Synthesis of (*E*)-β-iodo vinylsulfones via iodine-promoted

iodosulfonylation of alkynes with sodium sulfinates in an aqueous

medium at room temperature

Yadong Sun,* Ablimit Abdukader, Dong Lu, Haiyan Zhang and Chenjiang Liu*

The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur

Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology,

School of Chemistry and Chemical Engineering, Physics and Chemistry Detecting Center,

Xinjiang University, Urumqi 830046, China.

E-mail: pxylcj@126.com E-mail: syd19791016@163.com

Supporting Information

List of Contents

A. General method	
B. General procedure for the synthesis of products	S2
C. Control experiments for the study of mechanism	S2
D. Single-crystal X-ray analysis of 3aa	
E. Analytical data for 3aa-3la, 4, 5 and 6	
F. NMR Spectra	S14

A. General method

Melting points were measured with a melting point instrument and were uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. GC-MS was obtained using electron ionization (EI). High-resolution mass spectra were obtained with a LCMS-IT-TOF mass spectrometer. Single-crystal X-ray analysis was obtained using Bruker APEX2 Smart CCD. TLC was performed by using commercially prepared 100–400 mesh silica gel plates (GF254) and visualization was effected at 254 nm. All reagents and solvents were purchased from commercial sources (Adamas-beta, TCI, Alfa Aesar and Ark) and used without further purification.

B. General procedure for the synthesis of products

A mixture of sodium sulfinates (0.60 mmol), alkyne (0.30 mmol), and iodine (0.45 mmol) in water (2.0 mL) was placed in a test tube (25 mL) equipped with a magnetic stirring bar. The reaction mixture was stirred at room temperature for 2h. After the reaction was completed, the mixture was quenched by the addition of satd aq $Na_2S_2O_3$ (5 mL). Further stirring was followed by extraction with ethyl acetate (2 × 15 mL). The organic layer was dried with anhydrous MgSO₄, concentrated in vacuo and purified by flash silica gel chromatography using petroleum ether/ethyl acetate 20:1 to give the desired products.

C. Control experiments for the study of mechanism

A mixture of **2a** (0.60 mmol), **1a** (0.30 mmol), iodine (0.45 mmol) and BHT (0.30 mmol) in water (2.0 mL) was placed in a test tube (25 mL) equipped with a magnetic stirring bar. The reaction mixture was stirred at room temperature for 2h. After the reaction was completed, the mixture was quenched by the addition of satd aq $Na_2S_2O_3$ (5 mL). Further stirring was followed by extraction with ethyl acetate (2 × 15 mL). The organic layer was dried with anhydrous MgSO₄, concentrated in vacuo and purified by flash silica gel chromatography using petroleum ether/ethyl acetate 20:1 to give **3aa** in 86% yield.

A mixture of **2a** (0.60 mmol), **1a** (0.30 mmol), iodine (0.45 mmol) and TEMPO (0.30 mmol) in water (2.0 mL) was placed in a test tube (25 mL) equipped with a magnetic stirring bar. The reaction mixture was stirred at room temperature for 2h. After the reaction was completed, the mixture was quenched by the addition of satd aq Na₂S₂O₃ (5 mL). Further stirring was followed by extraction with ethyl acetate (2×15 mL). The organic layer was dried with anhydrous MgSO₄, concentrated in vacuo and the crude product was detected by GC-MS.

D. Single-crystal X-ray analysis of 3aa

Datablock: 1

Bond precision	: C-C = 0.0132 A	Wavelength=0.71073	
Cell:	a=7.7369(8)	b=10.2035(11)	c=19.513(2)
	alpha=102.425(4)	beta=90.356(3)	gamma=90.648(3)
Temperature:	296 K		
	Calculated	Reporte	d
Volume	1504.2(3)	1504.2(3)
Space group	P -1	P-1	
Hall group	-P 1	?	
Moiety formula	C15 H13 I O2 S	?	
Sum formula	C15 H13 I O2 S	C15 H13	I 02 S
Mr	384.21	384.21	
Dx,g cm-3	1.697	1.697	
Z	4	4	
Mu (mm-1)	2.262	2.262	
F000	752.0	752.0	
F000'	750.87		
h,k,lmax	9,12,23	9,12,23	
Nref	5323	5220	
Tmin, Tmax	0.614,0.666	0.636,0	.686
Tmin'	0.602		
Correction met AbsCorr = MULT	hod= # Reported T 1 I-SCAN	Limits: Tmin=0.63	6 Tmax=0.686
Data completen	ess= 0.981	Theta(max) = 25.	050
R(reflections)	= 0.0836(4279)	wR2 (reflections	e) = 0.2187(5220)
S = 1.075	Npar=	297	

