaresinol **S3** (500 mg, 1.19 mmol) in acetone (10 mL) was added  $Cs_2CO_3$  (1.23 g, 3.78 mmol, 2.00 eq.) followed by methyl iodide (1.76 mL, 28.3 mmol, 15.0 eq.). The mixture was then heated at reflux for 16 hours and then allowed to cool to room temperature before being filtered through a plug of Celite and concentrated *in vacuo* to give the product syringaresinol dimethyl ether (**S8**) as a white solid (531 mg, 100%). Crystallisation from EtOH gave colourless needles (451 mg). **M.p.** 110-111 °C (lit.<sup>4</sup> 119-120 °C). <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.57 (s, 4H, 2 x H2, 2 x H6), 4.75 (d, *J* = 4.0 Hz, 2H, 2 x H $\alpha$ ), 4.36 – 4.25 (m, 2H, 2 x H $\gamma$ ), 3.94 (dd, *J* = 9.3, 3.3 Hz, 2H, 2 x H $\gamma$ ), 3.88 (s, 12H, 4 x OMe), 3.84 (s, 6H, s, 2 x OMe), 3.15 – 3.04 (m, 2H, 2 x H $\beta$ ). Analytical data are in accordance with those previously reported.<sup>4</sup>

*rel.* ((1S,2R)-3-(Bromomethyl)-6,7,8-trimethoxy-1-(3,4,5-trimethoxyphenyl)-1,2-dihydronaphthalen -2-yl)methyl acetate (S9) and *rel.* ((1S,2R)-1-(4-acetoxy-3,5-dimethoxyphenyl)-3-(bromomethyl)-6,7,8-trimethoxy-1,2-dihydronaphthalen-2-yl)methyl acetate (S10)



To a solution of acetyl bromide in acetic acid (1:3, 4 mL) was added syringaresinol dimethyl ether (**S8**) (98 mg, 0.22 mmol, 1.0 eq.) and the mixture was stirred at 50 °C for 1 hour. The mixture was

then concentrated *in vacuo* and purified by column chromatography (10-20% EtOAc/petroleum ether) to give, in order of elution, **S9** (26 mg, 21%), a mixture of **S9** and **S10** (46 mg), and **S10** (26 mg, 20%) as colourless oils.

**S9**: **HRMS** (ESI) calculated for C<sub>26</sub>H<sub>31</sub>O<sub>8</sub>Br<sup>79</sup>Na [M + Na]<sup>+</sup> 573.1095; found 573.1087. <sup>1</sup>**H** NMR (500 MHz, Acetone-*d*<sub>6</sub>) δ 6.80 (s, 1H, H7), 6.78 (s, 1H, H2), 6.41 (s, 2H, H2'/6'), 4.46 (d, *J* = 1.1 Hz, 1H, H7'), 4.33 (dd, *J* = 10.1, 1.0 Hz, 1H, H9), 4.29 (d, *J* = 10.1 Hz, 1H, H9), 4.18 (dd, *J* = 10.8, 5.4 Hz, 1H, H9'), 3.93 – 3.88 (m, 1H, H9'), 3.86 (s, 3H, OMe), 3.79 (s, 3H, OMe), 3.70 (s, 6H, 2xOMe), 3.64 (s, 3H, OMe), 3.62 (s, 3H, OMe), 3.00 (ddd, *J* = 8.5, 5.4, 1.3 Hz, 1H, H8'), 2.01 (s, 3H, OAc). <sup>13</sup>C NMR (126 MHz, Acetone) δ 170.9 (CH<sub>3</sub><u>C</u>OOR), 153.9 (C5'/3'), 152.7, 143.8 (C4), 140.3 (C1'), 138.0 (C4'), 134.1 (C8), 129.9 (C7), 129.1 (C1 or C6), 121.9 (C1 or C6), 107.9 (C2), 106.3 (C6'/2'), 65.4 (9'), 61.0 (OMe), 60.8 (OMe), 60.5 (OMe), 56.3 (2xOMe), 44.0 (C8'), 40.1 (C7'), 38.1 (C9), 20.7 (OAc). IR (thin film) 2938, 1737, 1587, 1489, 1454, 1406, 1344, 1220, 1200, 1120, 1095, 1028, 995.

