# Copolymerization of lactones and bioaromatics via concurrent ringopening polymerization/polycondensation

Ha Thi Hoang Nguyen, Gabriel N. Short, Pengxu Qi and Stephen A. Miller\*

The George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, University of Florida Gainesville, Florida 32611-7200, United States

# **Supplementary Information**

**Supporting Information Available:** Synthetic details, complete polymer characterization data, method to determine the copolymer composition, and kinetic study.

# **Table of Contents**

| General Considerations and Instrumentation            | S2          |
|-------------------------------------------------------|-------------|
| Monomer Preparation                                   | S2          |
| Polymerizations                                       | <b>S</b> 3  |
| Summary of Polymerization Data                        | S9          |
| Gel Permeation Chromatography (GPC) Data              | S12         |
| Differential Scanning Calorimetry (DSC) Thermograms   | <b>S</b> 51 |
| Thermogravimetric Analysis (TGA) Thermograms          | S91         |
| <sup>1</sup> H NMR Spectra                            | S127        |
| <sup>13</sup> C NMR Spectra                           | S153        |
| <sup>1</sup> H NMR Analysis for Copolymer Composition | S176        |
| Kinetic study                                         | S187        |



# **General Considerations and Instrumentation**

### Materials

Via alibaba.com, ferulic acid (99%) was purchased from Xian Erica Botanical Products Co. or from Nanjing Zelang Medical Technology Co. and *p*-coumaric acid (99%) was purchased from Nanjing Zelang Medical Technology Co.

| F<br>Weight:                                                                                                  | CERTIFICATE OF ANALYSIS                                                             | 6-29-8836-204                                         |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|
| PHYSICAL TESTS:<br>APPEARANCE<br>ODOR<br>TASTE<br>COUNTRY OF ORIGIN<br>CHEMICAL TESTS:                        | ALMOST WHITE CRYSTALLINE POWDER<br>CHARACTERISTIC<br>CHARACTERISTIC<br>XI'AN, CHINA | COMPLIES<br>COMPLIES<br>COMPLIES<br>COMPLIES          |
| FERULIC ACID BY HPLC<br>LOSS ON DRYING<br>SULPHATED ASH<br>MELTING POINT<br>HEAVY METALS<br>STORAGE<br>ACCENG | ≥99%<br><0.5%<br><0.1%<br>173℃-176℃<br><10PPM<br>STRONG LIGHT AND HEAT.             | 99.63%<br>0.26%<br>0.03%<br>173.7℃-175.4℃<br>COMPLIES |

2-Chloroethanol was purchased from Acros Organics. Syringic acid was purchased from AK Scientific and vanillic acid was purchased from ICC Indofine. E-Caprolactone was purchased from Acros Organics and distilled before use. L-lactide (PURASORB<sup>®</sup>) was purified by sublimation and stored in the glovebox before use. These were all utilized without further purification. NMR solvents. including deuterated 1.1.2.2tetrachloroethane  $(\text{TCE-}d_2)$ deuterated chloroform  $(CDCl_3)$ , deuterated dimethyl sulfoxide  $(DMSO-d_6)$ , and deuterated trifluoroacetic acid (TFA-d) were purchased from Cambridge Isotope Laboratories. All other chemicals, unless expressly mentioned, were utilized as received.

#### Characterizations

Proton and carbon nuclear magnetic resonance (<sup>1</sup>H and <sup>13</sup>C NMR) spectra were recorded using an Inova 500 MHz spectrometer. Chemical shifts are reported in parts per million (ppm) downfield relative to tetramethylsilane (TMS, 0.0 ppm) or residual proton and carbon in the specified solvent. Coupling constants (*J*) are reported in Hertz (Hz). Multiplicities are reported using the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; quin, quintuplet; m, multiplet; br, broad.

Differential scanning calorimetry (DSC) thermograms were obtained with a DSC Q1000 from TA instruments. About 3–5 mg of each sample were massed and added to a sealed pan that passed through a heat/cool/heat cycle at 10 °C/min. Reported data are from the second full cycle.

The temperature typically ranged from -80 to 300 °C, depending on the samples.

Thermogravimetric analyses (TGA) were measured under nitrogen with a TGA Q5000 from TA Instruments. About 5-10 mg of each sample were heated at 20 °C/min from 25 to 600 °C.

Gel permeation chromatography (GPC) was performed at 40 °C using an Agilent Technologies 1260 Infinity Series liquid chromatography system with an internal differential refractive index detector, and a PL HFIP gel column (4.6 mm i.d., 250 mm length) using a solution of 0.1% potassium triflate (K(OTf)) in HPLC grade hexafluoroisopropanol (HFIP, purchased from SynQuest Laboratories, Alachua, Florida) as the mobile phase at a flow rate of 0.5 mL min. Calibration was performed with narrow polydispersity polymethyl methacrylate (PMMA) standards.

# **Monomer Preparation**

# Hydroxyethylsyringic acid



40.0 g (0.198 mol) of vanillic acid were dissolved in a mixture of 22.2g (0.554 mol) of sodium hydroxide and 5.14 g (0.034 mol) of sodium iodide in 350 mL of water. The mixture was stirred at room temperature until all solids had dissolved. At that point 19.3 mL (0.285 mol) of 2-chloroethanol were slowly added. After 30 minutes, the temperature was raised to 100 °C and the reaction was allowed to reflux for 4 days. The dark brown mixture was then hot vacuum filtered and let cool to room temperature. The filtrate was acidified with concentrated hydrochloric acid until the product crashed out. The product was isolated by gravity filtration, dried in air, and triturated in ethanol. 32.1 g of dry white powder were obtained in a 67.0% yield. <sup>1</sup>H NMR (DMSO- $d_6$ ):  $\delta$  ppm 3.62 (t, J = 5.6 Hz, 2H), 3.82 (s, 6H), 3.94 (t, J = 5.6 Hz, 2H), 4.59 (s, 1H), 7.23 (d, *J* = 0.9 Hz, 2H), 12.91 (s, 1H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>): δ ppm 56.0, 60.3, 74.2, 106.6, 125.8, 140.7, 152.7, 166.9.

### Hydroxyethylvanillic acid

30.0 g (0.178 mol) of vanillic acid were dissolved in a mixture of 16.3 g (0.408 mol) of sodium hydroxide and 4.59 g (0.030 mol) of sodium iodide in 366 mL of water. The mixture was stirred at room temperature until all solids had dissolved. At that point 17.3 mL (0.254 mol) of 2-chloroethanol were slowly added. After 30 minutes, the temperature was raised to 100 °C and the reaction was allowed to reflux for 4 days. The dark brown mixture was then hot vacuum filtered and let cool to room temperature. The filtrate was acidified with concentrated

hydrochloric acid until the product crashed out. The product was isolated by gravity filtration, dried in air, and triturated in ethanol. 23.2 g of dry white powder were obtained in a 62.0% yield. <sup>1</sup>NMR (DMSO-*d*<sub>6</sub>):  $\delta$  ppm 3.74 (t, *J* = 5.1 Hz, 2H), 3.80 (s, 3H), 4.04 (t, *J* = 5.1 Hz, 2H), 4.88 (s, 1H), 7.04 (dd, *J* = 8.4, 0.9 Hz, 1H), 7.44 (dd, *J* = 2.0, 0.9 Hz, 1H), 7.54 (dd, *J* = 8.4, 2.0 Hz, 1H), 12.64 (s, 1H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>):  $\delta$  ppm 55.4, 59.4, 70.2, 111.9, 112.0, 122.9, 123.1, 148.4, 152.0, 167.1.

### Hydroxyethylferulic acid

40.0 g (0.206 mol) of ferulic acid were dissolved in a mixture of 23.1 g (0.577 mol) of sodium hydroxide and 5.25 g (0.035 mol) of sodium iodide in 350 mL of water. The mixture was stirred at room temperature until all solids had dissolved. At that point 20.1 mL (0.297 mol) of 2-chloroethanol were slowly added. After 30 minutes, the temperature was raised to 100 °C and the reaction was allowed to reflux for 3 days. The dark brown mixture was then hot vacuum filtered and let cool to room temperature. The filtrate was acidified with concentrated hydrochloric acid until the product crashed out. The product was isolated by gravity filtration, dried in air, and triturated in ethanol. 38.9 g of dry white powder were obtained in a 79.3% yield. <sup>1</sup>H NMR (DMSO- $d_6$ ):  $\delta$  ppm 3.72 (t, J = 4.9 Hz, 2H), 3.81 (s, 3H), 4.01 (t, J = 4.9 Hz, 2H), 4.90 (br. s., 1H), 6.44 (d, J = 15.9 Hz, 1H), 6.98 (d, J= 8.3 Hz, 1H), 7.17 (d, J = 8.3 Hz, 1H), 7.30 (s, 1H), 7.52 (d, J = 15.9 Hz, 1H), 12.20 (br. s., 1H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>): δ ppm 55.5, 59.4, 70.1, 110.5, 112.6, 116.7, 122.6, 127.1, 144.1, 149.1, 150.2, 167.9.

#### Hydroxyethylcoumaric acid



20.0 g (0.122 mol) of p-coumaric acid were dissolved in a mixture of 11.3 g (0.281 mol) of sodium hydroxide and 3.17 g (0.0207 mol) of sodium iodide in 250 mL of water. The mixture was refluxed at 85 °C until all solids had dissolved. At that point 11.9 mL (0.175 mol) of 2chloroethanol were slowly added. After one hour the temperature was raised to 100 °C and the reaction was allowed to reflux for 64 hours. The dark brown mixture was then hot vacuum filtered and let cool to room temperature. The filtrate was extracted with diethyl ether and acidified with concentrated hydrochloric acid until the product crashed out. The product was isolated by gravity filtration, dried in air, and triturated in ethanol. 15.6 g of dry white powder were obtained in a 61.8% vield. <sup>1</sup>H NMR (DMSO- $d_6$ ):  $\delta$  ppm 3.60–3.83 (m, 2H), 4.03 (t, J = 4.9 Hz, 2H), 4.89 (br. s., 1H), 6.37 (d, J = 16.0Hz, 1H), 6.97 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 16.0 Hz, 1H), 7.62 (d, J = 8.7 Hz, 2H), 12.20 (br. s., 1H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>): δ ppm 59.5, 69.7, 114.8, 116.4, 126.7, 129.9, 143.7, 160.4, 167.8.

# **Polymerizations**

### **Polymerization apparatus**

The polymerizations were typically conducted in a round bottom flask, connected to a rotary evaporation bump trap, connected to a vacuum line. With this apparatus, the by-product of condensation could be collected and seen in the bump trap. At the same time, all volatiles could be removed without changing the initial glassware configuration. Polymerizations were performed under ambient light, except the copolymer series with hydroxyethylferulic acid and hydroxyethylcoumaric acid, which were conducted in the dark by covering the apparatus in aluminum foil. See below.



General work-up procedure for polymerizations

The copolymers of hydroxyethylsyringic acid and  $\varepsilon$ caprolactone were dissolved in 6 mL tetrachloroethane. These polymers were precipitated by pouring the polymer solution into 150 mL of cold methanol and cooling in the freezer overnight. These polymers were isolated by filtration and washed with methanol. The polymers were then dried under vacuum overnight. All other polymers were melted to remove them from the flask and used without further purification.

### **General NMR preparation**

The copoly(caprolactone/hydroxyethylsyringic acid) series was prepared in TCE- $d_2$  and they were completely soluble. All other polymer samples were prepared in a combination of chloroform-d and trifluoroacetic acid-d. The insoluble samples were left overnight in the solvent and then heated, but were nonetheless only partially soluble.

#### **Polyethylene ferulate (PEF)**



**Table S2, Entry 31 and Table S3, Entry 17.** A 50 mL round bottom flask was charged with 1.00 g (4.2 mmol) of hydroxyethylferulic acid and 12 mg (1 mol%) of

Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere gradually from 200 to 250 °C over a period of 4 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 89.6% yield (828 mg). <sup>1</sup>H NMR (CDCl<sub>3</sub>/TFA-*d*):  $\delta$  ppm 3.93 (m, 3H), 4.38 (m, 2H), 4.63 (m, 2H), 6.40 (d, *J* = 15.8 Hz, 1H), 6.95 (m, 1H), 7.12 (m, 2H), 7.70 (d, *J* = 15.8 Hz, 1H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>/TFA-*d*):  $\delta$  ppm 56.1, 59.2, 67.2, 111.2, 113.4, 115.9, 123.4, 127.8, 134.5, 145.5, 150.4, 166.9.

#### **Polyethylene coumarate (PEC)**



Table S2, Entry 35 and Table S3, Entry 23. A 50 mL round bottom flask was charged with 1.50 g (7.2 mmol) of hydroxyethylcoumaric acid and 21 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere gradually from 200 to 250 °C over a period of 4 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 85.9% yield (1.18 g). <sup>1</sup>H NMR (CDCl<sub>3</sub>/TFA-*d*): δ ppm 4.30 (br. s., 2H), 4.60 (br. s., 2H), 6.38 (d, J = 16.0 Hz, 1H), 6.95 (d, J = 8.1 Hz, 2H) 7.50 (d, J = 8.1Hz, 2H), 7.71 (d, J = 16.0 Hz, 1H). 4.30 (br. s., 2 H), 4.60 (br. s., 2 H), 6.38 (d, J =16.0 Hz, 1 H), 6.95 (d, J = 8.1 Hz, 2 H) 7.50 (d, J = 8.1Hz, 2 H), 7.71 (d, J = 16.0 Hz, 1 H). <sup>13</sup>C NMR (CDCl<sub>3</sub>/TFA-*d*): δ ppm 63.3, 66.0, 114.4, 115.0, 127.2, 130.2, 146.4, 160.4, 168.8.

#### **Polyethylene vanillate (PEV)**



Table S2, Entry 21 and Table S3, Entry 11. A 50 mL round bottom flask connected to a bump trap containing 1 g of  $P_2O_5$  was charged with 1.00 g (4.7 mmol) of hydroxyethylvanillic acid and 14 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere gradually from 200 to 250 °C over a period of 4 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 3 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 94.9% yield (868 mg); it is insoluble in various NMR solvents.

**Polyethylene syringate (PES)** 



Table S2, Entry 11 and Table S3, Entry 6. A 50 mL round bottom flask connected to a bump trap containing 0.9 g of P<sub>2</sub>O<sub>5</sub> was charged with 1.00 g (4.1 mmol) of hydroxyethylsyringic acid and 12 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere gradually from 160 to 200 °C over a period of 5 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum at 200 °C for 4 hours then at 220 °C for 4 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 93.0% yield (861 mg). <sup>1</sup>H NMR (Cl<sub>2</sub>DCCDCl<sub>2</sub>): δ ppm 3.80 (s, 6H), 4.37-4.45 (m, 2H), 4.57-4.67 (m, 2H), 7.27 (s, 2H). <sup>13</sup>C NMR (Cl<sub>2</sub>DCCDCl<sub>2</sub>): δ ppm 56.3, 64.4, 70.9, 107.0, 125.4, 140.9, 153.0, 166.0.

### **Polycaprolactone (PCL)**

**Table S1, Entry 1.** A 50 mL round bottom flask was charged with 3.0 g (26.3 mmol) of  $\varepsilon$ -caprolactone and 107 mg (1 mol%) of Sn(Oct)<sub>2</sub>. The mixture was melted under an argon atmosphere gradually from 80 to 170 °C over a period of 3 hours. Afterwards the system was stirred for an additional 18 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 90.0% yield (2.7 g). <sup>1</sup>H NMR (Cl<sub>2</sub>DCCDCl<sub>2</sub>):  $\delta$  ppm 1.32 – 1.42 (m, 2H), 1.64 (quint, *J* = 7.7 Hz, 4H), 2.31 (t, *J* = 7.5 Hz, 2H), 4.05 (t, *J* = 6.7 Hz, 2H). <sup>13</sup>C NMR (Cl<sub>2</sub>DCCDCl<sub>2</sub>)  $\delta$  ppm 24.4, 25.4, 28.2, 34.0, 64.0, 173.5.

#### Polylactic acid (PLA)

**Table S3, Entry 1.** In a glovebox, a 50 mL round bottom flask was charged with 1.0 g (6.9 mmol) of L-lactide and 28 mg (1 mol%) of Sn(Oct)<sub>2</sub>. The mixture was melted under an argon atmosphere at 100 °C for one hour, then gradually increased to 160 °C over a period of 20 hours before cooling. The system was kept under vacuum for 8 hours before cooling. Once cool, the solid was dissolved in dichloromethane and then crashed out in cold MeOH. After drying on a Schlenk line, the white polymer was obtained in 86.1% yield (862 mg). <sup>1</sup>H NMR (CDCl<sub>3</sub>/TFA-*d*):  $\delta$  ppm 1.58 (d, *J* = 7.1 Hz, 3H), 5.16 (q, *J* = 7.1 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  ppm: 16.6, 69.0, 169.5.

Copolymers of ε-caprolactone and hydroxyethylsyringic acid



### General polymerization procedure

A 50 mL round bottom flask connected to a bump trap containing 1.2 eq. of  $P_2O_5$  was charged with hydroxyethylsyringic acid and  $\varepsilon$ -caprolactone with varying molar ratios and 1 mol% of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere gradually from 150 to 200 °C over a period of 5 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 8 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer.