E. Analytical data for 3aa-3la, 4, 5 and 6.

(*E*)-1-((2-iodo-2-phenylvinyl)sulfonyl)-4-methylbenzene (3aa).¹ white solid (99.1 mg, 86%); mp 80–81 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.3 Hz, 2H), 7.36 (s, 1H), 7.32 – 7.25 (m, 3H), 7.23 (dt, *J* = 3.7, 2.1 Hz, 2H), 7.18 (d, *J* = 8.6 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 141.2, 139.6, 137.2, 129.7, 129.6, 127.8, 127.8, 127.6, 114.1, 21.5.

(*E*)-1-ethyl-4-(1-iodo-2-tosylvinyl)benzene (3ab). white solid (107.6 mg, 87%); mp 91–92 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.3 Hz, 2H), 7.34 (s, 2H), 7.18 – 7.12 (m, 4H), 7.09 (d, *J* = 8.5 Hz, 2H), 2.63 (q, *J* = 7.6 Hz, 2H), 2.36 (s, 3H), 1.24 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.1, 144.2, 140.6, 137.0, 136.7, 129.3, 127.7, 127.6, 127.1, 114.6, 28.5, 21.4, 15.1; ESI-HRMS calcd for C₁₇H₁₇IO₂S (M + H)⁺ 413.0067; found 413.0059.

(*E*)-1-butyl-4-(1-iodo-2-tosylvinyl)benzene (3ac). Yellow liquid (116.2 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 10.4 Hz,2H), 7.34 (s, 1H), 7.15 (d, *J* = 8.3 Hz, 4H), 7.07 (d, *J* = 8.1 Hz, 2H), 2.60(t, *J* = 7.7 Hz, 2H), 2.37 (s, 3H), 1.64 – 1.56 (m, 2H), 1.43 – 1.33 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 144.3, 140.8, 137.2, 136.7, 129.4, 127.7, 127.7, 114.8, 35.4, 33.3, 22.2, 21.5, 13.9; ESI-HRMS calcd for C₁₉H₂₁IO₂S (M + H)⁺ 441.0380; found 441.0385.

(*E*)-1-fluoro-4-(1-iodo-2-tosylvinyl)benzene (3ad).¹ white solid (90.5 mg, 75%); mp 91–92 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.2 Hz, 2H), 7.35 (s, 1H), 7.28 – 7.20 (m, 4H), 6.98 (t, *J* = 8.6 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ163.1 (d, *J* = 251.4 Hz), 144.7, 141.6, 137.1, 135.6 (d, *J* = 3.5 Hz), 129.9 (d, *J* = 8.7 Hz), 129.7, 127.7, 115.0 (d, *J* = 22.1 Hz), 112.5, 21.6.

(*E*)-1-chloro-4-(1-iodo-2-tosylvinyl)benzene (3ae).¹ white solid (96.7 mg, 77%); mp 146–147 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.3 Hz, 2H), 7.34 (s, 1H), 7.29 – 7.22 (m, 4H), 7.21 – 7.16 (m, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 141.7, 138.0, 137.1, 135.8, 129.7, 129.0, 128.1, 127.8, 112.0, 21.6.

(*E*)-1-bromo-4-(1-iodo-2-tosylvinyl)benzene (3af).² white solid (109.8 mg, 79%); mp 156–157 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.47 (m, 2H), 7.45 – 7.39 (m, 2H), 7.34 (s, 1H), 7.23 (d, *J* = 7.9 Hz, 2H), 7.14 – 7.09 (m, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 141.7, 138.5, 137.0, 131.1, 129.7, 129.2, 127.8, 124.1, 111.9, 21.6.