**S10**: **HRMS** (ESI) calculated for  $C_{27}H_{31}O_9Br^{79}Na$  [M + Na]<sup>+</sup> 601.1044; found 601.1033. <sup>1</sup>**H NMR** (500 MHz, Acetone-*d*<sub>6</sub>)  $\delta$  6.83 – 6.80 (m, 1H, H7), 6.78 (s, 1H, H2), 6.48 (s, 2H, H2'/6'), 4.53 – 4.47 (m, 1H, H7'), 4.37 – 4.27 (m, 2H, H9), 4.20 (dd, *J* = 10.9, 5.3 Hz, 1H, H9'), 3.92 (dd, *J* = 10.9, 8.4 Hz, 1H, H9'), 3.86 (s, 3H, OMe), 3.79 (s, 3H, OMe), 3.68 (s, 6H, 2xOMe), 3.64 (s, 3H, OMe), 3.03 (ddd, *J* = 8.4, 5.4, 1.3 Hz, 1H, H8'), 2.16 (s, 3H, ArOAc), 2.00 (s, 3H, OAc). <sup>13</sup>**C NMR** (126 MHz, Acetone)  $\delta$  170.9 (CH<sub>3</sub><u>C</u>OOR), 168.5 (CH<sub>3</sub><u>C</u>OOAr), 153.8 (Q), 152.7 (C3'/C5'), 143.8 (C4), 143.1 (C1'), 134.1 (C8), 130.0 (C7), 129.0 (C1 or C6), 128.3 (C4'), 121.6 (C1 or C6), 108.0 (C2), 105.4 (C2'/6'), 65.3 (C9'), 61.0 (OMe), 60.9 (OMe), 56.3 (2xOMe), 43.8 (C8'), 40.3 (C7'), 37.9 (C9), 20.7 (<u>C</u>H<sub>3</sub>OOR), 20.3 (<u>C</u>H<sub>3</sub>OOAr). **IR** (thin film) 2939, 1765, 1738, 1598, 1456, 1408, 1346, 1219, 1197, 1122, 1097, 1030.

The molecular ion observed for these compounds  $[M + Na]^+$  on MS analysis was found to be quite weak. This was assigned to the reactivity under the ionisation conditions of the allyl bromide substituent. Indeed, when the mass spectral analysis was performed in methanol the mass of the major observed compound was consistent with substitution of the bromide with methanol (For **S9** observed m/z [M(OMe) + Na]<sup>+</sup> 525.2079; theorectical m/z 525.2095. For **S10** observed m/z [M(OMe) + Na]<sup>+</sup> 553.2028; theorectical m/z 553.2044.

The stereochemistry of **S9** and **S10** was tentatively assigned based on the small coupling constant observed between H7' and H8'. This indicated that the *anti* geometry is likely based on the predicted dihedral angles of the *anti* and *syn* isomers (Figure S3).



**Figure S2** Showing the *anti* and *syn* isomers of **S9** optimised using the RM1 semi-empirical method as implemented in Spartan'14 (Wavefunction).

## **General Procedure C**

To a stirred solution/suspension of model substrate (50-100 mg) in AcOH (75 mL/g) was added AcBr (25 mL/g) and the mixture stirred at 50 °C for 3 hours. The mixture was then concentrated *in vacuo* and used for 2D HSQC NMR analysis without further purification. Model substrates used: D-xylose, D-glucose, cellulose filter paper (Fisherbrand, qualitative), cellobiose, S-G- $\beta$ -O-4<sup>1</sup> and S-G- $\beta$ -O-4 /  $\beta$ - $\beta$ <sup>2</sup> model polymers.