# Copoly(caprolactone/ hydroxyethylsyringic acid) [50:50]

Table S2, Entry 6.84.2% yield.<sup>1</sup>H NMR(Cl2DCCDCl2):  $\delta$  ppm 1.30–1.53 (m, 2H), 1.57–1.83 (m,4 H), 2.23–2.45 (m, 2H), 3.74–3.91 (m, 6 H), 4.04, 4.29(m, m, 2H), 4.23, 4.34 (s, s, 2H), 4.39, 4,58 (s, s, 2H),7.22–7.30 (m, 2H).<sup>13</sup>C NMR (Cl2DCCDCl2):  $\delta$  ppm 24.5,25.4, 28.2, 34.0, 56.2, 64.2, 65.0, 70.8, 106.8, 125.3,140.7, 152.8, 165.9, 173.5.

Copolymers of ε-caprolactone and hydroxyethylvanillic acid



# General polymerization procedure for Entries 12 to 20 in Table S2

A 50 mL round bottom flask connected to a bump trap containing 2 eq. of MgSO<sub>4</sub> was charged with hydroxyethylvanillic acid and  $\varepsilon$ -caprolactone utilizing varying molar ratios, and 1 mol% of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 175 °C for 16 hours, then at 195 °C for 4 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 8 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer.

### Copoly(caprolactone/ hydroxyethylvanillic acid) [50:50]

**Table S2, Entry 16.** A 50 mL round bottom flask connected to a bump trap containing 1.1 g of MgSO<sub>4</sub> was charged with 1.01 g (4.8 mmol) of hydroxyethylvanillic acid, 543 mg (4.8 mmol) of caprolactone, and 28 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 175 °C for 14 hours, then at 220 °C for 4

hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 8 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 80.5% yield (1.18 g). <sup>1</sup>H NMR (CDCl<sub>3</sub>/TFA-*d*):  $\delta$  ppm 1.28–1.55 (m, 2H), 1.56–1.89 (m, 4H), 2.21–2.53 (m, 2H), 3.81–3.99 (m, 3H), 4.07, 4.30 (m, m, 2H), 4.30, 4.49 (s, s, 2H), 4.43, 4.71 (s, s, 2H), 6.85–7.02 (m, 1H), 7.46–7.59 (m, 1H), 7.60–7.73 (m, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>/TFA-*d*): 24.4, 25.5, 28.2, 33.9, 56.1, 63.2, 64.6, 66.9, 112.1, 113.0, 122.8, 123.6, 149.0, 152.1, 166.6, 174.1.

### Copoly(caprolactone/ hydroxyethylvanillic acid) [40:60]

**Table S2, Entry 17.** A 50 mL round bottom flask connected to a bump trap containing 1.3 g of MgSO<sub>4</sub> was charged with 1.25 g (5.9 mmol) of hydroxyethylvanillic acid, 448 mg (3.9 mmol) of caprolactone and 29 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 180 °C for 8.5 hours then at 220 °C for 3 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 89.4% yield (1.42 g).

# Copoly(caprolactone/ hydroxyethylvanillic acid) [30:70]

**Table S2, Entry 18.** A 50 mL round bottom flask connected to a bump trap containing 1.7 g of MgSO<sub>4</sub> was charged with 1.51 g (7.1 mmol) of hydroxyethylvanillic acid, 347 mg (3.0 mmol) of caprolactone and 30 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 185 °C for 4 hours then at 230 °C for 3 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 90.7% yield (1.56 g).

### Copoly(caprolactone/ hydroxyethylvanillic acid) [20:80]

**Table S2, Entry 19.** A 50 mL round bottom flask connected to a bump trap containing 1.7 g of MgSO<sub>4</sub> was charged with 1.51 g (7.1 mmol) of hydroxyethylvanillic acid, 203 mg (1.8 mmol) of caprolactone and 26 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 190 °C for 4hours then at 230 °C for 3 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 93.6% yield (1.48 g).

## Copoly(caprolactone/ hydroxyethylvanillic acid) [10:90]

**Table S2, Entry 20.** A 50 mL round bottom flask connected to a bump trap containing 3.3 g of MgSO<sub>4</sub> was charged with 2.93 g (13.8 mmol) of hydroxyethylvanillic acid, 175 mg (1.5 mmol) of caprolactone and 46 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 190 °C for 3 hours then at 240 °C for 3 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 93.8% yield (2.68 g).

Copolymers of ε-caprolactone and hydroxyethylferulic acid



# General polymerization procedure for Entries 22 to 26 in Table S2

A 50 mL round bottom flask was charged with hydroxyethylferulic acid and  $\varepsilon$ -caprolactone with varying molar ratios, and 1 mol% of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 175 °C for 12 hours, then at 200 °C for 3 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer.

# General polymerization procedure for Entries 27 to 30 in Table S2

A 50 mL round bottom flask was charged with hydroxyethylferulic acid and  $\varepsilon$ -caprolactone with varying molar ratios, and 1 mol% of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 185 °C for 12 hours, then at 220 °C for 3 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer.

# Copoly(caprolactone/ hydroxyethylferulic acid) [60:40]

**Table S2, Entry 25.** 84.6% yield <sup>1</sup>H NMR (CDCl<sub>3</sub>/TFAd):  $\delta$  ppm 1.31–1.54 (m, 2H), 1.57–1.84 (m, 4H), 2.24–2.49 (m, 2H), 3.84–3.94 (m, 3H), 4.07, 4.21 (m, m, 2H), 2.27, 4,48 (s, s, 2H), 4.35, 4.60 (s, s, 2H), 6.28–6.42 (m, 1H), 6.84–6.96 (m, 1H), 7.02–7.16 (m, 2H), 7.56–7.71 (m, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>/TFA-d):  $\delta$  ppm 24.5, 25.4, 28.2, 33.9, 55.9, 62.3, 64.5, 67.0, 110.5, 113.3, 115.8, 122.5, 128.0, 145.1, 145.6, 150.0, 167.6, 174.0.

# Copoly(caprolactone/ hydroxyethylferulic acid) [20:80]

**Table S2, Entry 29.** A 50 mL round bottom flask was charged with 1.67 g (7.0 mmol) of hydroxyethylferulic acid, 200 mg (1.7 mmol) of caprolactone and 26 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 190 °C for 6 hours then at 230 °C for 3 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 90.5% yield (1.58 g).

# Copoly(caprolactone/ hydroxyethylferulic acid) [10:90]

**Table S2, Entry 30.** A 50 mL round bottom flask was charged with 3.23 g (13.6 mmol) of hydroxyethylferulic acid, 172 mg (1.5 mmol) of caprolactone and 45 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 195 °C for 4 hours then at 240 °C for 2.5 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 89.1% yield (2.82 g).

# Copolymers of ε-caprolactone and hydroxyethylcoumaric acid



### Copoly(caprolactone/ hydroxyethylcoumaric acid) [80:20]

Table S2, Entry 32. A 50 mL round bottom flask was charged with 997 mg (4.8 mmol) of hydroxyethylcoumaric acid, 2.19 g (19.2 mmol) of caprolactone and 71 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 175 °C for 17 hours then at 200 °C for 3 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 88.1% yield (2.73 g).

# Copoly(caprolactone/ hydroxyethylcoumaric acid) [50:50]

**Table S2, Entry 33.** A 50 mL round bottom flask was charged with 1.00 g (4.8 mmol) of hydroxyethylcoumaric acid, 548 mg (4.8 mmol) of caprolactone and 28 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 180 °C for 12 hours then at 220 °C for 3 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours before cooling. Once

cool, the aforementioned work-up procedure was applied to give the polymer in 88.0% yield (1.29 g). <sup>1</sup>H NMR (CDCl<sub>3</sub>/TFA-*d*):  $\delta$  ppm 1.22–1.52 (m, 2H), 1.55–1.88 (m, 4H), 2.22–2.53 (m, 2H), 4.07, 4.21 (m, m, 2H), 4.21, 4.45 (s, s, 2H), 4.28, 4.57 (s, s, 2H), 6.26–6.48 (m, 1H), 6.84–7.02 (m, 2H), 7.40–7.57 (m, 2H), 7.60–7.74 (m, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>/TFA-*d*):  $\delta$  ppm 24.5, 25.5, 28.3, 34.0, 62.6, 64.5, 65.9, 114.9, 115.5, 127.3, 130.0, 144.9, 145.5, 167.7, 173.9.

# Copoly(caprolactone/ hydroxyethylcoumaric acid) [20:80]

**Table S2, Entry 34.** A 50 mL round bottom flask was charged with 1.7 g (8.2 mmol) of hydroxyethylcoumaric acid, 233 mg (2.0 mmol) of caprolactone and 30 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 185 °C for 9 hours then at 230 °C for 3 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 85.1% yield (1.52 g).

Copolymers of L-lactide and hydroxyethylsyringic acid



### General polymerization procedure

A 50 mL round bottom flask connected to a bump trap containing 3 eq. of  $MgSO_4$  was charged with hydroxyethylsyringic acid and L-lactide with varying molar ratios, and 1 mol% of  $Sb_2O_3$ . The mixture was melted under an argon atmosphere at 160 °C for 10 hours then at 180 °C for 30 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 8 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer.

### Copoly(L-lactide/hydroxyethylsyringic acid) [40:60]

**Table S3, Entry 4.** <sup>1</sup>H NMR (CDCl<sub>3</sub>/TFA-*d*): δ ppm 1.33–1.79 (m, 6H), 3.58–4.06 (m, 6H), 4.16–4.44 (m, 2H), 4.44–4.70 (m, 2H), 5.09–5.47 (m, 2H), 7.10–7.42 (m, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>/TFA-*d*): δ ppm 16.9, 56.2, 64.4, 69.1, 70.8, 107.0, 125.4, 140.9, 152.9, 166.0, 170.6.

#### Copolymers of L-lactide and hydroxyethylvanillic acid



### Copoly(L-lactide/hydroxyethylvanillic acid) [80:20]

**Table S3, Entry 7.** A 50 mL round bottom flask connected to a bump trap containing  $876 \text{ mg of MgSO}_4$  was charged with 515 mg (2.4 mmol) of hydroxyethylvanillic acid, 1.4 g (9.7 mmol) of L-lactide,

and 36 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 160 °C for 9 hours then at 180 °C for 36 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 8 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 48.1% yield (900 mg). <sup>1</sup>H NMR (CDCl<sub>3</sub>/TFA-*d*):  $\delta$  ppm 1.14–1.98 (m, 6H), 3.65–4.07 (m, 3H), 4.12–4.45 (m, 2H), 4.45–4.77 (m, 2H), 4.97–4.52 (m, 2H), 6.72–7.06 (m, 1H), 7.46– 7.60 (m, 1H), 7.60–7.91 (m, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>/ TFA-*d*):  $\delta$  ppm 16.7, 56.0, 63.3, 66.6, 69.0, 112.4, 112.9, 122.5, 123.8, 149.1, 152.2, 165.6, 170.8.

#### Copoly(L-lactide/hydroxyethylvanillic acid) [60:40]

**Table S3, Entry 8.** This polymer was synthesized using the same procedure as for copoly(L-lactide/ hydroxyethylvanillic acid) [80:20]. 1.18 g (5.6 mmol) of hydroxyethylvanillic acid, 1.2 g (8.3 mmol) of L-lactide and 41 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub> were used. The product was obtained in 63.8% yield (1.45 mg).

#### Copoly(L-lactide/hydroxyethylvanillic acid) [40:60]

**Table S3, Entry 9.** A 50 mL round bottom flask connected to a bump trap containing 2.2 g of MgSO<sub>4</sub> was charged with 1.3 g (6.1 mmol) of hydroxyethylvanillic acid, 589 mg (4.1 mmol) of L-lactide, and 30 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 165 °C for 9 hours, at 180 °C for 27 hours, and then at 200 °C for 3 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 79.0% yield (1.41 g).

#### Copoly(L-lactide/hydroxyethylvanillic acid) [20:80]

**Table S3, Entry 10.** A 50 mL round bottom flask connected to a bump trap containing 2.9 g of MgSO<sub>4</sub> was charged with 1.7 g (8.0 mmol) of hydroxyethylvanillic acid, 289 mg (2.0 mmol) of L-lactide, and 29 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 165 °C for 9 hours, at 180 °C for 2 hours, and then at 200 °C for 1 hour. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer in 91.8% yield (1.69 g).

Copolymers of L-lactide and hydroxyethylferulic acid



# General polymerization procedure for Entries 12 to 15 in Table S3

A 50 mL round bottom flask was charged with hydroxyethylferulic acid and *L*-lactide with varying molar ratios, and 1 mol% of Sb<sub>2</sub>O<sub>3</sub>. The mixture was melted under an argon atmosphere at 160 °C for 10 hours then at 180 °C for 30 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 8 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer

## Copoly(L-lactide/hydroxyethylferulic acid) [60:40]

**Table S3, Entry 15.** <sup>1</sup>H NMR (CDCl<sub>3</sub>/TFA-*d*): δ ppm 1.30–1.92 (m, 6H), 3.65–4.04 (m, 3H), 4.07–4.39 (m, 2H), 4.39–4.79 (m, 2H), 4.94–5.49 (m, 2H), 6.17–6.47 (m, 1H), 6.77–6.98 (m, 1H), 6.98–7.20 (m, 2H), 7.53–7.74 (m, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub> /TFA-*d*): δ ppm 16.9, 55.9, 63.5, 67.2, 68.9, 110.6, 113.6, 115.9, 122.9, 145.8, 146.2, 149.6, 159.0, 167.0, 171.3.

### Copoly(L-lactide/hydroxyethylferulic acid) [20:80]

**Table S3, Entry 16.** A 50 mL round bottom flask connected to a bump trap was charged with 2.65 g (11.1 mmol) of hydroxyethylferulic acid, 0.4 g (2.8 mmol) of L-lactide, and 42 mg (1 mol%) of  $Sb_2O_3$ . The mixture was melted under an argon atmosphere at 180 °C for 11 hours then at 210 °C for 26 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 6 hours at 210 °C then 2 more hours at 220 °C before cooling.

Once cool, the aforementioned work-up procedure was applied to give the polymer in 83.9% yield (2.39 g).

Copolymers of L-lactide and hydroxyethylcoumaric acid



# General polymerization procedure for Entries 18 to 21 in Table S3

A 50 mL round bottom flask was charged with hydroxyethylcoumaric acid and L-lactide with varying molar ratios, and 1 mol% of  $Sb_2O_3$ . The mixture was melted under an argon atmosphere at 160 °C for 10 hours then at 180 °C for 30 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 8 hours before cooling. Once cool, the aforementioned work-up procedure was applied to give the polymer.

### Copoly(L-lactide/hydroxyethylcoumaric acid) [60:40]

**Table S3, Entry 21.** <sup>1</sup>H NMR (CDCl<sub>3</sub>/TFA-*d*): δ ppm 1.29–1.84 (m, 6H), 3.88–4.31 (m, 2H), 4.31–4.75 (m, 2H), 5.00–5.41 (m, 2H), 6.25–6.46 (m, 1H), 6.69–6.99 (m, 2H), 7.35–7.55 (m, 2H), 7.57–7.77 (m, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub> /TFA-*d*): δ ppm 16.9, 63.2, 66.1, 68.6, 114.6, 114.9, 127.4, 129.9, 145.5, 160.6, 167.0, 170.9.

### Copoly(L-lactide/hydroxyethylcoumaric acid) [20:80]

**Table S3, Entry 22.** This polymer was synthesized using the same procedure as for copoly(L-lactide/ hydroxyethylferulic acid) [20:80]. 2.31 g (11.1 mmol) of hydroxyethylcoumaric acid, 0.4 g (2.8 mmol) of lactide, and 42 mg (1 mol%) of Sb<sub>2</sub>O<sub>3</sub> were used. The product was obtained in 84.4% yield (2.28 g).

# **Summary of Polymerization Data**

**Table S1.** ROP polycondensation optimization conditions for the copolymer of  $\varepsilon$ -caprolactone and hydroxyethylsyringic acid prepared with a 20:80 ratio of monomers, respectively.<sup>*a*</sup>



| Entry          |    |    | Catalyst              | $M_{n}^{b}$ (Da) | M <sub>w</sub> <sup>b</sup><br>(Da) | PDI <sup>b</sup> | <i>T</i> <sub>g</sub> <sup><i>c</i></sup><br>(°C) | Yield<br>(%) | Appearance |
|----------------|----|----|-----------------------|------------------|-------------------------------------|------------------|---------------------------------------------------|--------------|------------|
| 1              | 20 | 80 | Ti(OiPr) <sub>4</sub> | 6,600            | 14,900                              | 2.3              | 57                                                | 88.6         | red        |
| 2              | 20 | 80 | $Sn(Oct)_2$           | 5,500            | 9,500                               | 1.7              | 56                                                | 69.8         | white      |
| 3              | 20 | 80 | TBD                   | 3,200            | 5,200                               | 1.6              | 44                                                | 72.5         | white      |
| 4              | 20 | 80 | Hydrotalcite<br>0.5%  | 2,500            | 4,300                               | 1.7              | 40                                                | 40.5         | white      |
| 5              | 20 | 80 | $Bu_2SnO$             | 9,400            | 19,400                              | 2.1              | 63                                                | 80.1         | off-white  |
| 6              | 20 | 80 | $Sb_2O_3$             | 12,200           | 21,300                              | 1.7              | 53                                                | 97.0         | white      |
| $7^d$          | 20 | 80 | $Sb_2O_3$             | 13,100           | 23,200                              | 1.8              | 60                                                | 85.2         | white      |
| 8 <sup>e</sup> | 20 | 80 | $Sb_2O_3$             | 17,800           | 31,500                              | 1.8              | 60                                                | 91.2         | white      |

<sup>*a*</sup>1 mol% catalyst except 0.5 mol% hydrotalcite; TBD = triazabicyclodecene; melted under argon for 5 hours with a temperature ramp from 150 to 200 °C; 8 hours dynamic vacuum at 200 °C. <sup>*b*</sup>GPC in hexafluoroisopropanol (HFIP) at 40 °C versus polymethyl methacrylate (PMMA) standards. <sup>*c*</sup>Determined by DSC. <sup>*d*</sup>4 hours dynamic vacuum at 200 °C then 4 hours at 220 °C. <sup>*e*</sup>Bump trap charged with 1.5 equivalents of  $P_2O_5$ .