(*E*)-1-fluoro-2-(1-iodo-2-tosylvinyl)benzene (3ag). white solid (94.1 mg, 78%); mp 120–121 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.4 Hz, 2H), 7.40 (s, 1H), 7.36 – 7.30 (m, 1H), 7.25 – 7.20 (m, 3H), 7.16 – 7.12(m, 1H), 6.99 – 6.94 (m, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.1 (d, *J* = 250.8 Hz), 144.8, 142.8, 136.6, 131.5 (d, *J* = 8.2 Hz), 129.7, 129.1 (d, *J* = 1.7 Hz), 127.8, 127.4 (d, *J* = 15.3 Hz), 123.7 (d, *J* = 3.6 Hz), 115.6 (d, *J* = 20.7 Hz), 104.4, 21.5; ESI-HRMS calcd for C₁₅H₁₂FIO₂S (M + Na)⁺ 424.9479; found 424.9470.

(*E*)-3-(1-iodo-2-tosylvinyl)phenol (3ah). white solid (104.5 mg, 87%); mp 132–133 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.3 Hz, 2H), 7.34 (s, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.11 (t, *J* = 7.9 Hz, 1H), 6.80 – 6.71 (m, 2H), 6.70 – 6.65 (m, 1H), 6.11 (s, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 144.8, 140.8, 140.5, 136.7, 129.7, 129.2, 127.8, 119.7, 117.1, 114.5, 113.9, 21.6; ESI-HRMS calcd for C₁₅H₁₃IO₃S (M + Na)⁺ 422.9522; found 422.9516.

(*E*)-1-((2-iodo-2-(4-methoxyphenyl)vinyl)sulfonyl)-4-methylbenzene (3ai).² Yellow liquid (113.1 mg, 91%); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.3 Hz, 2H), 7.29 (s, 1H), 7.27 – 7.22 (m, 2H), 7.22 – 7.18 (m, 2H), 6.84 – 6.75 (m, 2H), 3.82 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 144.4, 140.1, 137.3, 131.7, 129.8, 129.5, 127.7, 114.8, 113.1, 55.3, 21.5;

(*E*)-1-ethoxy-4-(1-iodo-2-tosylvinyl)benzene (3aj): Yellow liquid (119.5 mg, 93%); ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.28 (s, 1H), 7.25 – 7.21 (m, 2H), 7.18 (dd, *J* = 8.4, 0.5 Hz, 2H), 6.79 – 6.73 (m, 2H), 4.02 (q, *J* = 7.0 Hz, 2H), 2.37 (s, 3H), 1.41 (t, *J* = 7.0 Hz, 3H); ¹³C

NMR (100 MHz, CDCl₃) δ 160.0, 144.3, 140.0, 137.2, 131.4, 129.8, 129.4, 127.6, 115.0, 113.4, 63.4, 21.4, 14.5; ESI-HRMS calcd for C₁₇H₁₇IO₃S (M + Na)⁺ 450.9835; found 450.9828.

(*E*)-2-(1-iodo-2-tosylvinyl)thiophene (3ak).³ Yellow solid (106.5 mg, 91%); mp 95–96 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.3 Hz, 2H), 7.53 (dd, *J* = 3.7, 1.2 Hz, 1H), 7.49 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.31 (s, 1H), 7.24 – 7.22 (m, 1H), 7.21 (d, *J* = 0.7 Hz, 1H), 7.00 (dd, *J* = 5.1, 3.7 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 141.0, 140.8, 136.9, 131.3, 130.0, 129.6, 127.6, 127.3, 103.4, 21.5.

(*E*)-3-(1-iodo-2-tosylvinyl)pyridine (3al).³ Yellow solid (94.8 mg, 82%); mp 140–141 °C; ¹H
NMR (400 MHz, CDCl₃) δ 8.56 (dd, *J* = 4.9, 1.5 Hz, 1H), 8.46 (d, *J* = 2.2 Hz, 1H), 7.66 – 7.62 (m,
1H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.44 (s, 1H), 7.31 – 7.26 (m, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz,
CDCl₃) δ 150.1, 147.3, 145.1, 142.8, 136.9, 136.1, 135.4, 130.0, 127.8, 122.7, 108.7, 21.6.

