Supporting Information

Metal- and Oxidant-Free S–P(O) Bond Construction via Direct

Coupling of P(O)H with Sulfinic Acids

Youngtaek Moon, ^a Yonghoon Moon, ^{b,a} Hangyeol Choi, ^{b,a} and Sungwoo Hong*, ^{a,b}

^aCenter for Catalytic Hydrocarbon Functionalization Institute for Basic Science (IBS), Daejeon, 305-701,

Korea

^bDepartment of Chemistry, Korea Advance Institute of Science and Technology (KAIST), Daejeon 305-701,

Korea

I. Optimization Studies

S2

Appendix I

Spectral Copies of ¹H-, ¹³C-, and ³¹P NMR Data Obtained in this Study

S6

I. Optimization Study

Table S1. Optimization study of diphenylphosphine oxide with 4-methylbenzene sulfinic acid.^[a]

Ph-	O -P-H Ph	+ SOH		Ph-P'S
	Entry	Additive	Solvent	Yield(%) ^[b]
	1[c]	pyridine	PhMe	40
	2 ^[c]	pyridine	MeCN	28
	3[c]	pyridine	DCE	21
	4	pyridine	PhMe	42
	5	-	PhMe	44
	6	Cy ₃ P	PhMe	trace
	7	$(C_6F_5)_3P$	PhMe	51
	8	(4-MeOPh) ₃ P	PhMe	69
	9	Ph ₃ P	PhMe	72
	10	(4-FPh) ₃ P	PhMe	56
	11	(2-furyl) ₃ P	PhMe	33
	12	(2-pyridyl)Ph ₂ P	PhMe	N.R.
	13	(benzyl) ₃ P	PhMe	N.R.
	14	Ph ₂ CyP	PhMe	trace
	15	(o-tolyl) ₃ P	PhMe	53
	16	$(t-Bu)_3P$	PhMe	29
	17 ^[d]	Ph ₃ P	PhMe	56
	18	Ph ₃ P	DMF	trace

19	Ph ₃ P	DMSO	20
20	Ph ₃ P	EtOH	57
21	Ph ₃ P	EtOAc	57
22	Ph ₃ P	MeCN	62
23	Ph ₃ P	H_2O	trace
24	Ph ₃ P	THF	trace
25	Ph ₃ P	Acetone	12
26	Ph ₃ P	iPrOAc	86
27	Ph ₃ P	tBuOAc	82
28 ^[e]	Ph ₃ P	iPrOAc	83
29 ^[f]	Ph ₃ P	iPrOAc	trace
30 ^[f]	Ph ₃ P	<i>i</i> PrOAc/H ₂ O(9:1)	N.R.
31 ^[f]	Ph ₃ P	<i>i</i> PrOAc/TFA(9:1)	N.R.
32 ^[f]	Ph ₃ P	<i>i</i> PrOAc/AcOH(9:1)	N.R.
33	Ph ₃ P/TFA	iPrOAc	trace
34	Ph ₃ P/AcOH	iPrOAc	trace

[a] Reaction conditions: diphenylphosphine oxide (0.17 mmol), 4-methylbenzenesulfinic acid (2.0 equiv), additive (1.0 equiv), and solvent (1.0 mL) at room temperature under N₂ for 24 h. [b] Yields are reported after isolation and purification by flash silica gel chromatography. [c] under O₂. [d] 4-methylbenzenesulfinic acid (1.5 equiv). [e] 40 °C [f] sodium 4-methylbenzenesulfinate was used. N.R. = no reaction.

Table S2. Optimization study of diethyl phosphite with 4-methylbenzene sulfinic acid.^[a]

