Protic ionic liquid [Bim][NTf2] with strong hydrogen bond donating ability for highly efficient ammonia absorption

Supporting Information

1. Determination of dissociation constants pKa

Dissociation equilibrium of the ILs can be described as the following process:

$$[RH^{+}][NTf_{2}^{-}]+SH \rightarrow [[R^{-}]^{+}][NTf_{2}^{-}]+[SH_{2}^{+}]$$
(S1)

Where SH means a solvent, SH_2^+ denotes a solvated proton, and RH^+ , $[R^-]^+$ represents the acid cation and the conjugate base of the cation of the IL. The dissociation constant of the ILs can be explained by:

$$K_{a} = \frac{[[R^{-}]^{+}]^{*}[NTf_{2}^{-}]^{*}[SH_{2}^{+}]}{[RH^{+}]^{*}[NTf_{2}^{-}]}$$
(S2)

There are mass and charge balance at any point of the titrations:

$$[[RH^{+}][NTf_{2}^{-}]]_{total} = [NTf_{2}^{-}] = [RH^{+}] + [[R^{-}]^{+}]$$
(S3)

$$[Na^{+}]+[SH_{2}^{+}]+[RH^{+}]=[S^{-}]+[NTf_{2}^{-}]$$
(S4)

[X] means the concentrations of the corresponding ions. For example, $[[R^-]^+]$ means the concentration of $[R^-]^+$ in the solution during the titration and $[[RH^+][NTf_2^-]]_{total}$ means the total concentration of the ILs. Therefore, from Eqs (S2), (S3), (S4), we

have

$$K_{a} = \frac{[Na^{+}] + [SH_{2}^{+}] - [S^{-}]}{[S^{-}] + [NTf_{2}^{-}] - [Na^{+}] - [SH_{2}^{+}]} * [SH_{2}^{+}]$$
(S5)

When the pH value is lower than 7 during the titration, there is an assumption that the value of [S⁻] could be neglected and the equation becomes:

$$K_{a} = \frac{[Na^{+}] + [SH_{2}^{+}]}{[NTf_{2}^{-}] - [Na^{+}] - [SH_{2}^{+}]} * [SH_{2}^{+}]$$
(S6)

Here in the Eq (S6), the only unknown parameter is the $[SH_2^+]$ and from the pH values, the activity concentration $a_{[SH_2^+]}$ could be calculated. To figure out the actual concentration of the $\{SH_2^+\}$, activity coefficient $f_{[SH_2^+]}$ needs to be known, as Eqs (S7), (S8), (S9) display.

$$[SH_{2}^{+}] = \frac{a_{[SH_{2}^{+}]}}{f_{[SH_{2}^{+}]}}$$
(S7)

$$-\log f_{[SH_2^+]} = \frac{\frac{1}{2}Z^2 I^{1/2}}{1+I^{1/2}}$$
(S8)

$$I = \frac{1}{2} \sum Z^2[X] \tag{S9}$$

I above means the ionic strength of the solution and Z means the charge number of the ions. However, on account of high-concentration of KCl, the ionic strength of solution was almost the same during the whole titration and the variation could be neglected.

2. Fitting of the viscosities

Figure S1. Semi-logarithmic Arrhenius-like plots.

Figure S2. Thermogravimetric analysis of decomposition of [Bim][NTf₂] as a

function of temperature.

Figure S3. TGA trace of ILs at a heating rate of 10 K/min in the N_2 atmosphere

Table S1. Onset and start temperatures for thermal decomposition of the ILs

ILs	Tonset/K	$T_{\text{start}}/K^{[B]}$
$BmimNTf_2$	687	643
$BimNTf_2$	656	609
[HOOC(CH ₂) ₃ mim]NTf ₂	637	621

[B]: temperature with 5% weight loss

3. Reliability of our apparatus

Figure S4. Reliability check of the apparatus using [Bmim][BF₄]

4. ¹H-NMR spectra of the ILs and $[Bim][NTf_2]$ with different concentrations of NH_3

Figure S5. ¹H-NMR spectrum of [Bmim][NTf₂] in DMSO

Figure S6. ¹H-NMR spectrum of [Bim][NTf₂] in DMSO

Figure S7. ¹H-NMR spectrum of [HOOC(CH₂)₃mim][NTf₂] in DMSO

Figure S8. ¹H-NMR spectra of $[Bim][NTf_2]$ with different concentrations of NH_3 in

drive pipe in DMSO

5. Optimized structures and interaction energies for [Bim]+-3NH₃

Figure S9. Optimized structures and interaction energies for $[Bim]^+$ -3NH₃ (N, blue; H,

white; C, gray)

Figure S10. Optimized structures and interaction energies for [Bmim]⁺- NH₃ (N, blue;

H, white; C, gray)