(*E*)-1-((2-cyclopropyl-2-iodovinyl)sulfonyl)-4-methylbenzene (3am). white solid (88.8 mg, 85%); mp 121–122 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.75 (m, 2H), 7.35– 7.33 (m, 2H), 7.03 (d, *J* = 2.3 Hz, 1H), 2.46 – 2.39 (m, 4H), 0.94 – 0.80 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 138.2, 137.7, 133.4, 129.9, 127.2, 21.6, 17.2, 12.0; ESI-HRMS calcd for C₁₂H₁₃IO₂S (M + Na)⁺ 370.9573; found 370.9577.

(*E*)-1-((2-iodohex-1-en-1-yl)sulfonyl)-4-methylbenzene (3an).⁴ Yellow liquid (85.2 mg, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.3 Hz, 2H), 7.33 (dd, *J* = 8.6, 0.6 Hz, 2H), 6.97 (s, 1H), 3.04 – 2.97 (m, 2H), 2.43 (s, 3H), 1.55 – 1.44 (m, 2H), 1.41 – 1.31 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 138.8, 138.0, 130.0, 127.4, 125.4, 39.7, 31.9, 21.6, 21.6, 13.82.

(*E*)-1-((1-iodo-1-phenylprop-1-en-2-yl)sulfonyl)-4-methylbenzene (3ao).⁵ white solid (76.5 mg, 64%); mp 129–130 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.3 Hz, 2H), 7.25 – 7.20 (m, 3H), 7.16 (d, *J* = 7.9 Hz, 2H), 7.13 – 7.07 (m, 2H), 2.51 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 143.8, 142.9, 137.2, 129.4, 128.6, 127.7, 127.6, 127.5, 115.7, 27.0, 21.5.

(*E*)-ethyl 3-iodo-3-phenyl-2-tosylacrylate (3ap): Yellow liquid (69.8 mg, 51%); ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.1 Hz, 2H), 7.29 (m, 1H), 7.24 (m, 2H), 7.13 (d, *J* = 8.4 Hz, 2H), 7.08 (m, 2H), 4.44 (q, *J* = 7.2 Hz, 2H), 2.39 (s, 3H), 1.44 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 146.4, 144.8, 139.5, 137.0, 129.5, 129.3, 128.2, 127.7, 127.3, 114.0, 63.2, 21.6, 13.9; ESI-HRMS calcd for C₁₈H₁₇IO₄S (M + Na)⁺ 478.9784; found 478.9775.

(*E*)-(1-iodo-2-(phenylsulfonyl)vinyl)benzene (3ba).² white solid (95.5 mg, 86%); mp 66–67 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.49 (m, 3H), 7.39 (s, 1H), 7.39 – 7.33 (m, 2H), 7.31 – 7.23 (m, 3H), 7.22 – 7.19 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 139.9, 139.3, 133.3, 129.6, 128.8, 127.7, 127.5, 127.4, 114.6.

(*E*)-1-((2-iodo-2-phenylvinyl)sulfonyl)-2-methylbenzene (3ca). white solid (100.3 mg, 87%); mp 72–73 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.37 – 7.33 (m, 1H), 7.25 – 7.12 (m, 2H), 7.06 – 7.00 (m, 1H), 2.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 139.1, 138.1, 137.4, 133.2, 132.0, 129.6, 129.2, 127.7, 127.4, 126.0, 114.2, 20.3; ESI-HRMS calcd for C₁₅H₁₃IO₂S (M + H)⁺ 384.9754; found 384.9751.

(*E*)-1-((2-iodo-2-phenylvinyl)sulfonyl)-4-methoxybenzene (3da).⁶ white solid (102.1 mg, 85%); mp 111–112 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 11.9 Hz, 2H), 7.37 (s, 1H), 7.32 – 7.20 (m, 5H), 6.85 – 6.79 (m, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 141.4, 139.5, 131.4, 129.8, 129.5, 127.7, 127.5, 114.1, 113.5, 55.5.