**D-Xylose** gave  $\alpha$ -bromotriacetylxylose (2,3,4-tri-O-acetyl- a-D-xylopyranosyl bromide) as the major product as identified by <sup>1</sup>H NMR.



<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 6.54 (d, *J* = 4.0 Hz, 1H), 5.52 (t, *J* = 9.7 Hz, 1H), 5.00 (dq, *J* = 8.9, 5.8 Hz, 1H), 4.74 (dd, *J* = 10.0, 3.9 Hz, 1H), 4.01 (dd, *J* = 11.4, 5.9 Hz, 1H), 3.84 (t, *J* = 11.1 Hz, 1H), 2.09 – 2.03 (m, 9H). Analytical data are consistent with those previously reported.<sup>5</sup>

<sup>1</sup>**H NMR** (400 MHz, Acetone-*d*<sub>6</sub>) δ 6.75 (d, *J* = 3.8 Hz, 1H), 5.54 (t, *J* = 9.8 Hz, 1H), 5.13 (ddd, *J* = 10.9, 9.6, 6.0 Hz, 1H), 4.93 (dd, *J* = 10.0, 3.9 Hz, 1H), 4.13 (dd, *J* = 11.5, 5.9 Hz, 1H), 3.84 (ddd, *J* = 11.5, 10.9, 0.8 Hz, 1H), 2.08 – 2.02 (m, 9H).

**D-Glucose** gave  $\alpha$ -bromotetraacetylglucose as the major product as identified by <sup>1</sup>H NMR.



<sup>1</sup>**H NMR** (300 MHz, Chloroform-*d*)  $\delta$  6.62 (d, *J* = 4.0 Hz, 1H), 5.56 (t, *J* = 9.8 Hz, 1H), 5.17 (t, *J* = 9.8 Hz, 1H), 4.84 (dd, *J* = 9.8, 4.0 Hz, 1H), 4.41 – 4.23 (m, 2H), 4.19 – 4.06 (m, 1H), 2.16 – 1.99 (m, 12H). Analytical data are consistent with those previously reported.<sup>6</sup>

<sup>1</sup>**H NMR** (400 MHz, Acetone) δ 6.78 (d, *J* = 3.9 Hz, 1H), 5.55 (t, *J* = 10.0 Hz, 1H), 5.24 (t, *J* = 10.0 Hz, 1H), 4.96 (dd, *J* = 10.0, 3.9 Hz, 1H), 4.40 – 4.26 (m, 2H), 4.22 – 4.13 (m, 1H), 2.12 – 1.96 (m, 12H).



**Figure S3** Comparison of the <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectra ( $d_6$ -acetone) obtained from: A) beech wood after AcBr/AcOH treatment (red) with the crude reaction mixtures obtained from B) D-glucose, C) filter paper, D) D-xylose and E) cellobiose (blue) after the same treatment.



**Figure S4** A comparison of a selected region of the <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum of beech cell walls (red) overlaid with that of S-G  $\beta$ -O-4 polymer, S-G  $\beta$ - $\beta$ / $\beta$ -O-4 polymer and syringaresinol dimethyl ether (blue) following AcBr/AcOH treatment.

#### Preparation of butyl D-xylose and butyl D-mannose

#### Butyl D-Xylose ((2R/S,3R,4S,5R)-2-butoxytetrahydro-2H-pyran-3,4,5-triol)



D-Xylose (100 mg) was heated at reflux in 95% *n*-BuOH/5%  $H_2O$  containing 0.2 M HCl (10 mL) for 6 hours. The reaction mixture was then concentrated *in vacuo* to give the product (mixture of anomers *ca.* 2:1) as a viscous very pale yellow oil which was characterised without further purification.

