Protic ionic liquid [Bim][NTf2] with strong hydrogen bond donating ability for highly efficient ammonia absorption

Supporting Information

1. Determination of dissociation constants pK_{a}

Dissociation equilibrium of the ILs can be described as the following process:

$$
\begin{equation*}
\left[\mathrm{RH}^{+}\right]\left[\mathrm{NTf}_{2}^{-}\right]+\mathrm{SH} \rightarrow\left[\left[\mathrm{R}^{-}\right]^{+}\right]\left[\mathrm{NTf}_{2}^{-}\right]+\left[\mathrm{SH}_{2}^{+}\right] \tag{S1}
\end{equation*}
$$

Where SH means a solvent, $\mathrm{SH}_{2}{ }^{+}$denotes a solvated proton, and $\mathrm{RH}^{+},\left[\mathrm{R}^{-}\right]^{+}$ represents the acid cation and the conjugate base of the cation of the IL. The dissociation constant of the ILs can be explained by:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{a}}=\frac{\left.\left[[\mathrm{R}]^{-}\right]^{+}\right]^{*}\left[\mathrm{NTf}_{2}^{-}\right]^{*}\left[\mathrm{SH}_{2}^{+}\right]}{\left[\mathrm{RH}^{+}\right] *\left[\mathrm{NTf}_{2}^{-}\right]} \tag{S2}
\end{equation*}
$$

There are mass and charge balance at any point of the titrations:

$$
\begin{align*}
& {\left[\left[\mathrm{RH}^{+}\right]\left[\mathrm{NTf}_{2}^{-}\right]\right]_{\text {total }}=\left[\mathrm{NTf}_{2}^{-}\right]=\left[\mathrm{RH}^{+}\right]+\left[\left[\mathrm{R}^{-}\right]^{+}\right]} \tag{S3}\\
& {\left[\mathrm{Na}^{+}\right]+\left[\mathrm{SH}_{2}^{+}\right]+\left[\mathrm{RH}^{+}\right]=\left[\mathrm{S}^{-}\right]+\left[\mathrm{NTf}_{2}^{-}\right]} \tag{S4}
\end{align*}
$$

$[\mathrm{X}]$ means the concentrations of the corresponding ions. For example, $\left[[\mathrm{R}]^{+}\right]$ means the concentration of $\left[\mathrm{R}^{-}\right]^{+}$in the solution during the titration and $\left[\left[\mathrm{RH}^{+}\right]\left[\mathrm{NTf}_{2}{ }^{-}\right.\right.$ $]_{\text {total }}$ means the total concentration of the ILs. Therefore, from Eqs (S2), (S3), (S4), we
have

$$
\begin{equation*}
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{Na}^{+}\right]+\left[\mathrm{SH}_{2}^{+}\right]-\left[\mathrm{S}^{-}\right]}{\left[\mathrm{S}^{-}\right]+\left[\mathrm{NTf}_{2}^{-}\right]-\left[\mathrm{Na}^{+}\right]-\left[\mathrm{SH}_{2}^{+}\right]} *\left[\mathrm{SH}_{2}^{+}\right] \tag{S5}
\end{equation*}
$$

When the pH value is lower than 7 during the titration, there is an assumption that the value of [S^{-}] could be neglected and the equation becomes:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{Na}^{+}\right]+\left[\mathrm{SH}_{2}^{+}\right]}{\left[\mathrm{NTf}_{2}^{-}\right]-\left[\mathrm{Na}^{+}\right]-\left[\mathrm{SH}_{2}^{+}\right]} *\left[\mathrm{SH}_{2}^{+}\right] \tag{S6}
\end{equation*}
$$

Here in the Eq (S6), the only unknown parameter is the $\left[\mathrm{SH}_{2}{ }^{+}\right]$and from the pH values, the activity concentration $\mathrm{a}_{\left[\mathrm{SH}_{2}{ }^{+}\right]}$could be calculated. To figure out the actual concentration of the $\left\{\mathrm{SH}_{2}{ }^{+}\right\}$, activity coefficient $\mathrm{f}_{\left[\mathrm{SH}_{2}{ }^{+}\right]}$needs to be known, as Eqs (S7), (S8), (S9) display.

$$
\begin{align*}
& {\left[\mathrm{SH}_{2}^{+}\right]=\frac{\mathrm{a}_{\left[\mathrm{SH}_{2}^{+}\right]}}{\mathrm{f}_{\left[\mathrm{SH}_{2}^{+}\right]}}} \tag{S7}\\
& -\log _{\left[\mathrm{SH}_{2}^{+}\right]}=\frac{\frac{1}{2} \mathrm{Z}^{2} \mathrm{I}^{1 / 2}}{1+\mathrm{I}^{1 / 2}} \tag{S8}\\
& \mathrm{I}=\frac{1}{2} \sum \mathrm{Z}^{2}[\mathrm{X}] \tag{S9}
\end{align*}
$$

I above means the ionic strength of the solution and Z means the charge number of the ions. However, on account of high-concentration of KCl , the ionic strength of solution was almost the same during the whole titration and the variation could be neglected

2. Fitting of the viscosities

Figure S1. Semi-logarithmic Arrhenius-like plots.

Figure S2. Thermogravimetric analysis of decomposition of $[\mathrm{Bim}]\left[\mathrm{NTf}_{2}\right]$ as a function of temperature.

Figure S3. TGA trace of ILs at a heating rate of $10 \mathrm{~K} / \mathrm{min}$ in the N_{2} atmosphere

Table S1. Onset and start temperatures for thermal decomposition of the ILs

ILs	$\mathrm{T}_{\text {onset }} / \mathrm{K}$	$\mathrm{T}_{\text {start }} / \mathrm{K}^{[\mathrm{B}]}$
$\mathrm{BmimNTf}_{2}$	687	643
BimNTf_{2}	656	609
$\left[\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{3} \operatorname{mim}\right] \mathrm{NTf}_{2}$	637	621

[B]: temperature with 5% weight loss

3. Reliability of our apparatus

Figure S4. Reliability check of the apparatus using $[\mathrm{Bmim}]\left[\mathrm{BF}_{4}\right]$
4. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the ILs and $[\mathrm{Bim}]\left[\mathrm{NTf}_{2}\right]$ with different concentrations of NH_{3}

Figure $\mathrm{S} 5 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $[\mathrm{Bmim}]\left[\mathrm{NTf}_{2}\right]$ in DMSO

Figure $\mathrm{S} 6 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $[\mathrm{Bim}]\left[\mathrm{NTf}_{2}\right]$ in DMSO

Figure S7. ${ }^{1} \mathrm{H}$-NMR spectrum of $\left[\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{mim}\right]\left[\mathrm{NTf}_{2}\right]$ in DMSO

Figure $\mathrm{S} 8 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $[\mathrm{Bim}]\left[\mathrm{NTf}_{2}\right]$ with different concentrations of NH_{3} in drive pipe in DMSO

5. Optimized structures and interaction energies for $[\mathrm{Bim}]^{+}-3 \mathrm{NH}_{3}$

$\Delta \mathrm{E}=-36.141 \mathrm{kcal} / \mathrm{mol}$

$\Delta \mathrm{E}=-35.287 \mathrm{kcal} / \mathrm{mol}$

Figure S9. Optimized structures and interaction energies for $[\mathrm{Bim}]^{+}-3 \mathrm{NH}_{3}(\mathrm{~N}$, blue; H ,

Figure S10. Optimized structures and interaction energies for $[\mathrm{Bmim}]^{+}-\mathrm{NH}_{3}(\mathrm{~N}$, blue;

H, white; C, gray)