(*E*)-1-fluoro-3-((2-iodo-2-phenylvinyl)sulfonyl)benzene (3ea): white solid (96.7 mg, 83%); mp 92–93 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (s, 1H), 7.38 – 7.37 (m, 2H), 7.35 – 7.29 (m, 2H), 7.28 – 7.27 (m, 1H), 7.26 – 7.21 (m, 1H), 7.19 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.0 (d, *J* = 252.3 Hz), 142.0 (d, *J* = 6.6 Hz), 140.5, 139.2, 130.7 (d, *J* = 7.6 Hz), 129.9, 127.9, 127.4, 123.5 (d, *J* = 3.3 Hz), 120.6 (d, *J* = 21.2 Hz), 115.5, 115.1 (d, *J* = 24.5 Hz); ESI-HRMS calcd for C₁₄H₁₀FIO₂S (M + Na)⁺ 410.9322; found 410.9328.

(*E*)-1-chloro-4-((2-iodo-2-phenylvinyl)sulfonyl)benzene (3fa).² white solid (99.5 mg, 82%); mp 102–103 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.6 Hz, 2H), 7.39 (s, 1H), 7.34 – 7.23 (m, 5H), 7.21 – 7.14 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 139.9, 139.2, 138.3, 129.7, 129.0, 129.0, 127.8, 127.4, 115.1.

(*E*)-1-bromo-3-((2-iodo-2-phenylvinyl)sulfonyl)benzene (3ga). white solid (114.5 mg, 85%); mp 59–60 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.61 (m, 1H), 7.55 (t, *J* = 1.7 Hz, 1H), 7.52 – 7.49 (m, 1H), 7.40 (s, 1H), 7.36 – 7.31 (m, 1H), 7.31 – 7.24 (m, 3H), 7.19 – 7.15 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 140.7, 139.1, 136.3, 130.7, 130.3, 130.0, 127.9, 127.4, 126.2, 122.7, 115.6; ESI-HRMS calcd for C₁₄H₁₀BrIO₂S (M + Na)⁺ 470.8522; found 470.8511.

(*E*)-1-chloro-2-((2-iodo-2-phenylvinyl)sulfonyl)benzene (3ha): white solid (102.0 mg, 84%); mp 100–101 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.48 – 7.44 (m, 1H), 7.42 – 7.37 (m, 2H), 7.22 – 7.16 (m, 1H), 7.15 – 7.07 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 140.3, 139.2, 137.9, 134.2, 132.3, 131.3, 130.7, 129.7, 127.7, 127.3, 126.8, 114.8; ESI-HRMS calcd for C₁₄H₁₀ClIO₂S (M + Na)⁺ 426.9027; found 426.9021.

(*E*)-1-chloro-3-((2-iodo-2-phenylvinyl)sulfonyl)benzene (3ia): white solid (98.3 mg, 81%); mp 63–64 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 2H), 7.41 – 7.40 (m, 2H), 7.35 – 7.25 (m,

4H), 7.20 – 7.15 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.6, 140.7, 139.1, 134.9, 133.4, 130.1, 130.0, 127.9, 127.9, 127.3, 125.7, 115.6; ESI-HRMS calcd for C₁₄H₁₀ClIO₂S (M + Na)⁺ 426.9027; found 426.9030.

(*E*)-(1-iodo-2-(methylsulfonyl)vinyl)benzene (3ga).⁷ white solid (75.8 mg, 82%); mp 81–82 °C;
¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.43 (m, 2H), 7.41 – 7.36 (m, 3H), 7.30 (s, 1H), 2.65 (s, 3H);
¹³C NMR (100 MHz, CDCl₃) δ 140.1, 139.3, 130.2, 128.2, 127.7, 114.8, 42.9.

(*E*)-(2-(ethylsulfonyl)-1-iodovinyl)benzene (3ka): white solid (82.2 mg, 85%); mp 76–77 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.41 (m, 2H), 7.41 – 7.34 (m, 3H), 7.20 (s, 1H), 2.71 (q, *J* = 7.4 Hz, 2H), 1.26 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 137.9, 130.1, 128.0, 127.6, 115.4, 49.0, 6.6; ESI-HRMS calcd for C₁₀H₁₁IO₂S (M + H)⁺ 322.9597; found 322.9593.