Entry	Additive	Solvent	Temp	Yield(%) ^[b]
1	-	PhMe	R.T.	N.R.
2	-	iPrOAc	R.T.	N.R.
3	-	MeCN	R.T.	N.R.
4	-	<i>t</i> BuOAc	R.T.	N.R.
5	-	DMF	R.T.	N.R.
6	DBU (1equiv)	PhMe	R.T.	trace
7	TMG (1equiv)	PhMe	R.T.	trace
8	TEA (lequiv)	PhMe	R.T.	N.R.
9	pyridine (1equiv)	PhMe	R.T.	N.R.
10	DBU (1equiv)	MeCN	R.T.	7
11	DBU (1equiv)	DMF	R.T.	N.R.
12	DBU (1equiv)	iPrOAc	R.T.	N.R.
13	DBU (1equiv)	THF	R.T.	N.R.
14	Na ₂ CO ₃ (1equiv)	MeCN	R.T.	N.R.
15	NaHCO ₃ (1equiv)	MeCN	R.T.	N.R.
16	DIPEA (lequiv)	MeCN	R.T.	trace
17	DABCO (1equiv)	MeCN	R.T.	N.R.
18	DBU (1equiv)	MeCN	40	11
19	DBU (1equiv)	MeCN	60	54
20	DBU (1equiv)	MeCN	80	45
21 ^[c]	DBU (1equiv)	MeCN	60	11
22	-	MeCN	60	6

[a] Reaction conditions: diethylphosphite (0.10 mmol), 4-methylbenzenesulfinic acid (2.0 equiv), triphenylphosphine (1.0 equiv), additive, and solvent (1.0 mL) at room temperature under N_2 for 13 h. [b] Yields are reported after isolation and purification by flash silica gel chromatography. [c] no triphenylphophine. N.R. = no reaction. R.T. = room temperature

Table S3. Optimization study of triethyl phosphite with 4-methylbenzene sulfinic acid.^[a]

Entry	Additive	Solvent	Tem p	Yield(%) ^[b]
1	-	MeCN	R.T.	17
2	-	PhMe	R.T.	15
3	-	DMF	R.T.	13
4	-	THF	R.T.	10
5	-	iPrOAc	R.T.	14
6	-	DMF	60	20
7	-	DMF	80	50
8	-	DMF	100	33
9	-	DMF	120	19
10	-	PhMe	80	28
11	-	DME	80	N.R.
12	-	Dioxane	80	22
13	-	MeCN	80	41
14	-	iPrOAc	80	20
15	-	EtOH	80	trace

16	-	DMSO	80	61
17	aectic acid (10%)	DMSO	80	24
18	Water (3equiv)	DMSO	80	26
19	DMSO (10%)	MeCN	80	42
20	DMSO (10%)	DME	80	N.R.
21	DMSO (10%)	iPrOAc	80	29
22	DMSO (10%)	THF	80	40
23	DMSO (10%)	PhMe	80	55
24 ^[c]	-	DMSO	80	33

[a] Reaction conditions: triethyl phosphite (0.10 mmol), 4-methylbenzenesulfinic acid (2.0 equiv), triphenylphosphine (1.0 equiv), additive, and solvent (1.0 mL) at room temperature under N_2 for 13 h. [b] Yields are reported after isolation and purification by flash silica gel chromatography. [c] no triphenylphosphine. N.R. = no reaction. R.T. = room temperature.

Appendix I

Spectral Copies of ¹H, ¹³C, and ³¹P NMR Data

Obtained in this Study

190 170 150 130 110 90 70 50 30 10 - -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 162 MHz, ³¹P NMR in CDCl₃

S-o-tolyl diphenylphosphinothioate (3b)

-2.32

400 MHz, ¹H NMR in CDCl₃

S-phenyl diphenylphosphinothioate (3c) 2012

400 MHz, ¹H NMR in CDCl₃

_190 170 150 130 110 90 70 50 30 10 _ -10 -30 -50 -70 -90 -110 -130 -150 -170 -190

162 MHz, ³¹P NMR in CDCl₃

S-(4-(tert-butyl)phenyl) diphenylphosphinothioate (3d)

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190

S-(4-fluorophenyl) diphenylphosphinothioate (3e)

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190

S-(4-chlorophenyl) diphenylphosphinothioate (3f)

1717 38 1718 38 171

190 170 150 130 110 90 70 50 30 10 <u>-</u> -10 -30 -50 -70 -90 -110 -130 -150 -170 -190

Ph. Ph. S. CI

S-(4-bromophenyl) diphenylphosphinothioate (3g)

Ph.p.S Ph.D.Br

S-(4-iodophenyl) diphenylphosphinothioate (3h)

S5.47
S5.47
S5.47
S77.32
T7.32
T7.32
T7.00
S76.68

138.10 136.73 137.73 136.73 137.74 137.74 147.74 17.74 1

162 MHz, ³¹P NMR in CDCl₃

S-(4-(trifluoromethyl)phenyl) diphenylphosphinothioate (3i)

