Electronic Supplementary information for

Acid promoted C–C bond oxidative cleavage of β-O-4 and β-1 lignin models to esters over copper catalyst

M. Wang,^a L. H. Li,^a J. M. Lu,^a H. J. Li,^{a, b} X. C. Zhang,^a H. F. Liu,^{a, b} N. C. Luo^{a, b} and F. Wang^a*

^a State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

* Corresponding Author: wangfeng@dicp.ac.cn

Table of Contents

- 1. Detection of reaction gas phase product
- 2. GC detection of the liquid phase product
- 3. Synthesis of lignin model compounds and details of NMR Characterization
- 4. NMR spectra of the product
- 5. Mass spectra of the product

1. Detection of reaction gas phase product

Fig. S1. Limewater images before (left) and after (right) introduction of the reaction gas phase. The limewater was not cloudy, indicating that the reaction gas phase nearly contains no CO₂.

2. GC detection of the liquid phase product

Fig. S2. GC spectra of the oxidation of lignin model 2 in methanol (a) and ethanol (b).

3. Synthesis of model compounds and detailed NMR characterization

Procedure for preparation of 2-phenoxy-1-phenylethanone

2-Phenoxy-1-phenylethanone was prepared by the literature procedures.¹ A 350 mL pressure bottle was charged with phenol (6.9 g, 73 mmol) and K₂CO₃ (10.4 g, 75 mmol) in acetone (150 mL) in Ar atmosphere and stirred at RT for 30 min. To this solution, 2-bromoacetophenone (14.0 g, 70 mmol) was added, the resulting suspension was stirred at RT for 16 h, after which the suspension was filtered and concentrated *in cacuo*. The solid was dissolved in ethyl acetate and washed with NaOH aqueous (5%, 30 ml) and water (30 ml). The organic phase was dried over anhydrous Na₂SO₄. The crude product was recrystallized from ethanol to give 2-phenoxy-1-phenylethanone as a white solid in 87% yield. Spectral data were in accordance with those previously reported. For the other methoxyl substituted 2-phenoxy-1-phenylethanone, the preparation procedure is the same as described above, except that using different stating materials.

Procedure for preparation of

1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propan-1-one

1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propan-1-one was prepared by the literature procedures.¹ To a stirring suspension of K_2CO_3 (0.6 g, 4.3 mmol) and 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanone (1.2 g, 4 mmol) in ethanol: acetone (v/v = 1:1, 20 mL), a water solution of formaldehyde (36.5-38%) (0.6 mL, 7.3 mmol) was added at room temperature. After 4 h the reaction mixture was concentrated *in vacuo* to get a solid product. The solid was purified by column chromatography (pentane/ethyl acetate, 1:1) to yield 1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propan-1-one as a pale yellow solid (1.19 g, 3.6 mmol) in 90% yield. ¹H NMR (400 MHz, CD₃CN) δ = 7.75 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.56 (d, *J* = 2.0 Hz, 1H), 7.04 – 6.89 (m, 3H), 6.89 – 6.73 (m, 2H), 5.56 (dd, *J* = 5.5, 4.3 Hz, 1H), 3.99 (td, *J* = 6.0, 3.3 Hz, 2H), 3.87 (s, 3H), 3.83 (s, 3H), 3.78 (s, 3H), 3.72 (q, *J* = 5.9 Hz, 1H), 3.23 (dd, *J*=7.9, 4.5 Hz, 1H). ¹³C NMR (101 MHz, CD₃CN) δ = 195.86, 154.61, 150.46, 149.73, 147.68, 128.88, 123.96, 122.89, 121.30, 117.90, 116.26, 113.28, 111.50, 111.31, 82.55, 63.63, 56.22, 56.01, 55.98.