(*E*)-(2-(cyclopropylsulfonyl)-1-iodovinyl)benzene (3la). white solid (84.2 mg, 84%); mp 73–74 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.43 (m, 2H), 7.39 – 7.33 (m, 3H), 7.30 (s, 1H), 2.17 – 2.10 (m, 1H), 1.13 – 1.06 (m, 2H), 0.93 – 0.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 139.3, 129.9, 127.9, 127.7, 113.9, 31.6, 5.2; ESI-HRMS calcd for C₁₁H₁₁IO₂S (M + H)⁺ 334.9597; found 334.9599.

(*E*)-(4-(phenylsulfonyl)but-3-en-1-yne-1,3-diyl)dibenzene (4).¹ white solid (155.9 mg, 87%); mp 82–83 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.3 Hz, 2H), 7.52 – 7.46 (m, 2H), 7.44 – 7.30 (m, 8H), 7.20 (d, *J* = 8.4 Hz, 2H), 6.96 (s, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 137.9, 136.7, 135.3, 134.1, 131.8, 129.5, 129.4, 129.4, 128.9, 128.3, 127.8, 127.6, 121.4, 97.2, 88.3, 21.5.

(2-(phenylsulfonyl)ethene-1,1-diyl)dibenzene (5).¹ Yellow solid (37.1 mg, 82%); mp 98–99 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.4 Hz, 2H), 7.40 – 7.33 (m, 2H), 7.32 – 7.28 (m, 4H), 7.23 – 7.18 (m, 2H), 7.18 – 7.07 (m, 4H), 7.01 (s, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 143.6, 139.0, 138.4, 135.4, 130.1, 129.6, 129.2, 128.8, 128.7, 128.4, 128.0, 127.6, 127.5, 21.4.

1-methyl-4-((phenylethynyl)sulfonyl)benzene (6).⁸ white solid (108.9 mg, 85%); mp 81–82 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.4 Hz, 2H), 7.54 – 7.49 (m, 2H), 7.49 – 7.44 (m, 1H), 7.41 – 7.34 (m, 4H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 138.9, 132.6, 131.4, 129.9, 128.6, 127.4, 117.9, 92.9, 85.5, 21.7.

References

- 1. Y. Gao, W. Wu, Y. Huang, K. Huang and H. Jiang, Org. Chem. Front., 2014, 1, 361.
- 2. W. Wei, J. Wen, D. Yang, H. Jing, J. You and H. Wang, RSC Adv., 2015, 5, 4416.
- 3. X. Li, X. Xu and X. Shi, Tetrahedron Lett., 2013, 54, 3071.
- 4. W. E. Truce and G. C. Wolf, J. Org. Chem., 1971, 36, 1727.
- 5. N. Taniguchi, Tetrahedron, 2014, 70, 1984.
- 6. D. Wang, R. Zhang, S. Lin, Z. Yan and S.Guo, Synlett 2016, 27, 2003.
- 7. N. Taniguchi, Synlett, 2011, 1308.
- J. Meesin, P. Katrun, C. Pareseecharoen, M. Pohmakotr, V. Reutrakul, D. Soorukram, C. Kuhakarn, J. Org. Chem., 2016, 81, 2744

¹H-NMR and ¹³C-NMR of 3ag

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹H-NMR and ¹³C-NMR of 3al

-2.42

¹H-NMR and ¹³C-NMR of 3ap

*******************	44 45 45 45	8	844
*****	ਚੱਚੱਚੱ ਚੱ	2	オイブ
			V

¹H-NMR and ¹³C-NMR of 3ba

¹H-NMR and ¹³C-NMR of 3da

¹H-NMR and ¹³C-NMR of 3ea

¹H-NMR and ¹³C-NMR of 3fa

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹H-NMR and ¹³C-NMR of 3ga

¹H-NMR and ¹³C-NMR of 3ha

 $\underbrace{\{ \begin{array}{c} 77.32 \\ 77.00 \\ 76.68 \end{array} }$

140.35 130.24 137.35 137.35 137.35 137.35 137.35 137.35 137.35 137.35 137.35 137.35 137.35 137.35 137.35 137.35 137.35 137.35 140.35 137.35 137.35 137.35 137.35 140.35 137.35 147.55 147.55 14

¹H-NMR and ¹³C-NMR of 3ia

¹H-NMR and ¹³C-NMR of 4

¹H-NMR and ¹³C-NMR of 5

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)