**Table S2.** Polymerization results and characterization of copolymers prepared from  $\alpha$ -caprolactone and bioaromatics HESA, HEVA, HEFA, and HECA.<sup>*a*</sup>



|                    | Me               | onomer feed %                           |                        |              |                  |                        |                    |                  |                   |                    |
|--------------------|------------------|-----------------------------------------|------------------------|--------------|------------------|------------------------|--------------------|------------------|-------------------|--------------------|
|                    | ũ                |                                         | Inc. HESA <sup>e</sup> | Yield        | $M_n^{f}$        | $M_{w}{}^{f}$          | $\mathbf{PDI}^{f}$ | $T_{g}^{g}$      | $T_{\rm m}{}^{g}$ | $T_{95\%}^{\ \ h}$ |
| $Entry^{b}$        | $\left( \right)$ |                                         | (mol%)                 | (%)          | (Da)             | (Da)                   |                    | (°Č)             | (°C)              | (°C)               |
|                    | 100              | -0                                      | 0                      | 00.0         | 15 000           | 28 200                 | 1.0                |                  | 52                | 255                |
| 2                  | 90               | 10                                      | 11                     | 90.0         | 29 700           | 28,200                 | 2.0                | -48              | 33                | 233                |
| 3                  | 80               | 20                                      | 23                     | 94.5         | 20,700           | 43 800                 | 2.0                | -35              | n 0               | 289                |
| 4                  | 70               | 30                                      | 35                     | 80.0         | 27,600           | 55 600                 | 2.0                | -18              | n.o.              | 281                |
| 5                  | 60               | 40                                      | 44                     | 80.8         | 25,700           | 49,000                 | 1.9                | 1                | n.o.              | 293                |
| 6                  | 50               | 50                                      | 57                     | 84.2         | 25,700           | 49.200                 | 1.9                | 20               | n.o.              | 316                |
| 7                  | 40               | 60                                      | 59                     | 88.3         | 23,200           | 42,600                 | 1.8                | 33               | n.o.              | 316                |
| 8                  | 30               | 70                                      | 78                     | 89.7         | 21,100           | 37,800                 | 1.8                | 47               | 126               | 316                |
| 9                  | 20               | 80                                      | 85                     | 91.2         | 17,800           | 31,500                 | 1.8                | 60               | 156               | 316                |
| 10                 | 10               | 90                                      | 95                     | 95.6         | 14,900           | 27,900                 | 1.9                | 67               | 171               | 300                |
| 11                 | 0                | 100                                     | 100                    | 93.0         | 10,600           | 18,500                 | 1.7                | 76               | 183               | 318                |
|                    | Me               | onomer feed %                           |                        |              |                  |                        |                    |                  |                   |                    |
|                    | 0<br>L           | -0, 0                                   | Inc. HEVA <sup>e</sup> | Yield        | $M_{\rm n}{}^f$  | $M_{\mathrm{w}}{}^{f}$ | $PDI^{f}$          | $T_{\rm g}^{g}$  | $T_{\rm m}{}^{g}$ | $T_{95\%}^{h}$     |
| Entry <sup>c</sup> | $\int \gamma$    | <sup>но</sup> ∽о_∕⊂́У_́́⊔он             | (mol%)                 | (%)          | (Da)             | (Da)                   |                    | (°Č)             | (°C)              | (°C)               |
| 12                 |                  | 10                                      | 12                     | 02 7         | 28 600           | 74 800                 | 1.0                | 42               | 26                | 214                |
| 12                 | 90               | 10                                      | 12                     | 05./<br>95.6 | 38,000           | 74,800<br>64 100       | 1.9                | -4Z              | 30<br>02          | 202                |
| 13                 | 80<br>70         | 20                                      | 25                     | 85.0         | 23,600           | 4,100                  | 2.0                | -10              | 92                | 293                |
| 14                 | 60               | 40                                      | 15                     | 86.1         | 21,000           | 49,000                 | 2.1                | 17               | 165               | 295                |
| 15                 | 50               | 40<br>50                                | 55                     | 80.1         | 16 100           | 32 300                 | 2.2                | 33               | 215               | 298                |
| 17                 | 40               | 60                                      | 59                     | 89.4         | 9 800            | 19 900                 | 2.0                | 48               | 233               | 311                |
| 18                 | 30               | 70                                      | 69                     | 90.7         | 4 400            | 10,200                 | 2.3                | 64               | 232               | 313                |
| 19                 | 20               | 80                                      | 72                     | 93.6         | 4.900            | 10,700                 | 2.2                | 72               | 250               | 321                |
| 20                 | 10               | 90                                      | 87                     | 93.8         | 9,500            | 14,800                 | 1.6                | 77               | 247               | 318                |
| 21                 | 0                | 100                                     | 100                    | 94.9         | g                | g                      | g                  | 82               | 254               | 311                |
|                    | M                | onomer feed %                           |                        |              |                  |                        |                    |                  |                   |                    |
|                    | 0<br>I           | -o 0                                    | Inc HEFA <sup>e</sup>  | Yield        | $M_n^{f}$        | $M_{m}{}^{f}$          | $PDI^{f}$          | $T_{\sigma}^{g}$ | $T_{\rm m}{}^{g}$ | $T_{95\%}{}^{h}$   |
| $Entry^{d}$        | <u>γ</u> γ       | но                                      | (mol%)                 | (%)          | (Da)             | (Da)                   | 1.01               | (°Č)             | (°C)              | (°C)               |
|                    |                  | <u> </u>                                | . ,                    |              | · · ·            |                        |                    |                  |                   |                    |
| 22                 | 90               | 10                                      | 11                     | 92.1         | 60,700           | 179,100                | 3.0                | -39              | 42                | 311                |
| 23                 | 80<br>70         | 20                                      | 22                     | 81./<br>02.4 | 60,200<br>28,200 | 202.200                | 3.4<br>2.1         | -12              | n.o.              | 210                |
| 24                 | 70<br>60         | 30                                      | 52<br>40               | 95.4         | 28,200           | 88,300<br>45 100       | 2.1                | 25               | n.o.              | 206                |
| 25                 | 50               | 40<br>50                                | 63                     | 80.6         | 11 700           | 21 500                 | 2.0                | 59               | n.o.              | 302                |
| 20                 | 40               | 60                                      | 74                     | 82.2         | 6 300            | 13 800                 | 2.2                | 70               | n.o.              | 301                |
| 28                 | 30               | 70                                      | 77                     | 90.8         | 5,000            | 10,600                 | 2.1                | 87               | n.o.              | 307                |
| 29                 | 20               | 80                                      | 86                     | 90.5         | 4.200            | 9,000                  | 2.1                | 93               | n.o.              | 321                |
| 30                 | 10               | 90                                      | 94                     | 89.1         | 2,400            | 4,800                  | 1.9                | 105              | n.o.              | 331                |
| 31                 | 0                | 100                                     | 100                    | 89.6         | 1,600            | 2,500                  | 1.6                | 113              | n.o.              | 331                |
|                    | M                | onomer feed %                           |                        |              |                  |                        |                    |                  |                   |                    |
|                    | 0                | 0                                       | Inc. $HFCA^{e}$        | Vield        | $M^{-f}$         | $M^{-f}$               | PDI <sup>f</sup>   | $T_{g}^{g}$      | $T_m^{g}$         | $T_{0502}$ h       |
| $Entry^{d}$        | <u> </u>         | <sup>HO</sup> ∽∩_∕∕\_/ <sup>_⊥</sup> OH | (mol%)                 | (%)          | (Da)             | (Da)                   | 101                | (°C)             | (°C)              | (°C)               |
|                    | $\sim$           | <u> </u>                                | 10                     | 00.1         |                  |                        | 1.0                | /                | /                 | /                  |
| 32                 | 80               | 20                                      | 19                     | 88.1         | 29,200           | 56,800                 | 1.9                | -25              | 39                | 320                |
| 33<br>34           | 20               | 50<br>80                                | 54<br>74               | 00.U<br>85 1 | 2 700            | 20,800<br>7 800        | 2.3                | 33               | 100               | 312                |
| 35                 | 0                | 100                                     | 100                    | 85.9         | 2,700<br>i       | i,000                  | 2.0<br>i           | 109              | n o               | 343                |
| 55                 | 0                | 100                                     | 100                    | 00.7         |                  |                        |                    | 107              | 11.0.             | 5.5                |

<sup>*a*</sup>1 mol% Sb<sub>2</sub>O<sub>3</sub>. <sup>*b*</sup>1.5 eq. of P<sub>2</sub>O<sub>5</sub>; melted under argon for 5 hours with a temperature ramp from 150 to 200 °C; 8 hours dynamic vacuum at 200 °C. <sup>*c*</sup>3.0 eq. of MgSO<sub>4</sub>; melted under argon for 22 hours with a temperature ramp from 175 to 240 °C; 8 hours dynamic vacuum at 240 °C. <sup>*d*</sup>No drying agent; melted under argon for 20 hours with a temperature ramp from 165 to 240 °C; 6 hours dynamic vacuum at 240 °C. <sup>*d*</sup>Comonomer incorporation determined by <sup>1</sup>H NMR. <sup>*f*</sup>GPC in hexafluoroisopropanol (HFIP) at 40 °C versus polymethyl methacrylate (PMMA) standards. <sup>*g*</sup>Determined by DSC. <sup>*h*</sup>Determined by TGA; temperature at which 5% mass loss is observed under nitrogen. <sup>*f*</sup>Insolubility of the polymers prevented GPC analysis.



|                    | Мо                | onomer feed %  |                                  |              |                |                     |                                     |                                                |                                         |                                                     |
|--------------------|-------------------|----------------|----------------------------------|--------------|----------------|---------------------|-------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------------------|
| Entry <sup>b</sup> |                   |                | Inc. HESA <sup>e</sup><br>(mol%) | Yield<br>(%) | $M_n^f$ (Da)   | $M_{ m w}{}^f$ (Da) | PDI <sup>f</sup>                    | <i>T</i> <sub>g</sub> <sup><i>g</i></sup> (°C) | $T_m^g$ (°C)                            | <i>T</i> <sub>95%</sub> <sup><i>h</i></sup><br>(°C) |
| 1                  | 100               | 0              | 0                                | 86.1         | 21,800         | 49,300              | 2.3                                 | 50                                             | 161                                     | 207                                                 |
| 2                  | 80                | 20             | 44                               | 47.4         | 7,800          | 16,000              | 2.0                                 | 62                                             | n.o.                                    | 225                                                 |
| 3                  | 60                | 40             | 61                               | 63.9         | 6,900          | 13,400              | 1.9                                 | 68                                             | n.o.                                    | 239                                                 |
| 4                  | 40                | 60             | 75                               | 82.1         | 4,900          | 9,000               | 1.9                                 | 70                                             | n.o.                                    | 263                                                 |
| 5                  | 20                | 80             | 91                               | 81.5<br>02.0 | 3,000          | 18 500              | 1.9                                 | 74                                             | n.o.<br>192                             | 219                                                 |
| 0                  | Monomer feed %    |                | 100                              | 93.0         | 10,000         | 18,500              | 1.7                                 | 70                                             | 185                                     | 518                                                 |
|                    | . 1               | -0             |                                  |              |                |                     |                                     |                                                |                                         |                                                     |
|                    | $\gamma_{\gamma}$ |                | Inc. HEVA <sup>e</sup>           | Yield        | $M_{ m n}{}^f$ | $M_{ m w}{}^f$      | $PDI^{f}$                           | $T_g^g$                                        | $T_m^g$                                 | $T_{95\%}^{h}$                                      |
| Entry <sup>c</sup> | Ч <u>́</u>        |                | (mol%)                           | (%)          | (Da)           | (Da)                |                                     | (°C)                                           | (°C)                                    | (°C)                                                |
| 7                  | 80                | 20             | 41                               | 48.1         | 10,500         | 21,900              | 2.1                                 | 66                                             | n.o.                                    | 229                                                 |
| 8                  | 60                | 40             | 55                               | 63.8         | 8,100          | 16,800              | 2.1                                 | 71                                             | n.o.                                    | 233                                                 |
| 9                  | 40                | 60             | 72                               | 79.0         | 5,200          | 10,900              | 2.1                                 | 77                                             | 178                                     | 271                                                 |
| 10                 | 20                | 80             | 77                               | 91.8         | 4,800          | 8,500               | 1.8                                 | 79                                             | 240                                     | 281                                                 |
| 11                 | 0 100             |                | 100                              | 94.9         | 8              | 8                   | 5                                   | 82                                             | 254                                     | 311                                                 |
|                    | Monomer feed %    |                |                                  |              |                |                     |                                     |                                                |                                         |                                                     |
| Entry <sup>d</sup> |                   | но∽о́су́́⊔он   | Inc. HEFA <sup>e</sup><br>(mol%) | Yield<br>(%) | d M            | a)                  | M <sub>w</sub> <sup>f</sup><br>(Da) | PDI <sup>f</sup>                               | <i>T</i> <sub>g</sub> <sup>g</sup> (°C) | <i>T</i> <sub>95%</sub> <sup><i>h</i></sup> (°C)    |
| 12                 | 90                | 10             | 26                               | 32.0         | 16,3           | 300 6               | 5,200                               | 4.0                                            | 64                                      | 220                                                 |
| 13                 | 80                | 20             | 38                               | 46.5         | 10,9           | 900 2               | 7,600                               | 2.5                                            | 69                                      | 229                                                 |
| 14                 | 70                | 30             | 50                               | 47.9         | 10,1           | 100 3               | 8,500                               | 3.8                                            | 74                                      | 244                                                 |
| 15                 | 60                | 40             | 59                               | 66.3         | 6,9            | 00 1                | 9,000                               | 2.7                                            | 82                                      | 249                                                 |
| 16                 | 20                | 80             | 89                               | 83.9         | 1,5            | 00 2                | 2,700                               | 1.9                                            | 107                                     | 323                                                 |
| 17                 | 0                 | 100            | 100                              | 89.6         | 1,6            | 00 2                | 2,500                               | 1.6                                            | 113                                     | 331                                                 |
|                    | o N               | Ionomer feed % |                                  |              |                |                     |                                     |                                                |                                         |                                                     |
| Entry <sup>d</sup> |                   | но~о-С         | Inc. HECA <sup>e</sup><br>(mol%) | Yield<br>(%) | d M            | a)                  | M <sub>w</sub> <sup>f</sup><br>(Da) | PDI <sup>f</sup>                               | <i>T</i> <sub>g</sub> <sup>g</sup> (°C) | <i>T</i> <sub>95%</sub> <sup><i>h</i></sup> (°C)    |
| 18                 | 90                | 10             | 21                               | 34.8         | 12,3           | 300 6               | 8,800                               | 5.6                                            | 65                                      | 209                                                 |
| 19                 | 80                | 20             | 35                               | 50.0         | 8,3            | 00 2                | 2,900                               | 2.8                                            | 70                                      | 234                                                 |
| 20                 | 70                | 30             | 40                               | 60.6         | 8,4            | 00 2                | 9,500                               | 3.5                                            | 72                                      | 245                                                 |
| 21                 | 60                | 40             | 58                               | 63.0         | 7,2            | 00 4                | 5,000                               | 6.3                                            | 74                                      | 245                                                 |
| 22                 | 20                | 80             | 88                               | 84.4         | · 1,7          | 00 5                | 5,500                               | 3,1                                            | 101                                     | 316                                                 |
| 23                 | 0                 | 100            | 100                              | 85.9         | 1              |                     | ı                                   | ı                                              | 109                                     | 343                                                 |

<sup>*a*</sup>1 mol% Sb<sub>2</sub>O<sub>3</sub>. <sup>*b*</sup>3.0 eq. of MgSO4; melted under argon for 40 hours with a temperature ramp from 160 to 180 °C; 8 hours dynamic vacuum at 180 °C. <sup>c</sup>3.0 eq. of MgSO<sub>4</sub>; melted under argon for 40 hours with a temperature ramp from 160 to 200 °C; 8 hours dynamic vacuum at 200 °C. <sup>*d*</sup>No drying agent; melted under argon for 40 hours with a temperature ramp from 160 to 220 °C; 8 hours dynamic vacuum at 220 °C. <sup>*d*</sup>Comonomer incorporation determined by <sup>1</sup>H NMR. <sup>*f*</sup>GPC in hexafluoroisopropanol (HFIP) at 40 °C versus polymethyl methacrylate (PMMA) standards. <sup>*g*</sup>Determined by DSC. <sup>*h*</sup>Determined by TGA; temperature at which 5% mass loss is observed under nitrogen. <sup>*i*</sup>Insolubility of the polymers prevented GPC analysis.

# Gel Permeation Chromatography (GPC) Data



Figure S1. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 1).



Figure S2. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 2).



Figure S3. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 3).



Figure S4. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 4).



Figure S5. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 5).



Figure S6. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 6).



 Peak 1
 18285
 12204
 21272
 31255
 40814
 29838
 1

 Figure S7. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 7).



Figure S8. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 8).



 Peak 1
 27573
 17798
 31529
 46616
 60849
 44495
 1.771

 Figure S9. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 8 and Table S2, entry 9).



