## Aqueous phase homogeneous formic acid disproportionation into methanol

Katerina Sordakis,<sup>a</sup> Akihiro Tsurusaki,<sup>b</sup> Masayuki Iguchi,<sup>c</sup> Hajime Kawanami,<sup>c</sup> Yuichiro Himeda,<sup>\*b</sup> and Gábor Laurenczy<sup>\*a</sup>

<sup>a</sup> Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

<sup>b</sup> National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1 1 1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

<sup>c</sup> National Institute of Advanced Industrial Science and Technology, 4 2 1 Nigatake, Miyagino, Sendai, Miyagi, 983-8551, Japan.

## ELECTRONIC SUPPLEMENTARY INFORMATION



**Figure S1.** The effect of initial H<sub>2</sub> pressure on the methanol concentration obtained from formic acid. Initial pressure of 40 bar (squares), 20 bar (triangles), 10 bar (circles) and none (crosses), 10.0 mmol H<sup>13</sup>COOH, 2.5 *m* H<sub>2</sub>SO<sub>4</sub>, n<sub>cat</sub> = 15.9  $\mu$ mol, m<sub>H2O</sub>= 2.0 g, T = 80 °C.



**Figure S2.** Pressure profile for FA disproportionation/dehydrogenation reaction in D<sub>2</sub>O under various initial H<sub>2</sub> pressures. Reaction conditions: 10.0 mmol H<sup>13</sup>COOH, 2.5 *m* H<sub>2</sub>SO<sub>4</sub>, n<sub>cat</sub> = 15.9  $\mu$ mol, m<sub>D2O</sub> = 2.0 g, T = 50 °C.

In our experiments, formic acid conversions and methanol yields were calculated from quantitative <sup>13</sup>C NMR spectra using acetonitrile (which was always added at the end of the reaction) as an internal standard. The prerequisite for obtaining <sup>13</sup>C NMR spectra with full intensities and therefore correct relative peak areas (i.e. quantitative spectra), is that all signals of interest must have relaxed completely before a pulse is applied.<sup>[1]</sup> In particular, after a 90° pulse, the rate at which magnetization relaxes is a function of the longitudinal relaxation time (T<sub>1</sub>) of the nucleus. In order to minimize the error to  $\leq$ 1%, the time between pulses (d<sub>1</sub>) should be at least five times higher than the T<sub>1</sub> of the slowest relaxing signal of interest in the spectrum (the magnetization recovery is 99.3% and 99.91% of its original size after 5T<sub>1</sub> and 7T<sub>1</sub>, respectively). The <sup>13</sup>C T<sub>1</sub> value for formic acid was reported in our previous work<sup>[2]</sup> and corresponds to approximately 15 sec at pH<2. The respective <sup>13</sup>C T<sub>1</sub> value for methanol was calculated for the purposes of this work, as shown in Fig. S3, and corresponds to 16.6 sec. Therefore, quantitative <sup>13</sup>C NMR spectra were always taken with a d<sub>1</sub> value of 100 sec.



**Figure S3.** Determination of <sup>13</sup>C longitudinal relaxation time  $T_1$  of methanol. a) Calibration of 90° pulse-<sup>13</sup>C NMR spectra of methanol obtained for difference pulse lengths between 25-35 µsec, b) Plot of MeOH integration area derived from (a) versus the pulse length time, c) <sup>13</sup>C NMR spectra of methanol obtained from a standard inversion recovery experiment varying the recovery delay time (d<sub>7</sub>) between 0.00001-75 sec, d) Plot of MeOH integration area derived from (c) versus the recovery delay time.

In order to calculate the <sup>13</sup>C longitudinal relaxation time  $T_1$  of methanol, the 90° pulse had to be measured using a sufficiently long relaxation delay (d<sub>1</sub>). From Fig. S6b, the 180° pulse (zero point) was determined to be 28.7 µsec (see equation on graph), corresponding to a 90° pulse of 14.35 µsec. This value was then employed for the inversion recovery experiment depicted in Fig. S3c. The plot of the resulting MeOH integration areas as a function of the recovery delay times (Fig. S3d) was fitted with a three parameter exponential curve, from which  $T_1$  could be calculated as follows.

y = B + F \* exp(-x\*G)

where B: 4.244\*10<sup>5</sup>, F: -8.262\*10<sup>5</sup> and G: 0.06033.

Since  $T_1 = 1/G$ , it can be calculated  $T_1 = 16.6$  sec.



**Figure S4.** Quantitative <sup>13</sup>C NMR spectrum (d<sub>1</sub> = 100sec) taken at the end of five consecutive FA disproportionation/hydrogenation reactions in the presence of complex **(1)**. Reaction conditions: 10.0 mmol H<sup>13</sup>COOH/cycle, 2.5 *m* H<sub>2</sub>SO<sub>4</sub>, n<sub>cat</sub> = 15.9  $\mu$ mol, m<sub>D20</sub> = 2.0 g, P<sub>init.</sub>(H<sub>2</sub>) = 50 bar/cycle, T = 50 °C. Acetonitrile, CH<sub>3</sub>CN (0.271 g), was added at the end of the reaction as an internal standard for quantitative integration.

Taking into account the abundancy of  ${}^{13}C/{}^{12}C$  (1.109%/98.89%) the methanol quantity was calculated as follows:

 $n_{MeOH} = m_{CH3CN}/Mr_{CH3CN} * 265.04 * 0.01109/0.9889/1000 \approx 19.6 mmol$ ,

 $n_{FA} = m_{CH3CN}/Mr_{CH3CN} * (3.72+3.79) * 0.01109/0.9889/1000 \approx 0.55 mmol,$ 

 $n_{MeOOCH} = m_{CH3CN}/Mr_{CH3CN} * 5.76 * 0.01109/0.9889/1000 \approx 0.42 \text{ mmol},$ 

 $Conv._{FA}(\%) = 100 - (0.55/50 * 100) = 98.9\%,$ 

Concentration<sub>MeOH</sub> =  $n_{MeOH}/m_{D2O}$  = 9.8 m



**Figure S5.** 200 MHz <sup>13</sup>C NMR spectrum of methanol area of Scheme 2a in main text. Reaction conditions: 10.0 mmol H<sup>13</sup>COOH,  $n_{cat} = 15.9 \mu mol$ ,  $m_{D20} = 2.0 \text{ g}$ , T = 50 °C, P(H<sub>2</sub>)<sub>init.</sub> = 50 bar. Isotopologues of methanol: Doublet of quintets-CD<sub>2</sub>H ( $\bigcirc$ ), triplet of triplets-CDH<sub>2</sub> ( $\bigcirc$ ), septet-CD<sub>3</sub> ( $\bigcirc$ ), quartet-CH<sub>3</sub> ( $\bigcirc$ ).



**Figure S6.** <sup>1</sup>H NMR spectra showing the conversion of catalyst (1) to hydrides (1') and (1'') under various reaction conditions. 5 mmol HCOOH,  $n_{cat} = 15.9 \mu$ mol,  $m_{D20} = 2.0 \text{ g}$ , T = 20 °C, H<sub>2</sub>SO<sub>4</sub> concentration is given in mol% relative to HCOOH. Resonances characteristic of (1) grey circles, (1') blue circles and (1'') green circles.

- [1] P. J. Hore, *Nuclear Magnetic Resonance*, Oxford University Press, Oxford ; New York, **1995**.
- [2] S. Moret, P. J. Dyson, G. Laurenczy, *Dalton Trans.* **2013**, *42*, 4353–4356.