Life Cycle Assessment of CO₂-based C1-Chemicals

André Sternberg, Christian M. Jens and André Bardow

Chair of Technical Thermodynamics, RWTH Aachen University

and re.bardow @ltt.rwth-aachen.de

Supporting Information

Contents

- S1. Overview of process concepts for C1-chemicals from CO2
- S2. Input and output data for processes analyzed in main text
- S3. LCA data
- S4. Breakdown of fossil depletion impacts for CO₂-based processes
- S5. Breakdown of global warming and fossil depletion impacts for fossil-based processes
- S6. Maximum impact reductions for global warming including CO₂ supply from CCS
- S7. Maximum environmental impact reductions for alternative natural gas supply
- S8. Calculation details for CO₂-based process for formic acid (Jens and co-workers)
- S9. References

	1	Neacuon	Product separation	Comment
нсоон	Ia	@ 93 °C and 105 bar	The stripping is performed at 3 bar before formic acid (purity: 85 wt %) is recovered at the top of the reactive distillation column.	REF 1
	lb	@ 50 $^{\circ}$ C and 94 bar	First, methanol, water and residual carbon monoxide are removed by distillation. Then,	PC: REF 2
			the amine-formic-acid adduct is decomposed in a reactive distillation at 200 mbar and 180 °C to liberate the pure formic acid, which is recovered at the top of the reactive distillation column.	PS: REF 3
CO	Π	in electrically heated reactor;	CO ₂ removal by amine scrubbing; H ₂ removal by liquid methane washing; recycling of	REF 4
via rWGS		heterogeneous catalyst	CO_2 and H_2	
		@ 230 °C and 25 bar in fixed bed reactor with WGS catalyst and water sorbent	Water is removed in reactor; CO is only product; no product separation required	PC: REF 5 PS: REF 6
Syngas via rWGS		@ 650 °C and I bar; ZnAl ₂ O ₄ catalyst	Partial removal of H_2 by PSA	REF 7
		@ 900 °C and 25 bar; additional use of steam; recycle from FT	H ₂ O removal	REF 8
CO & H ₂ via DRM	Ш	in electrically heated reactor; heterogeneous catalyst	CO_2 removal by amine scrubbing; H_2 removal by liquid methane washing; purification of H, by PSA; CO_2 recycling	REF 4
Syngas via DRM		@ 1000 °C and 4 bar		REF 9
Methanol	IVa	@ 220 °C and 50 bar	Separation of gaseous (CO, CO ₂ and H ₂) and condensable (CH ₃ OH, H ₂ O) compounds by flash; Recycling of gaseous compounds; separation of CH ₃ OH and H ₂ O in distillation	REF 10
	IVb	@ 210 °C and 78 bar in fixed bed adiabatic reactor	Similar to IV a	REF 11
	IVc	@ 250 °C and 50 bar	Similar to IVa, but additional stripping unit after flash: feed hydrogen (saturated with water) flows in counter-current with the condensed mixture from flash (CH ₃ OH, H ₂ O)	REF 12
Methane	Va	@ 280 °C and 8 bar with heterogeneous catalyst	Condensation of water	REF 13
	٧b	@ $300 \circ C$ and 5 bar	CO_2 removal by a mine scrubbing; H ₂ removal by membranes; recycling of CO ₂ and H ₂ to reactor	REF 14

2

Table S1: CO₂-based processes for C1-chemicals (processes in italics are not considered in main text due to missing data, the products of the processes in italics are used as input for Fischer-Tropsch reaction); PC-process concept, PS-process simulation

S1. Overview of process concepts for C1-chemicals from CO₂

S2. Input and output data for processes analyzed in main text

Data of all processes is presented for CO_2 and hydrogen inlet pressures of 1 bar. If data of original process simulations refers to other inlet pressures, the electricity demand is adjusted. In this case, the original electricity demand is presented in parentheses.

The CO_2 emissions include the CO_2 that is not converted during the reaction and the CO_2 that is produced during the combustion of carbon-containing by-products. The CO_2 emissions do not include indirect CO_2 emissions, e.g., from electricity and heat supply.