Figure S10. GPC Chromatogram of polycaprolactone (Table S2, entry 1).



60355 Figure S11. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [90:10] (Table S2, entry 2).

95150

130496

90079

2.03

Peak 1

49870

29725



Figure S12. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [80:20] (Table S2, entry 3).



Peak 146807275825556885583115530812692.015Figure S13. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [70:30] (Table S2, entry 4).



Figure S14. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [60:40] (Table S2, entry 5).



|      | )  | Peak 1            | 44261          | 25651          | 49202          | 72527          | 94607             | 69279             | 1.918 |
|------|----|-------------------|----------------|----------------|----------------|----------------|-------------------|-------------------|-------|
| Figu | re | <b>S15.</b> GPC C | hromatogram of | f copoly(capro | olactone/ hydi | roxyethylsyrir | ngic acid) [50:50 | ] (Table S2, entr | y 6). |

Mz

Mz+1

Mv

PD

Mw

9 Peaks

Мр

Mn



Figure S16. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [40:60] (Table S2, entry 7).



Figure S17. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [30:70] (Table S2, entry 8).



Figure S18. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [10:90] (Table S2, entry 10).



Figure S19. GPC Chromatogram of polyethylene syringate (Table S2, entry 21).



Figure S20. GPC Chromatogram of copoly(caprolactone/ hydroxyethylvanilic acid) [90:10] (Table S2, entry 12).



|   | Peak 1     | 50891 | 32822 | 64107    | 103438 | 150185       | 97228        | 1.953 |
|---|------------|-------|-------|----------|--------|--------------|--------------|-------|
| - | CAL ODO OL |       | 2 1 / | 1 . /1 1 |        | : 1) 500 001 | (T. 1.1. C.A | 1.0.  |

Figure S21. GPC Chromatogram of copoly(caprolactone/ hydroxyethylvanilic acid) [80:20] (Table S2, entry 13).



Figure S22. GPC Chromatogram of copoly(caprolactone/ hydroxyethylvanilic acid) [70:30] (Table 2, entry 14).



Peak 1 38910 21863 47465 76876 108239 2.171 Figure S23. GPC Chromatogram of copoly(caprolactone/ hydroxyethylvanilic acid) [60:40] (Table S2, entry 15).

Mw

Mz

Mz+1

Mv

72507

PD

9 Peaks

Мр

Mn



Figure S24. GPC Chromatogram of copoly(caprolactone/ hydroxyethylvanilic acid) [50:50] (Table S2, entry 16).



| kspa | ace Details 🚺 🚦 Sample Details | Peak Information | GPC Analysis Result | is    |       |       |       |       |
|------|--------------------------------|------------------|---------------------|-------|-------|-------|-------|-------|
|      |                                |                  |                     | Value |       |       |       |       |
| Mo   | lecular Weight Averages        | 11               |                     |       |       | 1     |       |       |
| 9    | Peaks                          | Мр               | Mn                  | Mw    | Mz    | Mz+1  | Mv    | PD    |
|      | Peak 1                         | 17085            | 9783                | 19926 | 31416 | 42385 | 29800 | 2.037 |

Figure S25. GPC Chromatogram of copoly(caprolactone/ hydroxyethylvanilic acid) [40:60] (Table S2, entry 17).



Figure S26. GPC Chromatogram of copoly(caprolactone/ hydroxyethylvanilic acid) [30:70] (Table S2, entry 18).



10686 Figure S27. GPC Chromatogram of copoly(caprolactone/ hydroxyethylvanilic acid) [20:80] (Table S2, entry 19).

18633

26244

17504

2.18

Mp

8241

4902

Peak 1



Figure S28. GPC Chromatogram of copoly(caprolactone/ hydroxyethylvanilic acid) [10:90] (Table S2, entry 20).



| Na | me   |                        |         |         | Value   |         |            |         |       |   |
|----|------|------------------------|---------|---------|---------|---------|------------|---------|-------|---|
|    | 🕀 Mo | lecular Weight Average | 25      |         | 1 14    |         | 11 · · · · | 11.5    |       |   |
|    | 6    | Peaks                  | Mp      | Mn      | Mw      | Mz      | Mz+1       | Mv      | PD    | 1 |
|    | 1    | Peak 1                 | 3801064 | 4335906 | 5083281 | 6089565 | 7260652    | 5924520 | 1.172 |   |
|    |      | Peak 2                 | 90103   | 60728   | 179131  | 504738  | 970785     | 443970  | 2.95  | 1 |

Figure S29. GPC Chromatogram of copoly(caprolactone/ hydroxyethylferulic acid) [90:10] (Table S2, entry 22).



Figure S30. GPC Chromatogram of copoly(caprolactone/ hydroxyethylferulic acid) [80:20] (Table S2, entry 23).



 ▶
 Peak 1
 31108
 28151
 88294
 306248
 687941
 261341
 3.136





Figure S32. GPC Chromatogram of copoly(caprolactone/ hydroxyethylferulic acid) [60:40] (Table S2, entry 25).



21548 Figure S33. GPC Chromatogram of copoly(caprolactone/ hydroxyethylferulic acid) [50:50] (Table S2, entry 26).

34298

47648

32392

1.835

Peak 1

17655

11742



Figure S34. GPC Chromatogram of copoly(caprolactone/ hydroxyethylferulic acid) [40:60] (Table S2, entry 27).



| e   |                  |          |      | Value | Value |       |       |       |  |  |  |
|-----|------------------|----------|------|-------|-------|-------|-------|-------|--|--|--|
| 3 1 | Molecular Weight | Averages |      |       | 11    |       |       |       |  |  |  |
|     | Q Peaks          | Mp       | Mn   | Mw    | Mz    | Mz+1  | Mv    | PD    |  |  |  |
|     | Peak 1           | 8722     | 4985 | 10648 | 18507 | 26633 | 17345 | 2,136 |  |  |  |

Figure S35. GPC Chromatogram of copoly(caprolactone/ hydroxyethylferulic acid) [30:70] (Table S2, entry 28).



Figure S36. GPC Chromatogram of copoly(caprolactone/ hydroxyethylferulic acid) [20:80] (Table S2, entry 29).



Figure S37. GPC Chromatogram of copoly(caprolactone/ hydroxyethylferulic acid) [10:90] (Table S2, entry 30).



Figure S38. GPC Chromatogram of polyethylene ferulate(Table S2, entry 31).



Figure S39. GPC Chromatogram of copoly(caprolactone/ hydroxyethylcoumaric acid) [80:20] (Table S2, entry 32).



Figure S40. GPC Chromatogram of copoly(caprolactone/ hydroxyethylcoumaric acid) [50:50] (Table S2, entry 33).



Figure S41. GPC Chromatogram of copoly(caprolactone/ hydroxyethylcoumaric acid) [20:80] (Table S2, entry 34).



Figure S42. GPC Chromatogram of polylactic acid (Table S3, entry 1).



|    | Peaks     | Мр    | Mn        | Mw    | Mz    | Mz+1          | Mv      | PD   |
|----|-----------|-------|-----------|-------|-------|---------------|---------|------|
|    | Peak 1    | 13827 | 7845      | 15991 | 25929 | 35310         | 24535   | 2.03 |
| 1. | . 042 CDC | C1    | · 1 (T 1. |       |       | T) [00.001 (1 | -11. 02 | )    |

Figure S43. GPC Chromatogram of copoly(L-lactide/ hydroxyethylsyringic acid) [80:20] (Table S3, entry 2).



Figure S44. GPC Chromatogram of copoly(L-lactide/ hydroxyethylsyringic acid) [60:40] (Table S3, entry 3).



Figure S45. GPC Chromatogram of copoly(L-lactide/ hydroxyethylsyringic acid) [40:60] (Table S3, entry 4).



Figure S46. GPC Chromatogram of copoly(L-lactide/ hydroxyethylsyringic acid) [20:80] (Table S3, entry 5).



Figure S47. GPC Chromatogram of copoly(L-lactide/ hydroxyethylvanillic acid) [80:20] (Table S3, entry 7).



Figure S48. GPC Chromatogram of copoly(L-lactide/ hydroxyethylvanillic acid) [60:40] (Table S3, entry 8).



|          | Name |                         |      |             | Value                   |       |       |        |       |  |
|----------|------|-------------------------|------|-------------|-------------------------|-------|-------|--------|-------|--|
|          | ΘM   | lolecular Weight Averag | jes  | - 11        |                         | 12    |       |        |       |  |
|          | ſ    | 9 Peaks                 | Мр   | Mn          | Mw                      | Mz    | Mz+1  | Mv     | PD    |  |
|          |      | Peak 1                  | 8648 | 5241        | 10886                   | 18947 | 27279 | 17751  | 2.077 |  |
| <b>.</b> |      | SAD CDC (               |      | C 1 (T . 1. | · · · 1 · / 1 · · 1 · · |       |       | 1.1.02 |       |  |

Figure S49. GPC Chromatogram of copoly(L-lactide/ hydroxyethylvanillic acid) [40:60] (Table S3, entry 9).



Figure S50. GPC Chromatogram of copoly(L-lactide/ hydroxyethylvanillic acid) [20:80] (Table S3, entry 10).


Figure S51. GPC Chromatogram of copoly(L-lactide/ hydroxyethylferulic acid) [90:10] (Table S3, entry 12).



Figure S52. GPC Chromatogram of copoly(L-lactide/ hydroxyethylferulic acid) [80:20] (Table S3, entry 13).



| Works | pace Detai  | ils 🚦 Sample Details | Peak Information | GPC Analysis Result | ts    |        |        |        |       |
|-------|-------------|----------------------|------------------|---------------------|-------|--------|--------|--------|-------|
| ame   | ne          |                      |                  |                     | Value |        |        |        |       |
| 01    | Aolecular W | /eight Averages      |                  |                     |       |        |        |        |       |
|       | 9 Peaks     |                      | Mp               | Mn                  | Mw    | Mz     | Mz+1   | Mv     | PD    |
|       | Peak 1      |                      | 13503            | 10117               | 38506 | 121927 | 221084 | 107913 | 3.806 |

Figure S53. GPC Chromatogram of copoly(L-lactide/ hydroxyethylferulic acid) [70:30] (Table S3, entry 14).



Figure S54. GPC Chromatogram of copoly(L-lactide/ hydroxyethylferulic acid) [60:40] (Table S3, entry 15).



Figure S55. GPC Chromatogram of copoly(L-lactide/ hydroxyethylferulic acid) [20:80] (Table S3, entry 16).



Figure S56. GPC Chromatogram of copoly(L-lactide/ hydroxyethylcoumaric acid) [90:10] (Table S3, entry 18).



Figure S57. GPC Chromatogram of copoly(L-lactide/ hydroxyethylcoumaric acid) [80:20] (Table S3, entry 19).



Figure S58. GPC Chromatogram of copoly(L-lactide/ hydroxyethylcoumaric acid) [70:30] (Table S3, entry 20).



Figure S59. GPC Chromatogram of copoly(L-lactide/ hydroxyethylcoumaric acid) [60:40] (Table S3, entry 21).



Figure S60. GPC Chromatogram of copoly(L-lactide/ hydroxyethylcoumaric acid) [20:80] (Table S3, entry 22).



Figure S61. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 10 min. (Table S4, entry 1).



Figure S62. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 20 min. (Table S4, entry 2).



Figure S63. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 30 min. (Table S4, entry 3).



Figure S64. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 1 hour (Table S4, entry 4).



**Figure S65.** GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 1.5 hours (Table S4, entry 5).



Figure S66. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 2 hours (Table S4, entry 6).



**Figure S67.** GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 2.5 hours (Table S4, entry 7).



Figure S68. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 3 hours (Table S4, entry 8).



**Figure S69.** GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 3.5 hours (Table S4, entry 9).



Figure S70. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 4 hours (Table S4, entry 10).



**Figure S71.** GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 4.5 hours (Table S4, entry 11).



Figure S72. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 5 hours (Table S4, entry 12).



Figure S73. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 6 hours (Table S4, entry 13).



Figure S74. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 7 hours (Table S4, entry 14).



Figure S75. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 8 hours (Table S4, entry 15).



Figure S76. GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 9 hours (Table S4, entry 16).



**Figure S77.** GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 10 hours (Table S4, entry 17).



**Figure S78.** GPC Chromatogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 13 hours (Table S4, entry 18).

## Differential Scanning Calorimetry (DSC) Thermograms



Figure S79. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 1).







Figure S81. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 3).



Figure S82. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 5).



Figure S83. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 6).



Figure S84. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 7).



Figure S85. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 8).



**Figure S86.** DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S1, entry 9 and Table S2, entry 9).



Figure S87. DSC Thermogram of polycaprolactone (Table S2, entry 1).



Figure S88. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [90:10] (Table S2, entry 2).





Figure S90. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [70:30] (Table S2, entry 4).





Figure S92. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] (Table S2, entry 6).



Figure S93. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [40:60] (Table S2, entry 7).



Figure S94. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [30:70] (Table S2, entry 8).



Figure S95. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [10:90] (Table S2, entry 10).



Figure S96. DSC Thermogram of polyethylene syringate (Table S2, entry 11).



Figure S97. DSC Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [90:10] (Table S2, entry 12).



Figure S98. DSC Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [80:20] (Table S2, entry 13).



Figure S99. DSC Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [70:30] (Table S2, entry 14).



Figure S100. DSC Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [60:40] (Table S2, entry 15).



Figure S101. DSC Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [50:50] (Table S2, entry 16).



Figure S102. DSC Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [40:60] (Table S2, entry 17).



Figure S103. DSC Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [30:70] (Table S2, entry 18).



Figure S104. DSC Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [20:80] (Table S2, entry 19).



Figure S105. DSC Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [10:90] (Table S2, entry 20).



Figure S106. DSC Thermogram of polyethylene vanillate (Table S2, entry 21).







Figure S108. DSC Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [80:20] (Table S2, entry 23).







Figure S110. DSC Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [60:40] (Table S2, entry 25).



Figure S111. DSC Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [50:50] (Table S2, entry 26).



Figure S112. DSC Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [40:60] (Table S2, entry 27).



Figure S113. DSC Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [30:70] (Table S2, entry 28).



Figure S114. DSC Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [20:80] (Table S2, entry 29).



Figure S115. DSC Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [10:90] (Table S2, entry 30).



Figure S116. DSC Thermogram of polyethylene ferulate(Table S2, entry 31).



Figure S117. DSC Thermogram of copoly(caprolactone/ hydroxyethylcoumaric acid) [80:20] (Table S2, entry 32).



Figure S118. DSC Thermogram of copoly(caprolactone/ hydroxyethylcoumaric acid) [50:50] (Table S2, entry 33).





Figure S120. DSC Thermogram of polyethylene coumarate (Table S2, entry 35).



Figure S121. DSC Thermogram of polylactic acid (Table S3, entry 1).



Figure S122. DSC Thermogram of copoly(L-lactide/ hydroxyethylsyringic acid) [80:20] (Table S3, entry 2).


Figure S123. DSC Thermogram of copoly(L-lactide/ hydroxyethylsyringic acid) [60:40] (Table S3, entry 3).



Figure S124. DSC Thermogram of copoly(L-lactide/ hydroxyethylsyringic acid) [40:60] (Table S3, entry 4).



Figure S125. DSC Thermogram of copoly(L-lactide/ hydroxyethylsyringic acid) [20:80] (Table S3, entry 5).



Figure S126. DSC Thermogram of copoly(L-lactide/ hydroxyethylvanillic acid) [80:20] (Table S3, entry 7).



Figure S127. DSC Thermogram of copoly(L-lactide/ hydroxyethylvanillic acid) [60:40] (Table S3, entry 8).



Figure S128. DSC Thermogram of copoly(L-lactide/ hydroxyethylvanillic acid) [40:60] (Table S3, entry 9).



Figure S129. DSC Thermogram of copoly(L-lactide/ hydroxyethylvanillic acid) [20:80] (Table S3, entry 9).



Figure S130. DSC Thermogram of copoly(L-lactide/ hydroxyethylferulic acid) [90:10] (Table S3, entry 12).



Figure S131. DSC Thermogram of copoly(L-lactide/ hydroxyethylferulic acid) [80:20] (Table S3, entry 13).



Figure S132. DSC Thermogram of copoly(L-lactide/ hydroxyethylferulic acid) [70:30] (Table S3, entry 14).



Figure S133. DSC Thermogram of copoly(L-lactide/ hydroxyethylferulic acid) [60:40] (Table S3, entry 15).



Figure S134. DSC Thermogram of copoly(L-lactide/ hydroxyethylferulic acid) [20:80] (Table S3, entry 16).



Figure S135. DSC Thermogram of copoly(L-lactide/ hydroxyethylcoumaric acid) [90:10] (Table S3, entry 18).



Figure S136. DSC Thermogram of copoly(L-lactide/ hydroxyethylcoumaric acid) [80:20] (Table S3, entry 19).



Figure S137. DSC Thermogram of copoly(L-lactide/ hydroxyethylcoumaric acid) [70:30] (Table S3, entry 20).



Figure S138. DSC Thermogram of copoly(L-lactide/ hydroxyethylcoumaric acid) [60:40] (Table S3, entry 21).



Figure S139. DSC Thermogram of copoly(L-lactide/ hydroxyethylcoumaric acid) [20:80] (Table S3, entry 22).



Figure S140. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 10 min. (Table S4, entry 1).



Figure S141. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 20 min. (Table S4, entry 2).



Figure S142. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 30 min. (Table S4, entry 3).



Figure S143. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 1 hour (Table S4, entry 4).