400 MHz, ¹H NMR in CDCl₃

. 190 170 150 130 110 90 70 50 30 10 - 10 -30 -50 -70 -90 -110 -130 -150 -170 -190

-77.32

135,19 135,15 135,15 132,265 132,265 132,265 131,50 131,50 131,50 131,50 131,50 131,50 131,50 131,50 131,50 131,50 131,50 132,53 152,73 125,75 125,73 125,755 125,755 125,755 125,755 125,7555 125,75555 125,755555555555555555555

S-(4-(trifluoromethoxy)phenyl) diphenylphosphinothioate (3j)

400 MHz, ¹H NMR in CDCl₃

. 190 170 150 130 110 90 70 50 30 10 - -10 -30 -50 -70 -90 -110 -130 -150 -170 -190

S-(4-methoxyphenyl) diphenylphosphinothioate (3k)

. 190 170 150 130 110 90 70 50 30 10 - 10 -30 -50 -70 -90 -110 -130 -150 -170 -190

(161.35)
(161.35)
(161.35)
(161.35)
(161.35)
(161.35)
(161.35)
(161.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)
(11.35)</

S-(naphthalen-2-yl) diphenylphosphinothioate (3l)

400 MHz, ¹H NMR in CDCl₃

190 170 150 130 110 90 70 50 30 10 - -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 162 MHz, ³¹P NMR in CDCl₃

135.29 133.24 133.24 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.34 133.24 133.24 133.24 133.41 133.41 133.41 133.41 133.41 133.41 133.41 133.41 133.41 133.41 133.41 133.41 133.41 133.41 133.41 133.43 133.41 133.43 133.44 143.44 144.44 144.44 144.44 144.44 144.44 144.44 144.44 144.44 144.44 144.44 144.44 144.44 144.44 14 77.32 76.68

S-isopropyl diphenylphosphinothioate (3m)

. 190 170 150 130 110 90 70 50 30 10 - 10 -30 -50 -70 -90 -110 -130 -150 -170 -190

S-benzyl diphenylphosphinothioate (3n)

. 190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190

C11.32

33.15 33.13 33.13

136.72 135.72 132.24 132.24 132.25 132.55 152.55 155.55 155.55 155.55 155.55 155.55 155.55 155.55 15 S-phenethyl diphenylphosphinothioate (30)

Ph_p_S_ Ph

400 MHz, ¹H NMR in CDCl₃
. 190 170 150 130 110 90 70 50 30 10 - 10 -30 -50 -70 -90 -110 -130 -150 -170 -190

S-cyclopropyl diphenylphosphinothioate (3p)

7,28 1 11.135 11

> Ph ⊕ S Ph ♥

. 190 170 150 130 110 90 70 50 30 10 - 10 -30 -50 -70 -90 -110 -130 -150 -170 -190

717.22 848 722 848 731.17 738.61 7

S-(thiophen-2-yl) diphenylphosphinothioate (3q)

. 190 170 150 130 110 90 70 50 30 10 - -10 -30 -50 -70 -90 -110 -130 -150 -170 -190

-77.32

S-(2,3-dihydrobenzofuran-5-yl) diphenylphosphinothioate (3r)

. 190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190

O-ethyl S-(p-tolyl) phenylphosphonothioate (4a)

Control (Control (Contro) (Control (Contro) (Control (Contro) (Contro) (Contro) (Contro)	226	1.38
	V	SV/

⁴⁰⁰ MHz, ¹H NMR in CDCl₃

190 170 150 130 110 90 70 50 30 10 - -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 162 MHz, ³¹P NMR in CDCl₃

600 MHz, ¹H NMR in CDCl₃

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 243 MHz, ³¹P NMR in CDCl₃

600 MHz, ¹H NMR in CDCl₃

-21.10 <15.96

77.21 77.00 76.79 63.89 63.89

<|33.22 |33.19 <|34.54 <|34.54 <|34.54 <|34.54 <|34.54 <|34.54 <|34.54</pre>

190 180 170 160 150 140 130 120 110 100 90 80 - 70 60 50 40 30 20 10 0 -10 -20 -30 -40 243 MHz, ³¹P NMR in CDCl₃

O,O-diisopropyl S-p-tolyl phosphorothioate (4d)