<sup>13</sup>C NMR (101 MHz, D<sub>2</sub>O) δ 102.9, 98.2, 75.8, 73.2, 73.0, 71.3, 70.4, 69.4, 69.2, 68.1, 65.1, 61.0, 30.9, 30.8, 18.8, 18.5, 13.2, 13.1. Analytical data are consistent with those previously reported.<sup>7</sup>

### Butyl α-D-Mannose ((2S,3S,4S,5S,6R)-2-butoxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol)



D-Mannose (100 mg) was heated at reflux in 95% *n*-BuOH/5%  $H_2O$  containing 0.2 M HCl (10 mL) for 6 hours. The reaction mixture was then concentrated *in vacuo* to give the product as a viscous colourless oil which was characterised without further purification. The crude mixture appeared to contain essentially exclusively the  $\alpha$  isomer.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.82 (s, 1H), 4.07 – 3.71 (m, 5H), 3.65 (dt, *J* = 11.5, 6.9 Hz, 1H), 3.53 (s, 1H), 3.41 (q, *J* = 7.3 Hz, 1H), 1.56 (pt, *J* = 6.9, 3.7 Hz, 2H), 1.38 (dtd, *J* = 15.3, 7.0, 5.1 Hz, 2H), 0.94 (dt, *J* = 11.9, 7.4 Hz, 3H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  100.2, 72.4, 71.7, 71.1, 67.6, 66.3, 61.1, 31.6, 19.4, 14.0. Analytical data are consistent with those previously reported.<sup>8</sup>

<sup>1</sup>H NMR (400 MHz, D<sub>2</sub>O) δ 4.71 (s, 1H), 3.82 – 3.71 (m, 2H), 3.67 – 3.56 (m, 3H), 3.56 – 3.45 (m, 2H), 3.40 (dt, J = 9.9, 6.0 Hz, 1H), 1.57 – 1.36 (m, 2H), 1.33 – 1.16 (m, 2H), 0.78 (t, J = 7.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, D<sub>2</sub>O) δ 99.6, 72.6, 70.6, 70.1, 67.5, 66.7, 60.9, 30.6, 18.8, 13.1.



**Figure S5** Comparison of <sup>13</sup>C NMR spectra ( $D_2O$ ) obtained from the aqueous soluble fraction from butanol pretreatment of walnut shell and beech sawdust with D-xylose and the prepared sample of butyl xylose (mixture of anomers).



**Figure S6** Comparison of <sup>13</sup>C NMR spectra ( $D_2O$ ) obtained from the aqueous soluble fraction from butanol pretreatment of Douglas fir with the prepared sample of butyl xylose (mixture of anomers), commercially available D-mannose and the prepared sample of butyl  $\alpha$ -D-mannose.



**Figure S7** <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectra ( $d_6$ -acetone) of beech organosolv lignins. For each lignin both the aromatic and linkage regions are shown. For a detailed analysis of the spectra see Table 2, entries 1-4 in the main manuscript. For colour coding please see Figure 5 in the main manuscript.



**Figure S8** <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectra ( $d_6$ -acetone) of walnut shell organosolv lignins. See Table 2 and Figure 5 for additional analysis and a colour coding key. The green coloured aromatic cross-peaks correspond to H units.



**Figure S9** <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectra (*d*<sub>6</sub>-acetone) of douglas fir organosolv lignins. Please see Table 2 and Figure 5 in the main manuscript for additional details.



**Figure S10** Comparison of the <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectra of models: A) S4 (red – GG-OEt) and B) S6 (black – SS-OEt) with a walnut ethanol lignin (grey) and C) S5 (red – GG-O<sup>n</sup>Bu) and D) S7 (black - SS-O<sup>n</sup>Bu) with a walnut butanol lignin (grey) in d<sub>6</sub>-acetone showing the characteristic peaks in the oxygenated aliphatic region indicting  $\alpha$ -etherification of  $\beta$ -O-4 units. See above in ESI for the synthesis of these model compounds.