Process	Inputs				Emissions
	H_2	CO ₂	Electricity	Steam	CO ₂
	kg	kg	kWh	kWh	kg
Ia (Pérez-Fortes et al.) ¹	0.071	0.988	0.48 (0.35)	3.27	0.032
Ib (Jens et al.) ³	0.045	0.985	0.53	2.51	0.029

Table S2: CO₂-based formic acid production (values per kg <u>pure</u> formic acid)

Ia) original inlet pressures: p $H_2 = 30$ bar & p $CO_2 = 1$ bar

Ib) see Section S8 for further information

The process of Perez-Fortes and co-workers produces formic acid with a purity of 85 wt% and the process of Jens and co-workers produces 99 mol% formic acid. For the comparison, the results of both processes simulations are converted to "per kg <u>pure</u> formic acid".

Table S3: CO ₂ -based carbon monoxide	production via rWCS	(values per ka eerber	monovido)
Table 55. CO2-based carbon monovide	production via 1 w GS	(values per kg carbor	(monoxide)

Process	Inputs				Emissions
	H ₂	CO ₂	Electricity	Steam	CO ₂
	kg	kg	kWh	kWh	kg
IIa – electrically heated reactor $(CO_2RRECT)^4$	0.072	1.581	1.54	0.71	0.010
IIb – reactor heated by steam	0.072	1.581	1.13	1.11	0.010

Process	Inputs	Inputs				Emissions
	CH ₄	CO ₂	Electricity	Steam	H ₂	CO ₂
	MJ	kg	kWh	kWh	kg	kg
IIIa – electrically heated reactor (CO ₂ RRECT) ⁴	13.02	0.910	1.98		0.050	0.053
IIIb – reactor heated by steam	13.02	0.910	0.76	1.22	0.050	0.053

Process	Inputs				Emissions
	H_2	CO ₂	Electricity	Steam	CO ₂
	kg	kg	kWh	kWh	kg
IVa (Rihko-Struckmann et al.) ¹⁰	0.197	1.436	1.34		0.062
IVb (Van-Dal et al.) ¹¹	0.204	1.484	0.69 (0.30)		0.112
IVc (Kiss et al.) ¹²	0.189	1.376	0.67 (0.55)	0.37	0.002

Table S5: CO₂-based methanol production (values per kg methanol)

IVb) original inlet pressures: p $H_2 = 30$ bar & p $CO_2 = 1$ bar;

IVc) original inlet pressures p $H_2 = 1.1$ bar & p $CO_2 = 100$ bar

Table S6: CO₂-based methane production (values per GJ SNG based on LHV)

Process	Inputs			Emissions
	H ₂	CO ₂	Electricity	CO ₂
	kg	kg	kWh	kg
Va (Müller et al.) ¹³	9.97	57.53	19.31 (6.38)	3.79
Vb (De Saint Jean et al.) ¹⁴	10.04	55.46	54.14 (40.41)	0.90

Va) original inlet pressures: $p H_2 = 30$ bar & $p CO_2 = 1$ bar;

Vb) original inlet pressures: $p H_2 = 7.4$ bar & $p CO_2 = 100$ bar

Both CO₂-based processes for methane produce so-called substitute natural gas (SNG). The main component of SNG is methane (> 85 vol-%). Furthermore, SNG contains H₂ and CO₂. The H₂ contributes to the energy content of SNG. The CO₂ is considered as emission.

Process	Inputs				Outputs	Emissions	Comment
	CH ₄	СО	Electricity	Heat	Hydrogen	CO ₂	
	MJ	kg	kWh	kWh	kg	kg	
HCOOH (REF ¹⁵) ^{a)}		0.614	0.13	5.35 ^{c)}		0.010	
CO (REF ⁴)	36.20		0.89	2.38 ^{d)}	0.216	0.414	$H_2/CO = 3$
CO ^{b)}	40.43		0.41	6.60 ^{d)}	0.317	0.646	$H_2/CO = 4.4$
CH3OH (Ref ¹⁶)	25.00		0.43	0.97 ^{d)}			High-efficiency
CH3OH (Ref ¹⁶)	25.00		e)	3.25 ^{d)}			Low-efficiency

Table S7: Fossil-based production of C1-chemicals (values per kg C1-chemical)

a) purity of formic acid is not mentioned in reference; carbon balance indicates that results are presented per kg pure formic acid

b) data for syngas production from Baltrusaitis and Luyben,⁹ and energy demand for carbon monoxide separation from Lyke and Moore¹⁷

c) value represents steam demand

d) value represents natural gas demand

e) required electricity is internally produced from excess steam

S3. LCA data

In Table S8 the considered LCA data sets are presented.