O,O-dibutyl S-p-tolyl phosphorothioate (4e)

⁴⁰⁰ MHz, ¹H NMR in CDCl₃

. 190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190

Let a state of the state of th								
150 MHz, ¹³ C NMR in CDCl ₃	140 130	120 110	100 90	80 70	60 50	40 30	20 1	0
10.								
					Ma			
						admannes - a rite references and a strategy and general	2.11.9.11.11.11.11.11.11.11.11.11.11.11.1	uguna, kayang kayan

 $\begin{pmatrix} 77.21\\76.79\\76.79\\67.66\end{pmatrix}$

~ 32.17 32.12 --11.6 --13.65 --13.55

<|3317 <|3315 <|33454 <|33454 <|3306 <|30.08 <|30.08 <|30.08</pre>

O,O-diphenyl S-p-tolyl phosphorothioate (4f)

190 180 170 160 150 140 130 120 110 100 90 80 - 70 60 50 40 30 20 10 0 -10 -20 -30 -40 243 MHz, ³¹P NMR in CDCl₃

⁶⁰⁰ MHz, ¹H NMR in CDCl₃

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 243 MHz, ³¹P NMR in CDCl₃

6-(p-tolylthio)dibenzo[c,e][1,2]oxaphosphinine 6-oxide (4h)

<217 216

. 190 170 150 130 110 90 70 50 30 10 - 10 -30 -50 -70 -90 -110 -130 -150 -170 -190

S-(p-tolyl) di-tert-butylphosphinothioate (4i)

. 190 170 150 130 110 90 70 50 30 10 - 10 -30 -50 -70 -90 -110 -130 -150 -170 -190

S-(p-tolyl) isopropyl(phenyl)phosphinothioate (4j)

Landard Control (1998)
Landard Control

. 190 170 150 130 110 90 70 50 30 10 - 10 -30 -50 -70 -90 -110 -130 -150 -170 -190

138.87 138.887 138.525 138.525 131.91 131.93 131.64 131.64 131.64 131.64 131.64 131.64 131.64 131.64 131.64 131.64 131.64 121.90 121.90 121.90

S-(p-tolyl) di-p-tolylphosphinothioate (4k)

~234 ~222 ~221

. 190 170 150 130 110 90 70 50 30 10 <u>-</u> -10 -30 -50 -70 -90 -110 -130 -150 -170 -190

S-(p-tolyl) bis(4-fluorophenyl)phosphinothioate (4l)

. 190 170 150 130 110 90 70 50 30 10 - 10 -30 -50 -70 -90 -110 -130 -150 -170 -190

C 168.02 169. ₹77.32 76.68

S-(p-tolyl) bis(4-methoxyphenyl)phosphinothioate (4m)

. 190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190

Control 10 - 2010
Control 10 - 2

S-(p-tolyl) bis(4-(trifluoromethyl)phenyl)phosphinothioate (4n)

7,298 7,298 7,298 7,299 7,209 7,209 7,200

<226 225

. 190 170 150 130 110 90 70 50 30 10 <u>-</u> -10 -30 -50 -70 -90 -110 -130 -150 -170 -190

S-(p-tolyl) bis(4-chlorophenyl)phosphinothioate (40)

S-(p-tolyl) bis(4-(dimethylamino)phenyl)phosphinothioate (4p)

⁴⁰⁰ MHz, ¹H NMR in CDCl₃

S-(p-tolyl) bis(3,5-dimethylphenyl)phosphinothioate (4q)

400 MHz, ¹H NMR in CDCl₃

S-(p-tolyl) di(naphthalen-2-yl)phosphinothioate (4r)

-217

400 MHz, ¹H NMR in CDCl₃

, 190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190

<151.98 <151.95 |35.05 |35.05 |35.05 |34.16 |33.16 |32.08 |32.12 |32.09 |32.09 |132.09 |132.09 |132.09 |132.09

-112.12 -122.12 -12

⁴⁰⁰ MHz, ¹H NMR in CDCl₃

. 190 170 150 130 110 90 70 50 30 10 - -10 -30 -50 -70 -90 -110 -130 -150 -170 -190

162 MHz, ³¹P NMR in CDCl₃

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl phenylphosphinate (1c)

O-((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl) S-p-tolyl phenylphosphonothioate (6a)