Procedure for preparation of 3-hydroxy-1,2-diphenylpropan-1-one

3-hydroxy-1,2-diphenylpropan-1-one was prepared as follows: To a stirring suspension of K₂CO₃ (0.6 g, 4.3 mmol) and 1,2-diphenylethanone (0.78 g, 4 mmol) in ethanol: acetone (v/v = 1:1, 20 mL), a water solution of formaldehyde (36.5-38%) (0.6 mL, 7.3 mmol) was added at room temperature. After 4 h the reaction mixture was concentrated in vacuo to get a solid product. The solid was purified by column chromatography (pentane/ethyl acetate, 1:1)to yield 3-hydroxy-1,2-diphenylpropan-1-one. ¹H NMR (400 MHz, CD₃CN) δ = 7.97 (dd, J = 5.3, 3.4 Hz, 2H), 7.58 - 7.49 (m, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.40 - 7.18 (m, 5H), 4.88 (dd, J = 8.0, 5.6 Hz, 1H), 4.20 (ddd, J = 10.7, 8.0, 6.0 Hz, 1H), 3.83 - 3.72 (m, 1H), 2.92 (t, J = 6.0 Hz, 1H). ¹³C NMR (101 MHz, CD₃CN) $\delta = 199.91$, 137.64, 137.42, 133.74, 129.49, 129.26, 129.15, 129.09, 127.93, 64.66, 56.37.

Procedure for synthesis of synthesis of the deuterated compounds

2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone (0.50 g 9.19 mmol) was added to a vial with anhydrous K_2CO_3 (0.126 g, 0.92 mmol) and 5 mL of D_2O . The vial was caped. The reaction ran at 100 °C for 24 h. The D_2O was decanted and replaced by fresh one. The reaction was maintained for additional 24 h at 100 °C. Then the solid was washed to remove the K_2CO_3 residues. Finally, the solid was dried under vacuum to give deuterated compounds as a light yellow solid in 95% yield.

(1) Dawange, M.; Galkin, M. V.; Samec, J. S. M. ChemCatChem 2015, 7, 401-404.

2-phenoxy-1-phenylethanone

Prepared from 2-bromoacetophenone and phenol in 87% yield. White solid. ¹H NMR (400 MHz, CD₂Cl₂) δ = 8.08 – 8.00 (m, 2H), 7.73 – 7.64 (m, 1H), 7.56 (dd, *J* = 10.6 Hz, 4.8, 2H), 7.39 – 7.29 (m, 2H), 7.08 – 6.94 (m, 3H), 5.35 (s, 2H). ¹³C NMR (101 MHz, CD₂Cl₂) δ = 194.29, 158.12, 134.68, 133.80, 129.54, 128.83, 127.94, 121.47, 114.64, 70.61.

2-(2-methoxyphenoxy)-1-phenylethanone

Prepared from 2-bromoacetophenone and guaiacol in 71% yield. White solid. ¹H NMR (400 MHz, CDCl₃) δ = 8.06 – 7.97 (m, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.02 – 6.82 (m, 4H), 5.34 (s, 2H), 3.88 (s, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ = 194.59, 149.86, 147.57, 134.69, 133.74, 128.79, 128.12, 122.52, 120.81, 115.02, 112.27, 72.19, 55.93.

2-(2,6-dimethoxyphenoxy)-1-phenylethanone

Prepared from 2-bromoacetophenone and 2,6-dimethoxyphenol in 43% yield. White solid. ¹H NMR (400 MHz, CDCl₃) δ = 8.05 (d, *J* = 7.7 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.00 (t, *J* = 8.4 Hz, 1H), 6.57 (d, *J* = 8.4 Hz, 2H), 5.19 (s, 2H), 3.79 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 195.19, 153.20, 136.73, 135.24, 133.25, 128.54, 128.36, 124.06, 105.38, 75.44, 56.08.

1-(4-methoxyphenyl)-2-phenoxyethanone

Prepared from 2-bromo-1-(4-methoxyphenyl)ethanone and phenol in 83% yield. White solid. ¹H NMR (400 MHz, CDCl₃) δ = 8.00 (d, *J* = 8.8 Hz, 2H), 7.27 (dd, *J* = 13.0 Hz, 4.4, 2H), 7.02 – 6.90 (m, 5H), 5.20 (s, 2H), 3.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 193.13, 164.06, 158.13, 130.58, 129.56, 127.70, 121.57, 114.82, 114.02, 70.76, 55.53.