Figure S11 GPC analysis of beech organosolv lignins.



Figure S12 GPC analysis of Douglas fir organosolv lignins.



Figure S13 GPC analysis of walnut shell organosolv lignins.



**Figure S14** Preliminary enzymatic hydrolysis experiments with beech wood. Conditions: pH 5.5 acetate buffer, 5 wt% loading, 22 FPU/g CTec 2, 50 °C, 24 hrs. Control = no wood/pulp

| Entry | Lignin              | Cat.                 | <b>P1</b> Wt% | <b>P2</b> Wt% | <b>P3</b> Wt% | Tot. <b>P1-3</b> (Wt%) +/- (Stdev) | H : G : S (rel%) |
|-------|---------------------|----------------------|---------------|---------------|---------------|------------------------------------|------------------|
| 1a    | Subicat             | Bi(OTf) <sub>3</sub> | 0.0           | 0.6           | 0.9           | 1.5                                | 0:39:61          |
| 1b    | Subicat             | Bi(OTf) <sub>3</sub> | 0.0           | 1.2           | 1.7           | 2.8                                | 0:41:59          |
| 1av   | Subicat             | Bi(OTf) <sub>3</sub> | 0.0           | 0.9           | 1.3           | 2.1 (+/- 1.0)                      | 0:40:60          |
| 2a    | Walnut EtOH         | Bi(OTf) <sub>3</sub> | 2.3           | 8.5           | 6.9           | 17.8                               | 13 : 48 : 39     |
| 2b    | Walnut EtOH         | Bi(OTf) <sub>3</sub> | 2.3           | 8.8           | 7.4           | 18.5                               | 13:47:40         |
| 2av   | Walnut EtOH         | Bi(OTf) <sub>3</sub> | 2.3           | 8.7           | 7.9           | 18.1 (+/- 0.5)                     | 13 : 48 : 39     |
| За    | Beech EtOH          | Bi(OTf) <sub>3</sub> | 0.0           | 8.3           | 10.4          | 18.8                               | 0 : 44 : 56      |
| 3b    | Beech EtOH          | Bi(OTf) <sub>3</sub> | 0.0           | 6.9           | 8.4           | 15.3                               | 0 : 45 : 55      |
| 3av   | Beech EtOH          | Bi(OTf) <sub>3</sub> | 0.0           | 7.6           | 9.4           | 17.0 (+/- 2.5)                     | 0 : 45 : 55      |
| 4a    | Douglas Fir EtOH    | Bi(OTf) <sub>3</sub> | 0.3           | 12.2          | 0.0           | 12.5                               | 2:98:0           |
| 4b    | Douglas Fir EtOH    | Bi(OTf) <sub>3</sub> | 0.2           | 9.8           | 0.0           | 10.0                               | 2:98:0           |
| 4av   | Douglas Fir EtOH    | Bi(OTf) <sub>3</sub> | 0.3           | 11.0          | 0.0           | 11.3 (+/- 1.8)                     | 2:98:0           |
| 5a    | Walnut Butanol      | Bi(OTf) <sub>3</sub> | 0.4           | 3.9           | 5.5           | 9.8                                | 4 : 39 : 57      |
| 5b    | Walnut Butanol      | Bi(OTf) <sub>3</sub> | 0.4           | 4.0           | 5.8           | 10.2                               | 4 : 39 : 57      |
| 5av   | Walnut Butanol      | Bi(OTf) <sub>3</sub> | 0.4           | 4.0           | 5.7           | 10.0 (+/- 0.3)                     | 4 : 39 : 57      |
| 6a    | Beech Butanol       | Bi(OTf) <sub>3</sub> | 0.0           | 3.1           | 6.7           | 9.7                                | 0:32:68          |
| 6b    | Beech Butanol       | Bi(OTf) <sub>3</sub> | 0.0           | 3.1           | 6.8           | 9.9                                | 0 : 31 :69       |
| 6av   | Beech Butanol       | Bi(OTf) <sub>3</sub> | 0.0           | 3.1           | 6.7           | 9.8 (+/- 0.2)                      | 0:32:68          |
| 7a    | Douglas Fir Butanol | Bi(OTf) <sub>3</sub> | 0.1           | 8.6           | 0.0           | 8.8                                | 1:99:0           |
| 7b    | Douglas Fir Butanol | Bi(OTf) <sub>3</sub> | 0.1           | 7.9           | 0.0           | 8.0                                | 1:99:0           |
| 7av   | Douglas Fir Butanol | Bi(OTf) <sub>3</sub> | 0.1           | 8.2           | 0.0           | 8.4 (+/- 0.5)                      | 1:99:0           |
| 8a    | Walnut Butanol      | MsOH                 | 0.5           | 4.3           | 4.5           | 9.2                                | 5 : 46 : 49      |
| 8b    | Walnut Butanol      | MsOH                 | 0.3           | 3.4           | 3.6           | 7.3                                | 5 : 46 : 49      |
| 8av   | Walnut Butanol      | MsOH                 | 0.4           | 3.8           | 4.0           | 8.2 (+/- 1.4)                      | 5 : 46 : 49      |
| 9a    | Walnut Butanol      | TsOH                 | 0.4           | 3.6           | 3.9           | 7.8                                | 4 : 46 : 50      |
| 9b    | Walnut Butanol      | TsOH                 | 0.3           | 3.2           | 3.4           | 6.9                                | 5 : 46 : 49      |
| 9av   | Walnut Butanol      | TsOH                 | 0.4           | 3.4           | 3.6           | 7.4 (+/- 0.7)                      | 4 : 46 : 50      |
| 10a   | Walnut Butanol      | Bi(OTf) <sub>3</sub> | 0.3           | 2.6           | 3.6           | 6.2                                | 4:40:56          |
| 10b   | Walnut Butanol      | Bi(OTf) <sub>3</sub> | 0.3           | 2.3           | 3.0           | 5.3                                | 5:41:54          |
| 10av  | Walnut Butanol      | Bi(OTf) <sub>3</sub> | 0.3           | 2.4           | 3.3           | 6.0 (+/- 0.7)                      | 5 : 40 : 55      |