**Figure S144.** DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 1.5 hours (Table S4, entry 5).



Figure S145. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 2 hours (Table S4, entry 6).



**Figure S146.** DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 2.5 hours (Table S4, entry 7).



Figure S147. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 3 hours (Table S4, entry 8).



Figure S148. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 3.5 hours (Table S4, entry 9).





Figure S150. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 4.5 hours (Table S4, entry 11).



Figure S151. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 5 hours (Table S4, entry 12).



Figure S152. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 6 hours (Table S4, entry 13).



Figure S153. DSC Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 7 hours (Table S4, entry 14).







17).





Figure S158. TGA Thermogram of polycaprolactone (Table S2, entry 1).



Figure S159. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [90:10] (Table S2, entry 2).



Figure S160. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [80:20] (Table S2, entry 3).



Figure S161. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [70:30] (Table S2, entry 4).



Figure S162. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [60:40] (Table S2, entry 5).



Figure S163. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] (Table S2, entry 6).



Figure S164. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [40:60] (Table S2, entry 7).



Figure S165. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [30:70] (Table S2, entry 8).



Figure S166. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S2, entry 9).



Figure S167. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [10:90] (Table S2, entry 10).



Figure S168. TGA Thermogram of polyethylene synringate (Table S2, entry 11).



Figure S169. TGA Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [90:10] (Table S2, entry 12).



Figure S170. TGA Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [80:20] (Table S2, entry 13).



Figure S171. TGA Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [70:30] (Table S2, entry 14).



Figure S172. TGA Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [60:40] (Table S2, entry 15).



Figure S173. TGA Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [50:50] (Table S2, entry 16).



Figure S174. TGA Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [40:60] (Table S2, entry 17).



Figure S175. TGA Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [30:70] (Table S2, entry 18).



Figure S176. TGA Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [20:80] (Table S2, entry 19).



Figure S177. TGA Thermogram of copoly(caprolactone/ hydroxyethylvanillic acid) [10:90] (Table S2, entry 20).



Figure S178. TGA Thermogram of polyethylene vanillate (Table S2, entry 21).



Figure S179. TGA Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [90:10] (Table S2, entry 22).



Figure S180. TGA Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [80:20] (Table S2, entry 23).



Figure S181. TGA Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [70:30] (Table S2, entry 24).



Figure S182. TGA Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [60:40] (Table S2, entry 25).



Figure S183. TGA Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [50:50] (Table S2, entry 26).



Figure S184. TGA Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [40:60] (Table S3, entry 37).



Figure S185. TGA Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [30:70] (Table S2, entry 28).



Figure S186. TGA Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [20:80] (Table S2, entry 29).



Figure S187. TGA Thermogram of copoly(caprolactone/ hydroxyethylferulic acid) [10:90] (Table S2, entry 30).



Figure S188. TGA Thermogram of polyethylene ferulate (Table S2, entry 31).



Figure S189. TGA Thermogram of copoly(caprolactone/ hydroxyethylcoumaric acid) [80:20] (Table S2, entry 32).



Figure S190. TGA Thermogram of copoly(caprolactone/ hydroxyethylcoumaric acid) [50:50] (Table S2, entry 33).



Figure S191. TGA Thermogram of copoly(caprolactone/ hydroxyethylcoumaric acid) [20:80] (Table S2, entry 34).



Figure S192. TGA Thermogram of polyethylene coumarate (Table S2, entry 35).



Figure S193. TGA Thermogram of polylactic acid (Table S3, entry 1).


Figure S194. TGA Thermogram of copoly(L-lactide/ hydroxyethylsyringic acid) [80:20] (Table S3, entry 2).



Figure S195. TGA Thermogram of copoly(L-lactide/ hydroxyethylsyringic acid) [60:40] (Table S3, entry 3).



Figure S196. TGA Thermogram of copoly(L-lactide/ hydroxyethylsyringic acid) [40:60] (Table S3, entry 4).



Figure S197. TGA Thermogram of copoly(L-lactide/ hydroxyethylsyringic acid) [20:80] (Table S3, entry 5).



Figure S198. TGA Thermogram of copoly(L-lactide/ hydroxyethylvanillic acid) [80:20] (Table S3, entry 7).



Figure S199. TGA Thermogram of copoly(L-lactide/ hydroxyethylvanillic acid) [60:40] (Table S3, entry 8).



Figure S200. TGA Thermogram of copoly(L-lactide/ hydroxyethylvanillic acid) [40:60] (Table S3, entry 9).



Figure S201. TGA Thermogram of copoly(L-lactide/ hydroxyethylvanillic acid) [20:80] (Table S3, entry 10).



Figure S202. TGA Thermogram of copoly(L-lactide/ hydroxyethylferulic acid) [90:10] (Table S3, entry 12).



Figure S203. TGA Thermogram of copoly(L-lactide/ hydroxyethylferulic acid) [80:20] (Table S3, entry 13).



Figure S204. TGA Thermogram of copoly(L-lactide/ hydroxyethylferulic acid) [70:30] (Table S3, entry 14).



Figure S205. TGA Thermogram of copoly(L-lactide/ hydroxyethylferulic acid) [60:40] (Table S3, entry 15).



Figure S206. TGA Thermogram of copoly(L-lactide/ hydroxyethylferulic acid) [20:80] (Table S3, entry 16).



Figure S207. TGA Thermogram of copoly(L-lactide/ hydroxyethylcoumaric acid) [90:10] (Table S3, entry 18).



Figure S208. TGA Thermogram of copoly(L-lactide/ hydroxyethylcoumaric acid) [80:20] (Table S3, entry 19).



Figure S209. TGA Thermogram of copoly(L-lactide/ hydroxyethylcoumaric acid) [70:30] (Table S3, entry 20).



Figure S210. TGA Thermogram of copoly(L-lactide/ hydroxyethylcoumaric acid) [60:40] (Table S3, entry 21).



Figure S211. TGA Thermogram of copoly(L-lactide/ hydroxyethylcoumaric acid) [20:80] (Table S3, entry 22).



Figure S212. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 10 min. (Table S4, entry 1).



Figure S213. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 20 min. (Table S4, entry 2).





Figure S215. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 1 hour (Table S4, entry 4).



Figure S216. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 1.5 hours (Table S4, entry 5).



Figure S217. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 2 hours (Table S4, entry 6).



Figure S218. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 2.5 hours (Table S4, entry 7).



Figure S219. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 3 hours (Table S4, entry 8).



Figure S220. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 3.5 hours (Table S4, entry 9).



Figure S221. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 4 hours (Table S4, entry 10).



Figure S222. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 4.5 hours (Table S4, entry 11).



Figure S223. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 5 hours (Table S4, entry 12).



Figure S224. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 6 hours (Table S4, entry 13).



Figure S225. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 7 hours (Table S4, entry 14).



Figure S226. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 8 hours (Table S4, entry 15).



Figure S227. TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 9 hours (Table S4, entry 16).



**Figure S228.** TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 10 hours (Table S4, entry 17).



**Figure S229.** TGA Thermogram of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 13 hours (Table S4, entry 18).

## <sup>1</sup>H NMR Spectra



Figure S230. <sup>1</sup>H NMR spectrum of hydroxyethylferulic acid.



Figure S231. <sup>1</sup>H NMR spectrum of hydroxyethylcoumaric acid.



Figure S232. <sup>1</sup>H NMR spectrum of hydroxyethylsyringic acid.



**Figure S233.** <sup>1</sup>H NMR spectrum of hydroxyethylvanillic acid.







Figure S235. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [90:10] (Table S2, entry 2).



Figure S236. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [80:20] (Table S2, entry 3).







Figure S238. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [60:40] (Table S2, entry 5).



Figure S239. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] (Table S2, entry 6).







Figure S241. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [30:70] (Table S2, entry 8).



Figure S242. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S2, entry 9).



Figure S243. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [10:90] (Table S2, entry 10).





S132



Figure S246. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylvanillic acid) [80:20] (Table S2, entry 13).







Figure S249. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylvanillic acid) [50:50] (Table S2, entry 16).



Figure S250. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylvanillic acid) [40:60] (Table S2, entry 17).



Figure S251. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylvanillic acid) [30:70] (Table S2, entry 18).





Figure S253. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylvanillic acid) [10:90] (Table S2, entry 20).



Figure S254. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylferulic acid) [90:10] (Table S2, entry 22).



Figure S255. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylferulic acid) [80:20] (Table S2, entry 23).



Figure S256. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylferulic acid) [70:30] (Table S2, entry 24).



Figure S257. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylferulic acid) [60:40] (Table S2, entry 25).



Figure S258. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylferulic acid) [50:50] (Table S2, entry 26).



Figure S259. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylferulic acid) [40:60] (Table S2, entry 27).



Figure S260. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylferulic acid) [30:70] (Table S2, entry 28).



Figure S261. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylferulic acid) [20:80] (Table S2, entry 29).



Figure S262. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylferulic acid) [10:90] (Table S2, entry 30).





Figure S264. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylcoumaric acid) [80:20] (Table S2, entry 32).



Figure S265. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylcoumaric acid) [50:50] (Table S2, entry 33).



Figure S266. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylcoumaric acid) [20:80] (Table S2, entry 34).











Figure S269. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylsyringic acid) [80:20] (Table S3, entry 2).



Figure S270. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylsyringic acid) [60:40] (Table S3, entry 3).



Figure S271. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylsyringic acid) [40:60] (Table S3, entry 4).



Figure S272. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylsyringic acid) [20:80] (Table S3, entry 5).



Figure S273. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylvanillic acid) [80:20] (Table S3, entry 7).



Figure S274. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylvanillic acid) [60:40] (Table S3, entry 8).



Figure S275. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylvanillic acid) [40:60] (Table S3, entry 9).



Figure S276. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylvanillic acid) [20:80] (Table S3, entry 10).



Figure S277. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylferulic acid) [90:10] (Table S3, entry 12).



Figure S278. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylferulic acid) [80:20] (Table S3, entry 13).



Figure S279. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylferulic acid) [70:30] (Table S3, entry 14).



Figure S280. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylferulic acid) [60:40] (Table S3, entry 15).



Figure S281. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylferulic acid) [20:80] (Table S3, entry 16).


Figure S282. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylcoumaric acid) [90:10] (Table S3, entry 18).



Figure S283. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylcoumaric acid) [80:20] (Table S3, entry 19).



Figure S284. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylcoumaric acid) [70:30] (Table S3, entry 20).



Figure S285. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylcoumaric acid) [60:40] (Table S3, entry 21).



Figure S286. <sup>1</sup>H NMR spectrum of copoly(L-lactide/ hydroxyethylcoumaric acid) [20:80] (Table S3, entry 22).



Figure S287. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 10 min. (Table S4, entry 1).



Figure S288. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 20 min. (Table S4, entry 2).



Figure S289. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 30 min. (Table S4, entry 3).



Figure S290. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 1 hour (Table S4, entry 4).



Figure S291. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 1.5 hours (Table S4, entry 5).



Figure S292. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 2 hours (Table S4, entry 6).



Figure S293. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 2.5 hours (Table S4, entry 7).



Figure S294. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 3 hours (Table S4, entry 8).



Figure S295. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 3.5 hours (Table S4, entry 9).



Figure S296. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 4 hours (Table S4, entry 10). S149



**Figure S297.** <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 4.5 hours (Table S4, entry 11).



Figure S298. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 5 hours (Table S4, entry 12).



Figure S299. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 6 hours (Table S4, entry 13).



Figure S300. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 7 hours (Table S4, entry 14).



Figure S301. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 8 hours (Table S4, entry 15).



Figure S302. <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 9 hours (Table S4, entry 16).



**Figure S303.** <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 10 hours (Table S4, entry 17).



**Figure S304.** <sup>1</sup>H NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 13 hours (Table S4, entry 18).

# <sup>13</sup>C NMR Spectra



Figure S305. <sup>13</sup>C NMR spectrum of hydroxyethylferulic acid.









Figure S308. <sup>13</sup>C NMR spectrum of hydroxyethylvanillic acid.





Figure S310. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [90:10] (Table S2, entry 2).



Figure S311. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [80:20] (Table S2, entry 3).



Figure S312. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [70:30] (Table S2, entry 4).



Figure S313. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [60:40] (Table S2, entry 5).



Figure S314. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] (Table S2, entry 6).



Figure S315. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [40:60] (Table S2, entry 7).



Figure S316. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [30:70] (Table S2, entry 8).



Figure S317. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [20:80] (Table S2, entry 9).



Figure S318. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [10:90] (Table S2, entry 10).



Figure S319. <sup>13</sup>C NMR spectrum of polyethylene syringate (Table S2, entry 11).



Figure S320. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylvanillic acid) [90:10] (Table S3, entry 12).



Figure S321. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylvanillic acid) [80:20] (Table S2, entry 13).



Figure S322. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylvanillic acid) [70:30] (Table S2, entry 14).



Figure S323. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylvanillic acid) [60:40] (Table S2, entry 15).



Figure S324. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylvanillic acid) [50:50] (Table S2, entry 16).



Figure S325. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylvanillic acid) [40:60] (Table S2, entry 17).



Figure S326. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylvanillic acid) [30:70] (Table S2, entry 18).





Figure S328. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylferulic acid) [80:20] (Table S2, entry 23).



Figure S329. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylferulic acid) [70:30] (Table S2, entry 24).



Figure S330. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylferulic acid) [60:40] (Table S2, entry 25).



Figure S331. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylferulic acid) [50:50] (Table S2, entry 26).



Figure S332. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylferulic acid) [40:60] (Table S2, entry 27).







Figure S335. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylcoumaric acid) [80:20] (Table S2, entry 32).





Figure S337. <sup>13</sup>C NMR spectrum of polyethylene coumarate (Table S2, entry 35).



Figure S338. <sup>13</sup>C NMR spectrum of polylactic acid (Table S3, entry 1).



Figure S339. <sup>13</sup>C NMR spectrum of copoly(L-lactide/ hydroxyethylsyringic acid) [80:20] (Table S3, entry 2).



Figure S340. <sup>13</sup>C NMR spectrum of copoly(L-lactide/ hydroxyethylsyringic acid) [60:40] (Table S3, entry 3).



Figure S341. <sup>13</sup>C NMR spectrum of copoly(L-lactide/ hydroxyethylsyringic acid) [40:60] (Table S3, entry 4).



Figure S342. <sup>13</sup>C NMR spectrum of copoly(L-lactide/ hydroxyethylsyringic acid) [20:80] (Table S3, entry 5).



Figure S343. <sup>13</sup>C NMR spectrum of copoly(L-lactide/ hydroxyethylvanillic acid) [80:20] (Table S3, entry 7).



Figure S344. <sup>13</sup>C NMR spectrum of copoly(L-lactide/ hydroxyethylvanillic acid) [60:40] (Table S3, entry 8).



Figure S345. <sup>13</sup>C NMR spectrum of copoly(L-lactide/ hydroxyethylvanillic acid) [40:60] (Table S3, entry 9).



Figure S346. <sup>13</sup>C NMR spectrum of copoly(L-lactide/ hydroxyethylferulic acid) [90:10] (Table S3, entry 12).



Figure S347. <sup>13</sup>C NMR spectrum of c copoly(L-lactide/ hydroxyethylferulic acid) [80:20] (Table S3, entry 13).



Figure S348. <sup>13</sup>C NMR spectrum of copoly(L-lactide/ hydroxyethylferulic acid) [70:30] (Table S3, entry 14).



Figure S349. <sup>13</sup>C NMR spectrum of copoly(L-lactide/ hydroxyethylferulic acid) [60:40] (Table S3, entry 15).



Figure S350. <sup>13</sup>C NMR spectrum of copoly(L-lactide/ hydroxyethylcoumaric acid) [90:10] (Table S3, entry 18).



Figure S351. <sup>13</sup>C NMR spectrum of c copoly(L-lactide/ hydroxyethylcoumaric acid) [80:20] (Table S3, entry 19).



Figure S352. <sup>13</sup>C NMR spectrum of copoly(L-lactide/ hydroxyethylcoumaric acid) [70:30] (Table S3, entry 20).



Figure S353. <sup>13</sup>C NMR spectrum of copoly(L-lactide/ hydroxyethylcoumaric acid) [60:40] (Table S3, entry 21).



Figure S354. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 10 min. (Table S4, entry 1).



Figure S355. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 20 min. (Table S4, entry 2).



Figure S356. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 30 min. (Table S4, entry 3).



Figure S357. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 1 hour (Table S4, entry 4).



**Figure S358.** <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 1.5 hours (Table S4, entry 5).



Figure S359. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 2 hours (Table S4, entry 6).



**Figure S360.** <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 2.5 hours (Table S4, entry 7).



Figure S361. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 3 hours (Table S4, entry 8).



**Figure S362.** <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 3.5 hours (Table S4, entry 9).



Figure S363. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 4 hours (Table S4, entry 10).



**Figure S364.** <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 4.5 hours (Table S4, entry 11).



Figure S365. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 5 hours (Table S4, entry 12).



Figure S366. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 6 hours (Table S4, entry 13).



Figure S367. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 7 hours (Table S4, entry 14).



Figure S368. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 8 hours (Table S4, entry 15).



Figure S369. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 9 hours (Table S4, entry 16).



**Figure S370.** <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 10 hours (Table S4, entry 17).



Figure S371. <sup>13</sup>C NMR spectrum of copoly(caprolactone/ hydroxyethylsyringic acid) [50:50] at 13 hours (Table S4, entry 18).