2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone

Prepared from 2-bromo-1-(4-methoxyphenyl)ethanone and guaiacol in 88% yield. White solid. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.08 - 7.96$ (m, 2H), 7.00 - 6.81 (m, 6H), 5.27 (s, 2H), 3.87 (s, 3H), 3.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 193.15, 163.97, 149.78, 147.67, 130.52, 127.75, 122.34, 120.81, 114.79, 113.96, 112.22, 72.02, 55.93, 55.51.

1-(3,4-dimethoxyphenyl)-2-phenoxyethanone

Prepared from 2-bromo-1-(3,4-dimethoxyphenyl)ethanone and phenol in 85% yield. Light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.65 (dd, *J* = 8.4 Hz, 1.9, 1H), 7.56 (d, *J* = 1.9 Hz, 1H), 7.35 – 7.23 (m, 2H), 7.03 – 6.86 (m, 4H), 5.21 (s, 2H), 3.93 (d, *J* = 8.5 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 193.18, 158.13, 153.93, 149.30, 129.57, 127.81, 122.86, 121.58, 114.82, 110.41, 110.19, 70.73, 56.03.

1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanone

Prepared from 2-bromo-1-(3,4-dimethoxyphenyl)ethanone and guaiacol in 92% yield. Light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.68 (dd, *J* = 8.4 Hz, 1.9, 1H), 7.60 (d, *J* = 1.8 Hz, 1H), 7.02 – 6.82 (m, 5H), 5.29 (s, 2H), 3.98 – 3.86 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ = 193.30, 149.76, 149.23, 147.63, 127.89, 122.80, 122.37, 120.83, 114.76, 112.20, 110.50, 110.16, 72.08, 56.11, 56.01, 55.92.

2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethanone

Prepared from 2-bromo-1-(3,4-dimethoxyphenyl)ethanone and 2,6-dimethoxyphenol in 93% yield. Light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.73 (dd, *J* = 8.4 Hz, 1.9, 1H), 7.65 (d, J = 1.9 Hz, 1H), 7.01 (t, J = 8.4 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 6.58 (d, J = 8.4 Hz, 2H), 5.15 (s, 2H), 3.94 (s, 6H), 3.81 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) $\delta = 193.71$, 153.42, 153.27, 149.01, 136.72, 128.42, 124.06, 123.08, 110.72, 110.08, 105.38, 75.30, 56.09.

4. NMR spectra of the product

Methyl benzoate

¹H NMR (400 MHz, CDCl₃) δ = 8.03 (m, 2H), 7.51 (dd, J=5.0, 3.7, 1H), 7.40 (t, J=7.7, 2H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 167.03, 132.88, 130.15, 129.54, 128.33, 52.02.

Phenol

¹H NMR (400 MHz, CDCl₃) δ = 7.23 (dd, *J*=8.5, 7.5, 2H), 6.94 (d, *J*=7.4, 1H), 6.83 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ = 155.31, 129.78, 120.97, 115.40.

Ethyl benzoate

¹H NMR (400 MHz, CDCl₃) δ = 8.05 (m, 2H), 7.54 (d, *J*=7.4, 1H), 7.43 (t, *J*=7.6, 2H), 4.38 (q, *J*=7.1, 2H), 1.40 (t, *J*=7.1, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 166.60, 132.81, 129.54, 128.32, 60.96, 14.34.

¹H NMR (400 MHz, CDCl₃) δ = 6.92 (m, 1H), 6.86 (m, 3H), 3.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 146.61, 145.69, 121.48, 120.18, 114.58, 110.76, 55.89.

¹H NMR (400 MHz, CDCl₃) δ = 7.68 (dd, *J*=8.4, 2.0, 1H), 7.55 (d, *J*=1.9, 1H), 6.89 (d, *J*=8.4, 1H), 3.94 (d, *J*=1.0, 6H), 3.89 (d, *J*=5.6, 3H). ¹³C NMR (101 MHz, CDCl₃) δ = 166.88, 152.93, 148.58, 123.57, 122.66, 111.92, 110.23, 56.01, 55.99, 52.00.

5. Mass spectra of the product

