Supplementary Information

A Photoactive Catalyst Ru-g-C_3N_4 for Hydrogen Transfer reaction of Aldehydes and Ketones $\ensuremath{^\dagger}$

Priti Sharma and Yoel Sasson*

Casali Center of Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, E-mail: ysasson@huji.ac.il

S.No.	Description	Page. No.
1.	Figure: S1 Physical appearance of (A) $g-C_3N_4$ and (B) Ru- $g-C_3N_4$.	2
2.	Figure: S2 Reaction Setup under Visible light (LED Lamp).	3
3.	Figure: S3 Ru-g-C ₃ N ₄ sample XPS Quantification report.	4
4.	Figure: S4 (I, II). SEM -EDX images g-C ₃ N ₄ , Ru-g-C ₃ N ₄ .	5
5.	Figure: S5 (I, II). TEM Images of g-C ₃ N ₄ and Ru-g-C ₃ N ₄ (A,B,C)	6
6.	Figure: S6 (I, II). TEM -EDX images g-C ₃ N ₄ , Ru-g-C ₃ N ₄ .	7
7.	Figure: S7. BET analysis (I) Nitrogen adsorption-desorption isotherm, (II) Pore size distribution.	8
8.	Figure: S8. XRD pattern of different loading (6,8,10 %) with ruthenium chloride.	9
9.	Table S1: Reaction parameters (base, light, temperature $g-C_3N_4$) optimization for the hydrogen transfer reaction.	10

Figure S1: Physical appearance of (A) $g-C_3N_4$ and (B) $Ru-g-C_3N_4$

Figure S2 : Reaction Setup under Visible light (LED Lamp).

Sample 2 N3								
Peak	Type	Position	FWHM	Raw Area	RSF	Atomic	Atomic	Mass
		BE (eV)	(eV)	(cps eV)		Mass	Conc %	Conc %
0 1s	Reg	534.700	3.809	2817.3	0.780	15.999	7.53	7.81
N 1s	Reg	397.300	2.451	13402.2	0.477	14.007	59.46	54.00
Ru 3d	Reg	282.900	1.653	2383.6	4.273	101.069	1.17	7.68
C 1s	Reg	291.900	1.748	3713.0	0.278	12.011	28.07	21.86
Cl 2p	Reg	196.500	3.151	1589.4	0.891	35.460	3.76	8.65

Figure: S3. XPS Quantification report of Ru-g-C₃N₄ material.

Figure: S4(I). SEM-EDX images g-C₃N₄.

Figure: S4(II). SEM-EDX images Ru- g-C₃N₄.

Figure S5: TEM analysis

Figure S5(I): TEM images of $g-C_3N_4$ with different magnification (A) at 0.5µm scale, (B) at 1µm scale, (C) $g-C_3N_4$ SAED pattern.

Figure:S5(II). TEM images of Ru-g-C₃N₄ with different magnification (A) at 0.5μm scale, (B) at 1μm scale, (C) Ru-g-C₃N₄ SAED pattern.

Figure: S6(I). TEM-EDX images of g-C₃N₄.

Figure: S6(II). TEM- EDX images Ru-g-C₃N₄.

Figure: S7. BET surface area analysis

Figure: S7(I). Nitrogen adsorption-desorption isotherm (A) Ru-g-C₃N₄, (B) g-C₃N₄.

Figure: S7(II). Pore size distribution of (A) Ru-g-C₃N₄, (B) g-C₃N₄.

Figure: S8. XRD pattern of different loading (6, 8, 10 %) with ruthenium chloride (a) Ru-g- $C_3N_4(6)$, (b) Ru-g- $C_3N_4(8)$, (c) Ru-g- $C_3N_4(10)$.

Table S1: Reaction parameters (base, light,	, temperature g-C3N4)	optimization for	the hydrogen
transfer reaction.			

S. No.	Reaction condition	Time (h)	Yield (%)
1.	$Dark + RuCl_3$	12	<2
2.	$Light + RuCl_3$	12	<2
3.	Dark + KOH+ Ru	12	3
4.	Light + KOH + Ru	12	~7
5.	Dark $+g-C_3N_4$	12	0
6.	$Light + g-C_3N_4$	12	0
7.	Dark $+$ Ru-g-C ₃ N ₄	24	<10
8.	Light +Ru-g-C ₃ N ₄	6	75
9.	No catalyst (blank reaction)	24	00

Reaction conditions: Ru-g-C₃N₄ (30 mg), Alcohol (5 mL), Carbonyl functional group (>C=O) (1 mmol), Isolated yields, visible light irradiation >420 nm (9 W LED domestic ceiling lamp), room temperature, Conversion and product yield based on GC area.