# <sup>1</sup>H NMR Analysis for Copolymer Composition

# For copoly(caprolactone/hydroxyethylsyringic acid) series:

Figure S372 depicts exemplary <sup>1</sup>H NMR spectra for the homopolymers and copolymer with hydroxyethylsyringic acid (HESA) feed fractions of 100%, 40%, and 0%. Of particular use are the methoxy hydrogens of the hydroxyethylsyringic acid (HESA) repeat units (3.6 to 3.9 ppm) and the eight methylene hydrogens of the caprolactone repeat units (1.2 to 2.4 ppm). Relative integration provided the incorporation values reported in Table S2.

- the polycaprolactone (PCL) (from Table S2, Entry 1)
- the 60:40 (feed ratio, CL:HESA) copolymer (from Table S2, Entry 5)
- and the polyethylene syringate (PES) (from Table S2, Entry 11)

Integration of the peaks for the 60:40 caprolactone: HESA copolymer spectrum gives an area of 23.52 corresponding to the 6 methoxy protons for the HESA repeat unit at 3.6 to 3.9 ppm and an area of 39.24 (= 29.65 + 9.59) corresponding to the 8 methylene protons for caprolactone repeat units at 1.2 to 2.4 ppm. Thus we have:

([23.52/6]/([23.52/6] + [39.24/8])\*100 = 44% HESA monomers present in the copolymer. This computes to 100 - 44 = 56% caprolactone monomers present in the copolymer.

This is in close agreement with the 60:40 feed ratio of caprolactone:HESA monomers employed. All the other compositions (from Table S2) displayed a similar agreement between the feed ratio and the measured incorporation ratio.

#### For copoly(caprolactone/hydroxyethylvanillic acid) series:

Figure S373 depicts exemplary <sup>1</sup>H NMR spectra for the homopolymers and copolymer with hydroxyethylvanillic acid (HEVA) feed fractions of 0%, 40%, and 100%. Of particular use are the methoxy hydrogens of the hydroxyethylvanillic acid (HEVA) repeat units (3.70 to 3.95 ppm) and the eight methylene hydrogens of the caprolactone repeat unit (1.25 to 2.5 ppm). Relative integration provided the incorporation values reported in Table S2.

• the polycaprolactone (PCL) (from Table S2, Entry 1)

• and the 60:40 (feed ratio, CL:HEVA) copolymer (from Table S2, Entry 15)

Integration of the peaks for the 60:40 caprolactone: HEVA copolymer spectrum gives an area of 2.53 corresponding to the 3 methoxy protons for the HEVA repeat unit at 3.70 to 3.95 ppm and an area of 8.19 (= 2.00 + 4.15 + 2.04) corresponding to the 8 methylene protons for the caprolactone repeat unit at 1.25 to 2.5 ppm. Thus we have:

([2.53/3]/([2.53/3] + [8.19/8])\*100 = 45% HEVA monomers present in the copolymer. This computes to 100 - 45 = 55% caprolactone monomers present in the copolymer.

This is in close agreement with the 60:40 feed ratio of caprolactone:HEVA monomers employed. All the other compositions (from Table S2) displayed a similar agreement between the feed ratio and the measured incorporation ratio.

# For copoly(caprolactone/hydroxyethylferulic acid) series:

Figure S374 depicts exemplary <sup>1</sup>H NMR spectra for the homopolymers and copolymer with hydroxyethylferulic acid (HEFA) feed fractions of 0%, 40%, and 100%. Of particular use are the methoxy hydrogens of the hydroxyethylferulic acid (HEFA) repeat units (3.7 to 4.0 ppm) and the eight methylene hydrogens of the caprolactone repeat unit (1.2 to 2.5 ppm). Relative integration provided the incorporation values reported in Table S2.

• the polycaprolactone (PCL) (from Table S2, Entry 1)

- the 60:40 (feed ratio, CL:HEFA) copolymer (from Table S2, Entry 25)
- and the polyethylene ferulate (PEF) (from Table S2, Entry 31)

Integration of the peaks for the 60:40 caprolactone:HEFA copolymer spectrum gives an area of 2.87 corresponding to the 3 methoxy protons for the HEFA repeat unit at 3.7 to 4.0 ppm and an area of 8.06 (= 2.00 + 4.10 + 1.96) corresponding to the 8 methylene protons for caprolactone repeat units at 1.2 to 2.5 ppm. Thus we have:

([2.87/3]/([2.87/3] + [8.06/8])\*100 = 49% HEFA monomers present in the copolymer. This computes to 100 - 49 = 51% caprolactone monomers present in the copolymer. This is in close agreement with the 60:40 feed ratio of caprolactone:HEFA monomers employed. All the other compositions (from Table S2) displayed a similar agreement between the feed ratio and the measured incorporation ratio.

#### For copoly(caprolactone/hydroxyethylcoumaric acid) series:

Figure S375 depicts exemplary <sup>1</sup>H NMR spectra for the homopolymers and copolymer with hydroxyethylcoumaric acid (HECA) feed fractions of 0%, 50%, and 100%. Of particular use are the six protons of  $sp^2$  hybridized carbons of the hydroxyethylcoumaric acid (HECA) repeat units (6.1 to 8.0 ppm) and eight methylene hydrogens of the caprolactone repeat units (1.1 to 2.5 ppm). Relative integration provided the incorporation values reported in Table S2.

• the polycaprolactone (PCL) (from Table S2, Entry 1)

- the 50:50 (feed ratio, CL:HECA) copolymer (from Table S2, Entry 33)
- and the polyethylene coumarate (PEC) (from Table S2, Entry 35)

Integration of the peaks for the 50:50 caprolactone:HECA copolymer spectrum gives an area of 8.54 (= 2.31 + 2.58 + 2.50 + 1.15) corresponding to the 6 protons of sp<sup>2</sup> hybridized carbons for the HECA repeat unit at 6.0 to 7.8 ppm and an area of 8.36 (= 2.00 + 4.23 + 2.13) corresponding to the 8 methylene protons for caprolactone repeat units at 1.1 to 2.5 ppm. Thus we have:

([8.54/6]/([8.54/6] + [8.36/8])\*100 = 54% HECA monomers present in the copolymer. This computes to 100 - 54 = 46% caprolactone monomers present in the copolymer.

This is in close agreement with the 50:50 feed ratio of caprolactone:HECA monomers employed. All the other compositions (from Table S2) displayed a similar agreement between the feed ratio and the measured incorporation ratio.

#### For copoly(L-lactide/hydroxyethylsyringic acid) series:

Figure S376 depicts exemplary <sup>1</sup>H NMR spectra for the homopolymers and copolymer with hydroxyethylsyringic acid (HESA) fractions of 0%, 40%, and 100%. Of particular use are the methoxy hydrogens of the hydroxyethylsyringic acid (HESA) repeat units (3.5 to 4.1 ppm) and six methyl hydrogens of the L-lactide repeat units (1.0 to 2.0 ppm). Relative integration provided the incorporation values reported in Table S3.

• the polylactic acid (PLA) (from Table S3, Entry 1)

- the 60:40 (feed ratio, L-lactide:HESA) copolymer (from Table S3, Entry 3)
- and the polyethylene syringate (PES) (from Table S3, Entry 6)

Integration of the peaks for the 60:40 L-lactide:HESA copolymer spectrum gives an area of 31.82 corresponding to the 6 methoxy protons for the HESA repeat unit at 3.5 to 4.1 ppm and an area of 20.00 corresponding to the 6 methyl protons for L-lactide repeat units at 1.0 to 2.0 ppm. Thus we have:

([31.81/6]/([31.81/6] + [20.00/6])\*100 = 61% HESA monomers present in the copolymer. This computes to 100 - 61 = 39% L-lactide monomers present in the copolymer.

Overall the final composition of HESA into the copolymer is routinely greater than its feed fraction (Table S3). This difference is likely caused by the facile loss of L-lactide through sublimation before its polymerization and after its

# For copoly(L-lactide/hydroxyethylvanillic acid) series:

polymerization via back-biting during prolonged heating of the polymer.

Figure S377 depicts exemplary <sup>1</sup>H NMR spectra for the homopolymers and copolymer with hydroxyethylvanillic acid (HEVA) feed fractions of 0% and 40%. Of particular use are the peaks attributed to the three methoxy hydrogens of the hydroxyethylvanillic acid (HEVA) repeat units (3.5 to 4.1 ppm) and six methyl hydrogens of the L-lactide repeat units (1.0 to 2.0 ppm). Relative integration provided the incorporation values reported in Table S3.

• the polylactic acid (PLA) (from Table S3, Entry 1)

<sup>•</sup> and the 60:40 (feed ratio, L-lactide:HEVA) copolymer (from Table S3, Entry 8)

Integration of the peaks for the 60:40 L-lactide:HEVA copolymer spectrum gives an area of 12.32 corresponding to the 3 methoxy protons for the HEVA repeat unit at 3.5 to 4.1 ppm and an area of 20.00 corresponding to the 6 methyl protons for L-lactide repeat units at 1.0 to 2.0 ppm. Thus we have:

([12.32/3]/([12.32/3] + [20.00/6])\*100 = 55% HEVA monomers present in the copolymer. This computes to 100 - 55 = 45% L-lactide monomers present in the copolymer.

Overall the final composition of HEVA into the copolymer is routinely greater than its feed fraction (Table S3). This difference is likely caused by the facile loss of L-lactide through sublimation before its polymerization and after its polymerization via back-biting during prolonged heating of the polymer.

#### For copoly(L-lactide/hydroxyethylferulic acid) series:

Figure S378 depicts exemplary <sup>1</sup>H NMR spectra for the homopolymers and copolymer with hydroxyethylferulic acid (HEFA) feed fractions of 0%, 40%, and 100%. Of particular use are the three methoxy hydrogens of hydroxyethylferulic acid (HEFA) repeat units (3.60 to 4.05 ppm) and the six methyl hydrogens of the L-lactide repeat units (1.3 to 1.9 ppm). Relative integration provided the incorporation values reported in Table S3.

• the polylactic acid (PLA) (from Table S3, Entry 1)

- the 60:40 (feed ratio, L-lactide:HEFA) copolymer (from Table S3, Entry 15)
- and the polyethylene ferulate (PEF) (from Table S3, Entry 17)

Integration of the peaks for the 60:40 L-lactide:HEFA copolymer spectrum gives an area of 14.3 corresponding to the 3 methoxy protons for the HEFA repeat unit at 3.60 to 4.05 ppm and an area of 20.0 corresponding to the 6 methyl protons for L-lactide repeat units at 1.3 to 1.9 ppm. Thus we have:

([14.3/3]/([14.3/3] + [20/6])\*100 = 59% HEFA monomers present in the copolymer. This computes to 100 - 59 = 41% L-lactide monomers present in the copolymer.

Overall the final composition of HEFA into the copolymer is routinely greater than its feed fraction (Table S3). This difference is likely caused by the facile loss of L-lactide through sublimation before its polymerization and after its polymerization via back-biting during prolonged heating of the polymer.

#### For copoly(L-lactide/hydroxyethylcoumaric acid) series:

Figure S379 depicts exemplary <sup>1</sup>H NMR spectra for the homopolymers and copolymer with hydroxyethylcoumaric acid (HECA) feed fractions of 0%, 40%, and 100%. Of particular use are the six protons of sp<sup>2</sup> hybridized carbons of the hydroxyethylcoumaric acid (HECA) repeat units (6.25 to 7.90 ppm) and six methyl hydrogens of the L-lactide repeat units (1.25 to 1.90 ppm). Relative integration provided the incorporation values reported in Table S3.

• the polylactic acid (PLA) (from Table S3, Entry 1)

• the 60:40 (feed ratio, L-lactide:HECA) copolymer (from Table S3, Entry 21)

• and the polyethylene coumarate (PEC) (from Table S3, Entry 23)

Integration of the peaks for the 60:40 L-lactide:HECA copolymer spectrum gives an area of 41.34 (= 6.21 + 16.51 + 12.55 + 6.07) corresponding to the 6 protons of sp<sup>2</sup> hybridized carbons for the HECA repeat unit at 6.25 to 7.90 ppm and an area of 30.00 corresponding to the 6 methyl protons for L-lactide repeat units at 1.25 to 1.90 ppm. Thus we have:

([41.34/6] / ([41.34/6] + [30.00/6])\*100 = 58% HECA monomers present in the copolymer. This computes to 100 - 58 = 42% L-lactide monomers present in the copolymer.

Overall the final composition of HECA into the copolymer is routinely greater than its feed fraction (Table S3). This difference is likely caused by the facile loss of L-lactide through sublimation before its polymerization and after its polymerization via back-biting during prolonged heating of the polymer.



**Figure S372.** <sup>1</sup>H NMR spectra of copoly(caprolactone/hydroxyethylsyringic acid) with hydroxyethylsyringic acid (HESA) feed fractions of 100%, 40%, and 0%.





**Figure S373.** <sup>1</sup>H NMR spectra of copoly(caprolactone/hydroxyethylvanillic acid) with hydroxyethylvanillic acid (HEVA) feed fractions of 0% and 40%.




**Figure S374.** <sup>1</sup>H NMR spectra of copoly(caprolactone/hydroxyethylferulic acid) with hydroxyethylferulic acid (HEFA) feed fractions of 0%, 40%, and 100%.





**Figure S375.** <sup>1</sup>H NMR spectra of copoly(caprolactone/hydroxyethylcoumaric acid) with hydroxyethylcoumaric acid (HECA) feed fractions of 0%, 50%, and 100%.



**Figure S376.** <sup>1</sup>H NMR spectra of copoly(L-lactide/hydroxyethylsyringic acid) with hydroxyethylsyringic acid (HESA) feed fractions of 0%, 40%, and 100%.



**Figure S377.** <sup>1</sup>H NMR spectra of copoly(L-lactide/hydroxyethylvanillic acid) with hydroxyethylvanillic acid (HEVA) feed fractions of 0% and 40%.





**Figure S378.** <sup>1</sup>H NMR spectra of copoly(L-lactide/hydroxyethylferulic acid) with hydroxyethylferulic acid (HEFA) feed fractions of 0%, 40%, and 100%.





**Figure S379.** <sup>1</sup>H NMR spectra of copoly(L-lactide/hydroxyethylcoumaric acid) with hydroxyethylcoumaric acid (HECA) feed fractions of 0%, 40%, and 100%.

## **Kinetic study**

## **Polymerization procedure**

A 50 mL round bottom flask connected to a bump trap containing 1.2 eq. of  $P_2O_5$  was charged with 3.18 g of hydroxyethylsyringic acid (13.1 mmol), 1.50 g of  $\varepsilon$ -caprolactone (13.1 mmol), and 77 mg of Sb<sub>2</sub>O<sub>3</sub> (1 mol%). The mixture was melted under an argon atmosphere gradually from 150 to 200 °C over a period of 5 hours. Afterwards the system was placed under dynamic vacuum to increase the degree of polymerization by removal of the volatile condensation product. The system was kept under vacuum for 8 hours before cooling. During the polymerization, 18 aliquot samples were removed. Three aliquots were sampled after 10 minute intervals for the first half hour; nine aliquots were sampled after 30 minute intervals from one hour until 5 hours; five aliquots were sampled after 1 hour intervals until 10 hours; finally, one aliquot was taken at the end of the reaction, 13 hours.

**Table S4.** Kinetic study for ROP polycondensation for the copolymer of  $\varepsilon$ -caprolactone and hydroxyethylsyringic acid prepared with a 50:50 ratio of monomers.



| Entry | Reaction               | Reaction     | Reaction         | $M_{\rm n}{}^b$ | $M_{ m w}{}^{b}$ |     | $T_{\rm g}^{\ c}$ | $T_{95\%}{}^{d}$ | T <sub>50%</sub> <sup>e</sup> |
|-------|------------------------|--------------|------------------|-----------------|------------------|-----|-------------------|------------------|-------------------------------|
|       | condition <sup>a</sup> | time (hours) | temperature (°C) | (Da)            | (Da)             | PDI | (°C)              | (°C)             | (°C)                          |
| 1     | Argon                  | 0.17         | 150              | 220             | 360              | 1.6 | -39               | 178              | 329                           |
| 2     |                        | 0.33         | 150              | 255             | 420              | 1.7 | -38               | 185              | 321                           |
| 3     |                        | 0.5          | 150              | 262             | 460              | 1.8 | -38               | 190              | 327                           |
| 4     |                        | 1            | 150              | 280             | 570              | 2   | -31               | 189              | 323                           |
| 5     |                        | 1.5          | 180              | 340             | 820              | 2.4 | -22               | 198              | 329                           |
| 6     |                        | 2            | 180              | 780             | 1,400            | 1.8 | -15               | 197              | 329                           |
| 7     |                        | 2.5          | 180              | 950             | 1,700            | 1.8 | -11               | 205              | 333                           |
| 8     |                        | 3            | 200              | 1,100           | 2,200            | 2.0 | -4                | 233              | 352                           |
| 9     |                        | 3.5          | 200              | 1,700           | 3,700            | 2.2 | 0                 | 250              | 354                           |
| 10    |                        | 4            | 200              | 3,100           | 7,200            | 2.4 | 4                 | 258              | 352                           |
| 11    |                        | 4.5          | 200              | 4,600           | 11,400           | 2.5 | 8                 | 274              | 352                           |
| 12    |                        | 5            | 200              | 6,400           | 15,900           | 2.5 | 10                | 276              | 352                           |
| 13    |                        | 6            | 200              | 9,200           | 23,200           | 2.5 | 13                | 293              | 355                           |
| 14    | ¥7                     | 7            | 200              | 14,700          | 33,600           | 2.3 | 15                | 301              | 354                           |
| 15    |                        | 8            | 200              | 20,300          | 45,600           | 2.2 | 15                | 304              | 353                           |
| 16    | vacuum                 | 9            | 200              | 23,200          | 50,500           | 2.2 | 17                | 311              | 353                           |
| 17    |                        | 10           | 200              | 27,100          | 55,800           | 2.1 | 20                | 314              | 353                           |
| 18    |                        | 13           | 200              | 28,800          | 57,200           | 2.0 | 20                | 315              | 359                           |

<sup>&</sup>lt;sup>*a*</sup>1.2 eq. of  $P_2O_5$ ; mixture was melted under argon for 5 hour temperature ramp from 150 to 200 °C; then dynamic vacuum was applied for 8 hours at 200 °C. <sup>*b*</sup>Obtained by GPC in hexafluoroisopropanol (HFIP) at 40 °C versus polymethyl methacrylate (PMMA) standards. <sup>*c*</sup>Determined by DSC. <sup>*d*</sup>Temperature at which 5% mass loss is observed under nitrogen. <sup>*f*</sup>Temperature at which 50% mass loss is observed under nitrogen.