Product	Name of data set	Year	Database
Heat	steam from natural gas (efficiency 90 %) [EU-27]	2012	GaBi ts
Heat	steam from natural gas (efficiency 90 %) [NL]	2012	GaBi ts
Heat	steam from natural gas (efficiency 90 %) [PT]	2012	GaBi ts
Natural gas	natural gas mix [EU-27]	2012	GaBi ts
Natural gas	natural gas mix [NL]	2012	GaBi ts
Natural gas	natural gas mix [PT]	2012	GaBi ts
Hydrogen	hydrogen from steam reforming - natural gas [DE]	2012	GaBi ts
Electricity	electricity from wind power [EU-27]	2012	GaBi ts
Electricity	electricity from photovoltaics [DE]	2012	GaBi ts
Electricity	electricity generation mix [all countries of EU-27]	2012	GaBi ts
Electricity	electricity mix 2020 (average power plant) [EU-27]	2015	GaBi ts
Electricity	electricity mix 2040 (average power plant) [EU-27]	2015	GaBi ts
Electricity	electricity mix 2050 (average power plant) [EU-27]	2015	GaBi ts

Table S8: Considered LCA data sets

S4. Breakdown of fossil depletion impacts for CO₂-based processes

Figure S1: Breakdown of fossil depletion (FD) impacts per functional unit (FU = use of 1kg hydrogen) for CO_2 -based processes for a) formic acid, b) carbon monoxide via rWGS, c) carbon monoxide via DRM, d) methanol and e) methane. For CO_2 supply, a fossil depletion impact of 0.13 kg Oil-eq/kg CO_2 is considered. The hydrogen is supplied by fossil-based steam-methane-reforming. The error bars of the CO_2 -based processes represent the range of considered process concepts. The right bar represents fossil-based processes with an upper bound of fossil depletion impacts (worst case). The range of the fossil-based processes is due to different yields of C1-chemicals from the considered CO_2 -based processes. The average yield is shown in the right bar.

S5. Breakdown of global warming and fossil depletion impacts for fossil-based processes

In this section, the breakdown of global warming and fossil depletion impacts is shown for fossil-based processes per functional unit. For formic acid, methanol and methane, the average yield of C1-chemicals from Table S9 is considered. The average yield of each considered C1-chemical is presented in Figure S1.

Figure S2: Breakdown of global warming impacts (GW) for fossil-based processes per functional unit (FU). For formic acid, the process energy (heat and electricity) demand is divided in production of the precursor carbon monoxide (horizontal lines) and the conversion of carbon monoxide to formic acid (vertical lines). The global warming impacts of NG (feedstock) include upstream processes such as transportation and natural gas purification. For fossil-based carbon monoxide, the difference between CO (rWGS) and CO (DRM) is due to different product yields of the CO₂-based processes (rWGS and DRM).

Figure 3: Breakdown of fossil depletion impacts (FD) for fossil-based processes per functional unit (FU). For formic acid (HCOOH), the process energy (heat and electricity) demand is divided in production of the precursor carbon monoxide (horizontal lines) and the conversion of carbon monoxide to formic acid (vertical lines). The fossil depletion impacts of NG (feedstock) include upstream processes such as transportation and natural gas purification.