**Table S1** GC quantification of acetal monomers from lignin depolymerisation reactions



**Scheme 1** Acid catalysed depolymerisation and in-situ acetal formation for the production of aromatic monomers from lignin.

NMR Spectra of Model Compounds





















Lignin Depolymerisation NMR's

















S47



**NMRs of Isolated Acetals** 





# References

- S1. C. S. Lancefield, O. S. Ojo, F. Tran and N. J. Westwood, *Angewandte Chemie International Edition*, 2015, **54**, 258-262.
- S2. C. S. Lancefield and N. J. Westwood, *Green Chem.*, 2015, **17**, 4980-4990.
- S3. J. D. Nguyen, B. S. Matsuura and C. R. J. Stephenson, *J. Am. Chem. Soc.*, 2013, **136**, 1218-1221.
- S4. N. Mori, H. Watanabe and T. Kitahara, *Synthesis*, 2006, **2006**, 400-404.
- S5. J. Camponovo, C. Hadad, J. Ruiz, E. Cloutet, S. Gatard, J. Muzart, S. Bouquillon and D. Astruc, *The Journal of Organic Chemistry*, 2009, **74**, 5071-5074.
- S6. S. Pearson, W. Scarano and M. H. Stenzel, *Chem. Commun. (Cambridge, U. K.)*, 2012, **48**, 4695-4697.
- S7. F. Bouxin, S. Marinkovic, J. L. Bras and B. Estrine, *Carbohydr. Res.*, 2010, **345**, 2469-2473.
- S8. M. Meldal, M. K. Christensen and K. Bock, *Carbohydr. Res.*, 1992, **235**, 115-127.