## **ESI-TOF Analysis Protocol**

Accurate mass experiments were performed on an Agilent 6220 ESI TOF (Santa Clara, CA) mass spectrometer equipped with an electrospray source operated in positive ion mode. Agilent ESI Low Concentration Tuning Mix was used for mass calibration for a calibration range of m/z 100 – 4000. Samples were prepared in a solution containing acidified methanol (0.1% formic acid), 20% of hexafluoroisopropanol and adventitious sodium salts; 1  $\mu$ L was injected into the electrospray source at a rate of 100  $\mu$ L min<sup>-1</sup>. Optimal conditions were: capillary voltage 4000 V, source temperature 350 °C, and a cone voltage of 60 V. The TOF analyzer was scanned over m/z 100.00–3200.00 with a 1 s integration time. Data was acquired in continuum mode until acceptable averaged data was obtained.

The National Science Foundation is acknowledged for this instrument via the CRIF-MU program, CHE-0541761.

|                                                                                                                                                      |                                                                                                                                                                                                                                                    | 10 min.                                                                                                                                                             |                                                                                                                                                                                                                | 20 min.                                                                                                                                                             |                                                                                                                                                                                       | 30 min.                                                                                                                             |                                                                                                                                                                                                                  | 1 hour                                                                                                                                              |                                                                                                                                                                                                                        | 1.5 hours.                                                                                                                                                 |                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| oligomer+ Na                                                                                                                                         | mass                                                                                                                                                                                                                                               | abundance                                                                                                                                                           | percent                                                                                                                                                                                                        | abundance                                                                                                                                                           | percent                                                                                                                                                                               | abundance                                                                                                                           | percent                                                                                                                                                                                                          | abundance                                                                                                                                           | percent                                                                                                                                                                                                                | abundance                                                                                                                                                  | percent                                                                                                                                                                                                                      |
| CL (+H+)                                                                                                                                             | 115.15                                                                                                                                                                                                                                             | 20598.6                                                                                                                                                             | 0.3                                                                                                                                                                                                            | 21735                                                                                                                                                               | 0.3                                                                                                                                                                                   | 16826.4                                                                                                                             | 0.2                                                                                                                                                                                                              | 17161.1                                                                                                                                             | 0.2                                                                                                                                                                                                                    | 13797.5                                                                                                                                                    | 0.7                                                                                                                                                                                                                          |
| HESA                                                                                                                                                 | 265.07                                                                                                                                                                                                                                             | 639849.5                                                                                                                                                            | 9.8                                                                                                                                                                                                            | 841041                                                                                                                                                              | 10.0                                                                                                                                                                                  | 1250311.5                                                                                                                           | 14.4                                                                                                                                                                                                             | 1188952.1                                                                                                                                           | 16.3                                                                                                                                                                                                                   | 295502.2                                                                                                                                                   | 14.6                                                                                                                                                                                                                         |
| LL                                                                                                                                                   | 269.14                                                                                                                                                                                                                                             | 41031.6                                                                                                                                                             | 0.6                                                                                                                                                                                                            | 20530                                                                                                                                                               | 0.2                                                                                                                                                                                   | 16838.9                                                                                                                             | 0.2                                                                                                                                                                                                              | 11635.4                                                                                                                                             | 0.2                                                                                                                                                                                                                    | 5113.1                                                                                                                                                     | 0.3                                                                                                                                                                                                                          |
| LA                                                                                                                                                   | 379.14                                                                                                                                                                                                                                             | 640793.5                                                                                                                                                            | 9.8                                                                                                                                                                                                            | 1594925                                                                                                                                                             | 18.9                                                                                                                                                                                  | 1396029.9                                                                                                                           | 16.1                                                                                                                                                                                                             | 750702.1                                                                                                                                            | 10.3                                                                                                                                                                                                                   | 199433.6                                                                                                                                                   | 9.8                                                                                                                                                                                                                          |
| AA                                                                                                                                                   | 489.14                                                                                                                                                                                                                                             | 13853.5                                                                                                                                                             | 0.2                                                                                                                                                                                                            | 17973                                                                                                                                                               | 0.2                                                                                                                                                                                   | 13562.2                                                                                                                             | 0.2                                                                                                                                                                                                              | 32131.5                                                                                                                                             | 0.4                                                                                                                                                                                                                    | 81536.8                                                                                                                                                    | 4.0                                                                                                                                                                                                                          |
| LLA                                                                                                                                                  | 493.2                                                                                                                                                                                                                                              | 1909137.8                                                                                                                                                           | 29.2                                                                                                                                                                                                           | 2112282                                                                                                                                                             | 25.0                                                                                                                                                                                  | 2095847.1                                                                                                                           | 24.2                                                                                                                                                                                                             | 1910100.9                                                                                                                                           | 26.1                                                                                                                                                                                                                   | 474813.1                                                                                                                                                   | 23.4                                                                                                                                                                                                                         |
| ALA and<br>LAA                                                                                                                                       | 603.3                                                                                                                                                                                                                                              | 22036.8                                                                                                                                                             | 0.3                                                                                                                                                                                                            | 25063                                                                                                                                                               | 0.3                                                                                                                                                                                   | 24672.1                                                                                                                             | 0.3                                                                                                                                                                                                              | 51829.8                                                                                                                                             | 0.7                                                                                                                                                                                                                    | 97644.2                                                                                                                                                    | 4.8                                                                                                                                                                                                                          |
| LLLA                                                                                                                                                 | 607.27                                                                                                                                                                                                                                             | 1891091.7                                                                                                                                                           | 28.9                                                                                                                                                                                                           | 2002425                                                                                                                                                             | 23.7                                                                                                                                                                                  | 2006297.1                                                                                                                           | 23.2                                                                                                                                                                                                             | 1863554.8                                                                                                                                           | 25.5                                                                                                                                                                                                                   | 285947.3                                                                                                                                                   | 14.1                                                                                                                                                                                                                         |
| LALA                                                                                                                                                 | 717.33                                                                                                                                                                                                                                             | 17351.7                                                                                                                                                             | 0.3                                                                                                                                                                                                            | 19452                                                                                                                                                               | 0.2                                                                                                                                                                                   | 37627.4                                                                                                                             | 0.4                                                                                                                                                                                                              | 74600.9                                                                                                                                             | 1.0                                                                                                                                                                                                                    | 120455                                                                                                                                                     | 5.9                                                                                                                                                                                                                          |
| LLLLA                                                                                                                                                | 721.33                                                                                                                                                                                                                                             | 1081673.5                                                                                                                                                           | 16.5                                                                                                                                                                                                           | 1507322                                                                                                                                                             | 17.9                                                                                                                                                                                  | 1416140.4                                                                                                                           | 16.4                                                                                                                                                                                                             | 1003511.6                                                                                                                                           | 13.7                                                                                                                                                                                                                   | 207035.5                                                                                                                                                   | 10.2                                                                                                                                                                                                                         |
| LLLLLA                                                                                                                                               | 835.41                                                                                                                                                                                                                                             | 184170.3                                                                                                                                                            | 2.8                                                                                                                                                                                                            | 187177                                                                                                                                                              | 2.2                                                                                                                                                                                   | 231844.1                                                                                                                            | 2.7                                                                                                                                                                                                              | 223602.7                                                                                                                                            | 3.1                                                                                                                                                                                                                    | 127826.7                                                                                                                                                   | 6.3                                                                                                                                                                                                                          |
| LLLLLLA                                                                                                                                              | 949.47                                                                                                                                                                                                                                             | 60680.4                                                                                                                                                             | 0.9                                                                                                                                                                                                            | 68112                                                                                                                                                               | 0.8                                                                                                                                                                                   | 101340.5                                                                                                                            | 1.2                                                                                                                                                                                                              | 116117.3                                                                                                                                            | 1.6                                                                                                                                                                                                                    | 72303                                                                                                                                                      | 3.6                                                                                                                                                                                                                          |
| LLLLLLA                                                                                                                                              | 1063.54                                                                                                                                                                                                                                            | 14838.7                                                                                                                                                             | 0.2                                                                                                                                                                                                            | 18788                                                                                                                                                               | 0.2                                                                                                                                                                                   | 35814.5                                                                                                                             | 0.4                                                                                                                                                                                                              | 49529.7                                                                                                                                             | 0.7                                                                                                                                                                                                                    | 33897.4                                                                                                                                                    | 1.7                                                                                                                                                                                                                          |
| LLLLLLLA                                                                                                                                             | 1177.61                                                                                                                                                                                                                                            | 3073.3                                                                                                                                                              | 0.0                                                                                                                                                                                                            | 4546                                                                                                                                                                | 0.1                                                                                                                                                                                   | 10561.8                                                                                                                             | 0.1                                                                                                                                                                                                              | 17583.1                                                                                                                                             | 0.2                                                                                                                                                                                                                    | 13906                                                                                                                                                      | 0.7                                                                                                                                                                                                                          |
| Total                                                                                                                                                |                                                                                                                                                                                                                                                    | 6540180.9                                                                                                                                                           | 100.0                                                                                                                                                                                                          | 8441371.2                                                                                                                                                           | 100.0                                                                                                                                                                                 | 8653713.9                                                                                                                           | 100.0                                                                                                                                                                                                            | 7311013.0                                                                                                                                           | 100.0                                                                                                                                                                                                                  | 2029211.4                                                                                                                                                  | 100.0                                                                                                                                                                                                                        |
|                                                                                                                                                      |                                                                                                                                                                                                                                                    |                                                                                                                                                                     |                                                                                                                                                                                                                |                                                                                                                                                                     |                                                                                                                                                                                       |                                                                                                                                     |                                                                                                                                                                                                                  |                                                                                                                                                     |                                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                                                                              |