	C1-chemical in kg	Hydrogen in kg	C1-chemical in mol	Hydrogen in mol
Formic acid	4.91-5.63	0.65-0.75	107-122	323-370
Carbon monoxide (rWGS)	3.47	0.75	124	372
Carbon monoxide (DRM)	6.02	1.30	215	645
Methanol	4.90-5.29		153-165	
Methane ^{a)}	1.97-1.99	0.004-0.017	123-124	2-8

Table S9: Yield of chemicals for considered CO₂-based processes per functional unit (use of 1 kg hydrogen)

a) Corresponds to 99.6-100.3 MJ based on lower heating value (LHV)

Table S10: Input and output (negative values) of hydrogen in mol for CO₂-based and fossil-based processes of C1-chemicals based on process simulations (data from Tables S2 - S7) and stoichiometric data (see Figure 2 in main text). For the CO₂-based production of CO via DRM, the production of 2 mol CO is considered because thereby we ensure that all CO₂-based processes use 1 mol CO₂ and substitute 1 mol fossil-based methane. The CO₂-based production of CO via DRM substitutes 2 mol fossil-based CO but requires 1 mol methane as feedstock. For the fossil-based production of methanol (process data), the hydrogen output is 0 because the co-produced hydrogen is not purified in the considered process concepts and thus not available as by-product.

	Formic acid 1 mol	CO (rWGS) 1 mol	CO (DRM) 2 mol	Methanol 1 mol	Methane 1 mol
Data based on process simulations					
CO ₂ -based	1.03-1.62	1.00	-1.39	3.01-3.24	4.00-4.03
Fossil-based	-3.02	-3.00	-6.00	0.00	0.00
Total (CO ₂ -based – Fossil-based)	4.05-4.64	4.00	4.61	3.01-3.24	4.00-4.03
Stoichiometric data					
CO ₂ -based	1	1	-2	3	4
Fossil-based	-3	-3	-6	1	0
Total (CO ₂ -based – Fossil-based)	4	4	4	4	4

S6. Maximum impact reductions for global warming including CO₂ supply from CCS

In the main text (Figure 5), a range of global warming impacts for CO_2 supply is considered from -0.42 to -0.99 kg CO_2 -eq/kg CO_2 . In Figure S4, a range of global warming impacts for CO_2 supply is considered from 0 to -1 kg CO_2 -eq/kg CO_2 . A global warming impact of zero for CO_2 supply corresponds to the utilization of CO_2 that otherwise would be stored in the underground (CCS).

Figure S4: Maximum global warming (GW) impact reductions including CO₂ supply from CCS. For further explanation of the Figure, see caption of Figure 5 in main text.

S7. Maximum environmental impact reductions for alternative natural gas supply

In the main text, the maximum environmental impact reductions for global warming and fossil depletion are determined by considering the natural gas supply mix in the EU-27. In this section, the maximum environmental impact reductions for global warming and fossil depletion are presented for natural gas mixes of countries with highest (Portugal) and lowest (The Netherlands) environmental impacts in the EU-27.

Figure S5: Maximum global warming (GW) impact reductions for the Dutch natural gas mix. For further explanation of the Figure, see caption of Figure 5 in main text.

Figure S6: Maximum global warming (GW) impact reductions for the Portuguese natural gas mix. For further explanation of the Figure, see caption of Figure 5 in main text.

Figure S7: Maximum fossil depletion (FD) impact reductions for the Dutch natural gas mix. For further explanation of the Figure, see caption of Figure 6 in main text.

Figure S8: Maximum fossil depletion (FD) impact reductions for the Portuguese natural gas mix. For further explanation of the Figure, see caption of Figure 6 in main text.

S8. Calculation details for CO₂-based process for formic acid (Jens and co-workers)³

Simulation was performed with Aspen Plus based on assumptions and physical properties as shown in details below.

Flow sheets

Figure S9: Process flow sheet for NHex₃-based process

Physical properties

Table S11: References for physical properties of pure components; COSMO-RS Version:COSMOthermX15 with parameterization TZVPD-FINE

Component	$C_{ m p}$	$\Delta H_{ m vap}$	$p_{ m vap}$	Molar volume
НСООН	Aspen database	Aspen database	Aspen database	Aspen database
NHex ₃	Góralski et al. ¹⁸	COSMO-RS	COSMO-RS	Góralski et al. ¹⁸
Methanol	Aspen database	Aspen database	Aspen database	Aspen database
HCOOH-NHex3	Sum of NHex ₃ and HCOOH	COSMO-RS	COSMO-RS	Same as NHex ₃

The reference for the physical properties of all considered mixtures is COSMOthermX15 with TZVP-FINE parameterization. The HCOOH-NHex₃ complex was implemented with COSMOconfX13.