|                                                                                                                                                      | 2 hours                                                                                                                                                                                                                                            |                                                                                                                                                                     | 2.5 hours                                                                                                                                                                                                      |                                                                                                                                                                     | 3 hours                                                                                                                                                                               |                                                                                                                                     | 3.5 ho                                                                                                                                                                                                           | 1180                                                                                                                                                | 4 hours                                                                                                                                                                                                                |                                                                                                                                                            |                                                                                                                                                                                                                              |
|                                                                                                                                                      |                                                                                                                                                                                                                                                    |                                                                                                                                                                     |                                                                                                                                                                                                                | 2.5 110                                                                                                                                                             | uis                                                                                                                                                                                   | 5 1100                                                                                                                              | 115                                                                                                                                                                                                              | 5.5 110                                                                                                                                             | uis                                                                                                                                                                                                                    | 4 nou                                                                                                                                                      | rs                                                                                                                                                                                                                           |
| oligomer+ Na                                                                                                                                         | mass                                                                                                                                                                                                                                               | abundance                                                                                                                                                           | percent                                                                                                                                                                                                        | abundance                                                                                                                                                           | percent                                                                                                                                                                               | abundance                                                                                                                           | percent                                                                                                                                                                                                          | abundance                                                                                                                                           | percent                                                                                                                                                                                                                | abundance                                                                                                                                                  | rs<br>percent                                                                                                                                                                                                                |
| oligomer+ Na<br>CL (+H+)                                                                                                                             | mass<br>115.15                                                                                                                                                                                                                                     | abundance<br>12666                                                                                                                                                  | percent<br>0.8                                                                                                                                                                                                 | abundance<br>226.9                                                                                                                                                  | percent<br>0.0                                                                                                                                                                        | abundance<br>443                                                                                                                    | percent<br>0.1                                                                                                                                                                                                   | abundance<br>591.2                                                                                                                                  | percent<br>0.1                                                                                                                                                                                                         | abundance<br>1244.4                                                                                                                                        | percent<br>0.4                                                                                                                                                                                                               |
| oligomer+ Na<br>CL (+H+)<br>HESA                                                                                                                     | mass<br>115.15<br>265.07                                                                                                                                                                                                                           | abundance<br>12666<br>293643.9                                                                                                                                      | percent<br>0.8<br>18.4                                                                                                                                                                                         | abundance<br>226.9<br>191720.2                                                                                                                                      | percent<br>0.0<br>19.3                                                                                                                                                                | abundance<br>443<br>138774                                                                                                          | percent<br>0.1<br>19.9                                                                                                                                                                                           | abundance<br>591.2<br>95725.8                                                                                                                       | percent<br>0.1<br>20.2                                                                                                                                                                                                 | 4 hou<br>abundance<br>1244.4<br>72739.5                                                                                                                    | rs<br>percent<br>0.4<br>21.1                                                                                                                                                                                                 |
| oligomer+ Na<br>CL (+H+)<br>HESA<br>LL                                                                                                               | mass<br>115.15<br>265.07<br>269.14                                                                                                                                                                                                                 | abundance<br>12666<br>293643.9<br>4722.5                                                                                                                            | percent<br>0.8<br>18.4<br>0.3                                                                                                                                                                                  | abundance<br>226.9<br>191720.2<br>2940.8                                                                                                                            | percent<br>0.0<br>19.3<br>0.3                                                                                                                                                         | abundance<br>443<br>138774<br>2464                                                                                                  | percent<br>0.1<br>19.9<br>0.4                                                                                                                                                                                    | abundance<br>591.2<br>95725.8<br>2745.5                                                                                                             | percent<br>0.1<br>20.2<br>0.6                                                                                                                                                                                          | 4 hou<br>abundance<br>1244.4<br>72739.5<br>4929                                                                                                            | rs<br>percent<br>0.4<br>21.1<br>1.4                                                                                                                                                                                          |
| oligomer+ Na<br>CL (+H+)<br>HESA<br>LL<br>LA                                                                                                         | mass<br>115.15<br>265.07<br>269.14<br>379.14                                                                                                                                                                                                       | abundance<br>12666<br>293643.9<br>4722.5<br>148626.6                                                                                                                | percent<br>0.8<br>18.4<br>0.3<br>9.3                                                                                                                                                                           | abundance<br>226.9<br>191720.2<br>2940.8<br>83444.1                                                                                                                 | percent<br>0.0<br>19.3<br>0.3<br>8.4                                                                                                                                                  | abundance<br>443<br>138774<br>2464<br>52863                                                                                         | percent<br>0.1<br>19.9<br>0.4<br>7.6                                                                                                                                                                             | abundance<br>591.2<br>95725.8<br>2745.5<br>33189                                                                                                    | percent           0.1           20.2           0.6           7.0                                                                                                                                                       | 4 hou<br>abundance<br>1244.4<br>72739.5<br>4929<br>26248.9                                                                                                 | rs<br>percent<br>0.4<br>21.1<br>1.4<br>7.6                                                                                                                                                                                   |
| oligomer+ Na<br>CL (+H+)<br>HESA<br>LL<br>LA<br>AA                                                                                                   | mass<br>115.15<br>265.07<br>269.14<br>379.14<br>489.14                                                                                                                                                                                             | abundance<br>12666<br>293643.9<br>4722.5<br>148626.6<br>120004.3                                                                                                    | percent<br>0.8<br>18.4<br>0.3<br>9.3<br>7.5                                                                                                                                                                    | abundance<br>226.9<br>191720.2<br>2940.8<br>83444.1<br>102075.3                                                                                                     | percent<br>0.0<br>19.3<br>0.3<br>8.4<br>10.3                                                                                                                                          | abundance<br>443<br>138774<br>2464<br>52863<br>86790                                                                                | percent<br>0.1<br>19.9<br>0.4<br>7.6<br>12.4                                                                                                                                                                     | abundance<br>591.2<br>95725.8<br>2745.5<br>33189<br>73513.3                                                                                         | percent           0.1           20.2           0.6           7.0           15.5                                                                                                                                        | 4 hou<br>abundance<br>1244.4<br>72739.5<br>4929<br>26248.9<br>58778.5                                                                                      | rs<br>percent<br>0.4<br>21.1<br>1.4<br>7.6<br>17.0                                                                                                                                                                           |
| oligomer+ Na<br>CL (+H+)<br>HESA<br>LL<br>LA<br>AA<br>LLA                                                                                            | mass<br>115.15<br>265.07<br>269.14<br>379.14<br>489.14<br>493.2                                                                                                                                                                                    | abundance<br>12666<br>293643.9<br>4722.5<br>148626.6<br>120004.3<br>246370                                                                                          | percent<br>0.8<br>18.4<br>0.3<br>9.3<br>7.5<br>15.4                                                                                                                                                            | abundance<br>226.9<br>191720.2<br>2940.8<br>83444.1<br>102075.3<br>143053.4                                                                                         | percent<br>0.0<br>19.3<br>0.3<br>8.4<br>10.3<br>14.4                                                                                                                                  | abundance<br>443<br>138774<br>2464<br>52863<br>86790<br>92281                                                                       | percent           0.1           19.9           0.4           7.6           12.4           13.2                                                                                                                   | abundance<br>591.2<br>95725.8<br>2745.5<br>33189<br>73513.3<br>55782.5                                                                              | percent           0.1           20.2           0.6           7.0           15.5           11.8                                                                                                                         | abundance<br>1244.4<br>72739.5<br>4929<br>26248.9<br>58778.5<br>41527.3                                                                                    | rs<br>percent<br>0.4<br>21.1<br>1.4<br>7.6<br>17.0<br>12.0                                                                                                                                                                   |
| oligomer+ Na<br>CL (+H+)<br>HESA<br>LL<br>LA<br>AA<br>LLA<br>ALA and<br>LAA                                                                          | mass           115.15           265.07           269.14           379.14           489.14           493.2           603.3                                                                                                                          | abundance<br>12666<br>293643.9<br>4722.5<br>148626.6<br>120004.3<br>246370<br>128379.9                                                                              | percent           0.8           18.4           0.3           9.3           7.5           15.4           8.0                                                                                                    | abundance<br>226.9<br>191720.2<br>2940.8<br>83444.1<br>102075.3<br>143053.4<br>102662.9                                                                             | percent         0.0           19.3         0.3           8.4         10.3           14.4         10.3                                                                                 | abundance<br>443<br>138774<br>2464<br>52863<br>86790<br>92281<br>84035                                                              | percent           0.1           19.9           0.4           7.6           12.4           13.2           12.0                                                                                                    | abundance<br>591.2<br>95725.8<br>2745.5<br>33189<br>73513.3<br>55782.5<br>67766                                                                     | percent           0.1           20.2           0.6           7.0           15.5           11.8           14.3                                                                                                          | abundance<br>1244.4<br>72739.5<br>4929<br>26248.9<br>58778.5<br>41527.3<br>56094.3                                                                         | rs<br>percent<br>0.4<br>21.1<br>1.4<br>7.6<br>17.0<br>12.0<br>16.3                                                                                                                                                           |
| oligomer+ Na<br>CL (+H+)<br>HESA<br>LL<br>LA<br>AA<br>LLA<br>ALA and<br>LAA<br>LLLA<br>LLLA                                                          | mass           115.15           265.07           269.14           379.14           489.14           493.2           603.3           607.27                                                                                                         | abundance<br>12666<br>293643.9<br>4722.5<br>148626.6<br>120004.3<br>246370<br>128379.9<br>196684.7                                                                  | percent           0.8           18.4           0.3           9.3           7.5           15.4           8.0           12.3                                                                                     | abundance<br>226.9<br>191720.2<br>2940.8<br>83444.1<br>102075.3<br>143053.4<br>102662.9<br>107244.4                                                                 | percent           0.0           19.3           0.3           8.4           10.3           14.4           10.3           10.8                                                          | abundance<br>443<br>138774<br>2464<br>52863<br>86790<br>92281<br>84035<br>66510                                                     | percent           0.1           19.9           0.4           7.6           12.4           13.2           12.0           9.5                                                                                      | abundance<br>591.2<br>95725.8<br>2745.5<br>33189<br>73513.3<br>55782.5<br>67766<br>36554.5                                                          | percent           0.1           20.2           0.6           7.0           15.5           11.8           14.3           7.7                                                                                            | abundance<br>1244.4<br>72739.5<br>4929<br>26248.9<br>58778.5<br>41527.3<br>56094.3<br>25941.5                                                              | rs<br>percent<br>0.4<br>21.1<br>1.4<br>7.6<br>17.0<br>12.0<br>16.3<br>7.5                                                                                                                                                    |
| oligomer+ Na<br>CL (+H+)<br>HESA<br>LL<br>LA<br>AA<br>LLA<br>ALA and<br>LAA<br>LLLA<br>LALA                                                          | mass           115.15           265.07           269.14           379.14           489.14           493.2           603.3           607.27           717.33                                                                                        | abundance<br>12666<br>293643.9<br>4722.5<br>148626.6<br>120004.3<br>246370<br>128379.9<br>196684.7<br>142504.7                                                      | percent           0.8           18.4           0.3           9.3           7.5           15.4           8.0           12.3           8.9                                                                       | abundance<br>226.9<br>191720.2<br>2940.8<br>83444.1<br>102075.3<br>143053.4<br>102662.9<br>107244.4<br>107621                                                       | percent           0.0           19.3           0.3           8.4           10.3           14.4           10.3           10.8                                                          | abundance<br>443<br>138774<br>2464<br>52863<br>86790<br>92281<br>84035<br>66510<br>84317                                            | percent           0.1           19.9           0.4           7.6           12.4           13.2           12.0           9.5           12.1                                                                       | abundance<br>591.2<br>95725.8<br>2745.5<br>33189<br>73513.3<br>55782.5<br>67766<br>36554.5<br>62805                                                 | percent           0.1           20.2           0.6           7.0           15.5           11.8           14.3           7.7           13.3                                                                             | abundance<br>1244.4<br>72739.5<br>4929<br>26248.9<br>58778.5<br>41527.3<br>56094.3<br>25941.5<br>26502.3                                                   | rs<br>percent<br>0.4<br>21.1<br>1.4<br>7.6<br>17.0<br>12.0<br>16.3<br>7.5<br>7.7                                                                                                                                             |
| oligomer+ Na<br>CL (+H+)<br>HESA<br>LL<br>LA<br>AA<br>LLA<br>ALA and<br>LAA<br>LLLA<br>LALA<br>LLLA<br>LALA                                          | mass           115.15           265.07           269.14           379.14           489.14           493.2           603.3           607.27           717.33           721.33                                                                       | abundance<br>12666<br>293643.9<br>4722.5<br>148626.6<br>120004.3<br>246370<br>128379.9<br>196684.7<br>142504.7<br>139088.8                                          | percent           0.8           18.4           0.3           9.3           7.5           15.4           8.0           12.3           8.9           8.7                                                         | abundance<br>226.9<br>191720.2<br>2940.8<br>83444.1<br>102075.3<br>143053.4<br>102662.9<br>107244.4<br>107621<br>72966.5                                            | percent           0.0           19.3           0.3           8.4           10.3           14.4           10.3           10.8           10.8           7.3                             | abundance<br>443<br>138774<br>2464<br>52863<br>86790<br>92281<br>84035<br>66510<br>84317<br>43507                                   | percent           0.1           19.9           0.4           7.6           12.4           13.2           12.0           9.5           12.1           6.2                                                         | abundance<br>591.2<br>95725.8<br>2745.5<br>33189<br>73513.3<br>55782.5<br>67766<br>36554.5<br>62805<br>22523                                        | percent           0.1           20.2           0.6           7.0           15.5           11.8           14.3           7.7           13.3           4.8                                                               | abundance<br>1244.4<br>72739.5<br>4929<br>26248.9<br>58778.5<br>41527.3<br>56094.3<br>25941.5<br>26502.3<br>15945.7                                        | rs<br>percent<br>0.4<br>21.1<br>1.4<br>7.6<br>17.0<br>12.0<br>16.3<br>7.5<br>7.7<br>4.6                                                                                                                                      |
| oligomer+ Na<br>CL (+H+)<br>HESA<br>LL<br>LA<br>AA<br>LLA<br>ALA and<br>LAA<br>LLLA<br>LALA<br>LLLA<br>LLLA<br>LLLLA                                 | mass           115.15           265.07           269.14           379.14           489.14           493.2           603.3           607.27           717.33           721.33           835.41                                                      | abundance<br>12666<br>293643.9<br>4722.5<br>148626.6<br>120004.3<br>246370<br>128379.9<br>196684.7<br>142504.7<br>139088.8<br>84481                                 | percent           0.8           18.4           0.3           9.3           7.5           15.4           8.0           12.3           8.9           8.7           5.3                                           | abundance<br>226.9<br>191720.2<br>2940.8<br>83444.1<br>102075.3<br>143053.4<br>102662.9<br>107244.4<br>107621<br>72966.5<br>43160.2                                 | percent         0.0           19.3         0.3           8.4         10.3           14.4         10.3           10.8         10.8           7.3         4.3                           | abundance<br>443<br>138774<br>2464<br>52863<br>86790<br>92281<br>84035<br>66510<br>84317<br>43507<br>24668                          | percent           0.1           19.9           0.4           7.6           12.4           13.2           12.0           9.5           12.1           6.2           3.5                                           | abundance<br>591.2<br>95725.8<br>2745.5<br>33189<br>73513.3<br>55782.5<br>67766<br>36554.5<br>62805<br>22523<br>12162.1                             | percent           0.1           20.2           0.6           7.0           15.5           11.8           14.3           7.7           13.3           4.8           2.6                                                 | abundance<br>1244.4<br>72739.5<br>4929<br>26248.9<br>58778.5<br>41527.3<br>56094.3<br>25941.5<br>26502.3<br>15945.7<br>8337.6                              | percent           0.4           21.1           1.4           7.6           17.0           12.0           16.3           7.5           7.7           4.6           2.4                                                        |
| oligomer+ Na<br>CL (+H+)<br>HESA<br>LL<br>LA<br>AA<br>LLA<br>ALA and<br>LAA<br>LLLA<br>LALA<br>LLLA<br>LLLA<br>LLLLA<br>LLLLA<br>LLLLA               | mass           115.15           265.07           269.14           379.14           489.14           493.2           603.3           607.27           717.33           721.33           835.41           949.47                                     | abundance<br>12666<br>293643.9<br>4722.5<br>148626.6<br>120004.3<br>246370<br>128379.9<br>196684.7<br>142504.7<br>139088.8<br>84481<br>47882.3                      | percent           0.8           18.4           0.3           9.3           7.5           15.4           8.0           12.3           8.9           8.7           5.3           3.0                             | abundance<br>226.9<br>191720.2<br>2940.8<br>83444.1<br>102075.3<br>143053.4<br>102662.9<br>107244.4<br>107621<br>72966.5<br>43160.2<br>23171.7                      | percent         0.0           19.3         0.3           8.4         10.3           14.4         10.3           10.8         10.8           7.3         4.3           2.3         2.3 | abundance<br>443<br>138774<br>2464<br>52863<br>86790<br>92281<br>84035<br>66510<br>84317<br>43507<br>24668<br>13128                 | $\begin{array}{c} \text{percent} \\ \hline 0.1 \\ 19.9 \\ \hline 0.4 \\ \hline 7.6 \\ 12.4 \\ 13.2 \\ \hline 12.0 \\ 9.5 \\ 12.1 \\ 6.2 \\ \hline 3.5 \\ 1.9 \end{array}$                                        | abundance<br>591.2<br>95725.8<br>2745.5<br>33189<br>73513.3<br>55782.5<br>67766<br>36554.5<br>62805<br>22523<br>12162.1<br>6255                     | percent           0.1           20.2           0.6           7.0           15.5           11.8           14.3           7.7           13.3           4.8           2.6           1.3                                   | abundance<br>1244.4<br>72739.5<br>4929<br>26248.9<br>58778.5<br>41527.3<br>56094.3<br>25941.5<br>26502.3<br>15945.7<br>8337.6<br>4103.3                    | percent           0.4           21.1           1.4           7.6           17.0           12.0           16.3           7.5           7.7           4.6           2.4           1.2                                          |
| oligomer+ Na<br>CL (+H+)<br>HESA<br>LL<br>LA<br>AA<br>LLA<br>ALA and<br>LAA<br>LLLA<br>LLLA<br>LLLLA<br>LLLLA<br>LLLLA<br>LLLLA<br>LLLLLA<br>LLLLLA  | mass           115.15           265.07           269.14           379.14           489.14           493.2           603.3           607.27           717.33           721.33           835.41           949.47           1063.54                   | abundance<br>12666<br>293643.9<br>4722.5<br>148626.6<br>120004.3<br>246370<br>128379.9<br>196684.7<br>142504.7<br>139088.8<br>84481<br>47882.3<br>23216.8           | percent           0.8           18.4           0.3           9.3           7.5           15.4           8.0           12.3           8.9           8.7           5.3           3.0           1.5               | abundance<br>226.9<br>191720.2<br>2940.8<br>83444.1<br>102075.3<br>143053.4<br>102662.9<br>107244.4<br>107621<br>72966.5<br>43160.2<br>23171.7<br>11005.3           | percent         0.0           19.3         0.3           8.4         10.3           14.4         10.3           10.8         10.8           2.3         1.1                           | abundance<br>443<br>138774<br>2464<br>52863<br>86790<br>92281<br>84035<br>66510<br>84317<br>43507<br>24668<br>13128<br>5963         | percent           0.1           19.9           0.4           7.6           12.4           13.2           12.0           9.5           12.1           6.2           3.5           1.9           0.9               | abundance<br>591.2<br>95725.8<br>2745.5<br>33189<br>73513.3<br>55782.5<br>67766<br>36554.5<br>62805<br>22523<br>12162.1<br>6255<br>2805.2           | $\begin{array}{c} \text{percent} \\ \hline 0.1 \\ 20.2 \\ \hline 0.6 \\ \hline 7.0 \\ 15.5 \\ \hline 11.8 \\ \hline 14.3 \\ \hline 7.7 \\ \hline 13.3 \\ \hline 4.8 \\ 2.6 \\ \hline 1.3 \\ \hline 0.6 \\ \end{array}$ | abundance<br>1244.4<br>72739.5<br>4929<br>26248.9<br>58778.5<br>41527.3<br>56094.3<br>25941.5<br>26502.3<br>15945.7<br>8337.6<br>4103.3<br>1825.4          | percent           0.4           21.1           1.4           7.6           17.0           12.0           16.3           7.5           7.7           4.6           2.4           1.2           0.5                            |
| oligomer+ Na<br>CL (+H+)<br>HESA<br>LL<br>LA<br>AA<br>LLA<br>ALA and<br>LAA<br>LLLA<br>LLLA<br>LLLLA<br>LLLLA<br>LLLLA<br>LLLLLA<br>LLLLLA<br>LLLLLA | mass           115.15           265.07           269.14           379.14           489.14           493.2           603.3           607.27           717.33           721.33           835.41           949.47           1063.54           1177.61 | abundance<br>12666<br>293643.9<br>4722.5<br>148626.6<br>120004.3<br>246370<br>128379.9<br>196684.7<br>142504.7<br>139088.8<br>84481<br>47882.3<br>23216.8<br>9832.1 | percent           0.8           18.4           0.3           9.3           7.5           15.4           8.0           12.3           8.9           8.7           5.3           3.0           1.5           0.6 | abundance<br>226.9<br>191720.2<br>2940.8<br>83444.1<br>102075.3<br>143053.4<br>102662.9<br>107244.4<br>107621<br>72966.5<br>43160.2<br>23171.7<br>11005.3<br>4527.6 | percent           0.0           19.3           0.3           8.4           10.3           14.4           10.3           10.8           10.8           2.3           1.1           0.5 | abundance<br>443<br>138774<br>2464<br>52863<br>86790<br>92281<br>84035<br>66510<br>84317<br>43507<br>24668<br>13128<br>5963<br>2458 | percent           0.1           19.9           0.4           7.6           12.4           13.2           12.0           9.5           12.1           6.2           3.5           1.9           0.9           0.4 | abundance<br>591.2<br>95725.8<br>2745.5<br>33189<br>73513.3<br>55782.5<br>67766<br>36554.5<br>62805<br>22523<br>12162.1<br>6255<br>2805.2<br>1260.2 | percent           0.1           20.2           0.6           7.0           15.5           11.8           14.3           7.7           13.3           4.8           2.6           1.3           0.6           0.3       | abundance<br>1244.4<br>72739.5<br>4929<br>26248.9<br>58778.5<br>41527.3<br>56094.3<br>25941.5<br>26502.3<br>15945.7<br>8337.6<br>4103.3<br>1825.4<br>738.1 | rs           percent           0.4           21.1           1.4           7.6           17.0           12.0           16.3           7.5           7.7           4.6           2.4           1.2           0.5           0.2 |

Table S5. Relative abundance of monomers and oligomers as a function of time according to ESI mass spectrometry.



Figure S380. ESI spectra of copoly(caprolactone/hydroxyethylsyringic acid) [50:50] at 10 min. (Table S4, entry 1)



Figure S381. ESI spectra of copoly(caprolactone/hydroxyethylsyringic acid) [50:50] at 20 min. (Table S4, entry 2)



Figure S382. ESI spectra of copoly(caprolactone/hydroxyethylsyringic acid) [50:50] at 30 min. (Table S4, entry 3)



Figure S383. ESI spectra of copoly(caprolactone/hydroxyethylsyringic acid) [50:50] at 1 hour (Table S4, entry 4)



Figure S384. ESI spectra of copoly(caprolactone/hydroxyethylsyringic acid) [50:50] at 1.5 hours (Table S4, entry 5)



Figure S385. ESI spectra of copoly(caprolactone/hydroxyethylsyringic acid) [50:50] at 2 hours (Table S4, entry 6)



Figure S386. ESI spectra of copoly(caprolactone/hydroxyethylsyringic acid) [50:50] at 2.5 hours (Table S4, entry 7)



Figure S387. ESI spectra of copoly(caprolactone/hydroxyethylsyringic acid) [50:50] at 3 hours (Table S4, entry 8)



Figure S388. ESI spectra of copoly(caprolactone/hydroxyethylsyringic acid) [50:50] at 3.5 hours (Table S4, entry 9)



Figure S389. ESI spectra of copoly(caprolactone/hydroxyethylsyringic acid) [50:50] at 4 hours (Table S4, entry 10)