Assumptions for process simulation

Table S12: Assumptions for process simulation of NHex3-based process and corresponding references

Assumption	Reference		
Reactor			
Pressure (CO ₂ and H ₂), temperature, reaction yields	Patent of Schaub et al. ¹⁹		
Enthalpy of reaction	Schaub and Paciello ²		
Solvent effect on the enthalpy of reaction	COSMO-RS		
LLE separation			
Partition coefficients are based on:			
experimental data if availableprediction otherwise	Patent of Schaub et al. ¹⁹ COSMO-RS		
Distillation			
Temperature and pressure	Patent of Schaub et al. ¹⁹		
Reflux ratio; reboiler/condenser heating/cooling	RADFRAC Model in Aspen Plus; Number of stages and feed tray are varied to minimize energy demand		
Reactive distillation	Approximated as combination of reactor (with ful conversion) at distillation conditions and a RADFRAC distillation. ¹ Solvent correction on heat of reaction calculated with COSMO-RS.		

S9. References

- (1) M. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti, G. Harrison and E. Tzimas, *Int. J. Hydrogen Energy*, 2016, **41**, 16444–16462.
- (2) T. Schaub and R. A. Paciello, Angew. Chem. Int. Ed., 2011, 50, 7278–7282.
- (3) C. M. Jens, M. Scott, B. Liebergesell, P. Schäfer, G. Franciò, W. Leitner, K. Leonhard and A. Bardow, *in preparation*, 2017.
- (4) CO₂RRECT, *CO*₂-*Reaction using Regenerative Energies and Catalytic Technologies*, Bayer Technology Services, Final project report (ref. no. 033RC1006), 2014.
- (5) W. Haije and H. Geerlings, *Environ. Sci. Technol.*, 2011, **45**, 8609–8610.
- (6) C. van der Giesen, R. Kleijn and G. J. Kramer, *Environ. Sci. Technol.*, 2014, **48**, 7111–7121.
- I. Dimitriou, P. Garcia-Gutierrez, R. H. Elder, R. M. Cuellar-Franca, A. Azapagic and R. W. K. Allen, *Energy Environ. Sci.*, 2015, 8, 1775–1789.
- (8) D. H. König, N. Baucks, R.-U. Dietrich and A. Wörner, *Energy*, 2015, **91**, 833 841.
- (9) J. Baltrusaitis and W. L. Luyben, ACS Sustainable Chem. Eng., 2015, 3, 2100–2111.
- (10) L. K. Rihko-Struckmann, A. Peschel, R. Hanke-Rauschenbach and K. Sundmacher, *Ind. Eng. Chem. Res.*, 2010, **49**, 11073–11078.
- (11) E. S. Van-Dal and C. Bouallou, J. Clean. Prod., 2013, 57, 38 45.
- (12) A. A. Kiss, J. Pragt, H. Vos, G. Bargeman and M. de Groot, *Chem. Eng. J.*, 2016, **284**, 260 269.
- (13) B. Müller, K. Müller, D. Teichmann and W. Arlt, *Chem. Ing. Tech.*, 2011, **83**, 2002–2013 (in German).
- (14) M. D. S. Jean, P. Baurens and C. Bouallou, *Int. J. Hydrogen Energy*, 2014, **39**, 17024–17039.
- (15) ecoinvent, *Life Cycle Inventories of Petrochemical Solvents*, Swiss Centre for Life Cycle Inventories, ecoinvent report No. 22, 2007.
- (16) ecoinvent, *Life Cycle Inventories of Chemicals*, Swiss Centre for Life Cycle Inventories, ecoinvent report No. 8, 2007.
- (17) S. E. Lyke and R. H. Moore, *Chemical Production From Industrial Byproduct Gases: Final Report*, U.S. Department of Energy Technical Report PNL-3753, 1981.
- (18) P. Góralski, M. Wasiak and A. Bald, J. Chem. Eng. Data, 2002, 47, 83–86.
- (19) T. Schaub, O. Bey, A. Meier, D. M. Fries and R. Hugo, WO 2013050367, 2013.