An efficient and eco-friendly synthesis of 2-pyridones and functionalized azaxanthone frameworks *via* indium triflate catalyzed domino reaction

N. Poomathi,^{*a,b} P. T. Perumal,^a and S. Ramakrishna,^{b*}

^a Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai-6000 20, India. Fax: +91-44-24911589; E-mail: <u>ptperumal@gmail.com</u>

^b Centre for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117576.

E-mail: seeram@nus.edu.sg, Fax: +65-67730339

TABLE OF CONTENTS

I.	Experimental general	S3-S12
II.	Copy of ¹ H and ¹³ C NMR spectra	.\$13-\$84

Experimental General:

All chemicals were purchased from Sigma Aldrich. All melting points are uncorrected. ¹ H and ¹³ C NMR spectra were recorded in CDCl₃ and DMSO- d_6 using TMS as an internal standard on a Bruker avance spectrometer at 400 Mhz amd 100 MHz and JEOl spectrometer at 500 and 125 Mhz, respectively. Mass spectra were recorded using a JEOL GCMate-II–HR mass spectrometer. Analytical TLC was performed on precoated aluminium sheets of siliga gel G/UV-254 of 0.2 mm thickness (Merck, Germany).

Starting materials

Starting materials 2 and 4 derivatives (Table 1 in manuscript) has been prepared according to the literature procedure.^{13c,d}

General procedure for the preparation of 2-pyridone and chrominopyridine derivatives: A mixture of 3-formylchromone 1 (1 mmol), (Z)-N-methyl-1-(methyl-thio)-2-nitroethenamine/N,N'-dimethyl-2-nitro-ethene-1,1-diamine 2/4 (1 mmol), and indium triflate (2 mol %) in ethanol (3 mL) were charged in a 25 mL round bottomed flask and the mixture was heated at reflux. The resulting solution was stirred for 1-3 hrs. The consumption of the starting material was monitored by TLC. After completition of the reaction, the products (3a-s) was filtered and washed with ethanol, dried under vacum and the products 5a-p was purified by coloumn chromatography to obtain pure products 3a-s and 5a-p in good yields (65-95 %). The identities of products 3a-s and 5a-p were confirmed by NMR and EI-HRMS, giving good agreement with the assigned structures.

Synthetic transformation of products 3a:

A mixture of γ -nitro-2-pyridone **3a** (1 mmol) and stannous chloride dihydrate (7 equiv) in ethanol (3 mL) were charged in a 25 mL round bottomed flask and the mixture was heated at reflux. The resulting solution was stirred for 2 hrs. The consumption of the starting material was monitored by TLC. After completition of the reaction, the products was purified by coloumn chromatography to obtain pure products **14** in good yield (82 %). The identities of products **14** was confirmed by NMR and EI-HRMS, giving good agreement with the assigned structures.

Isolated as yellow solid, 82%, mp: 188-190 °C, ¹H NMR (400 MHz, DMSO- d_6) $\delta_{\rm H}$ 10.20 (1H, s), 7.74 (1 H, d, J = 1.3), 7.57 (1H, d, J = 1.8), 7.39 (2H, dd, J = 16.8, 8.0), 7.03 – 6.93 (2H, m), 3.72 (1H, s), 3.59 (3 H, s), 3.57 (1H, s) ppm. ¹³C NMR (100 MHz, DMSO- d_6) $\delta_{\rm C}$ 192.73, 158.55, 156.44, 137.27, 132.98, 130.50, 130.26, 125.21, 119.55, 117.61, 117.23, 110.72, 38.43 ppm. EI-HRMS: Anal. Calcd for C₁₃ H₁₂ N₂O₃: 244.0848, Found: 244.0847

Catalyst recovery and reuse during the preparation of 2-pyridone 3a

A mixture of 3-formylchromone 1 (1 equiv), (Z)-N-methyl-1-(methyl-thio)-2-nitroethenamine 2 (1 equiv), and indium triflate (2 mol %) in ethanol were charged in a 25 mL round bottomed flask and the mixture was heated at reflux. The resulting solution was stirred for 1 hr. The consumption of the starting material was monitored by TLC. After completion of the reaction, the products **3a** was filtered and washed with ethanol, dried under vacum to obtain pure product **3a** as 88 % yield. The filtrate was evaporated to dryness by repeated codistillation with toluene and finally dried under vacuum at 95–100°C. The recovered catalyst is effective in subsequent experiments. It should be noted that the yields in second and even fifth run are comparable to that of the first run (Table 1).

Table 1 Catalyst recovery and reuse during the preparation of 2-pyridone 3a	

	In(OTf) ₃		
Run	Product (%)	Yield ^{a,b,c} (%)	
1 st	За	88	
2 nd	За	86	
3 rd	За	84	
4 th	За	84	
5 th	За	80	

^aThe reaction was performed with 3-formylchromone **1** (1 equiv), NMSM **2** (1 equiv), $In(OTf)_3$ (2 mol %) and ethanol, at reflux, ^bReaction progress was followed by TLC analysis. ^cYield of isolated products.

3a:5-(2-hydroxybenzoyl)-1-methyl-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 89%, mp: 219-221°C, ¹H NMR (400 MHz, DMSO- d_6) δ 10.34 (s, 1H), 8.74 (s, 1H), 8.52 (d, J = 2.3 Hz, 1H), 7.51–7.22 (m, 2H), 7.07–6.67 (m, 2H), 3.62 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO- d_6) δ 190.19, 155.83, 154.05, 150.44, 137.66, 136.15, 133.39, 130.21, 124.11, 119.45, 116.77, 114.28,

38.62 ppm. EI-HRMS: Anal. Calcd for C₁₃ H₁₀ N₂O₅: 274.0590, Found: 274.0587

3b: 5-(5-chloro-2-hydroxybenzoyl)-1-methyl-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 88 %, mp: 202-204 °C, ¹H NMR (400 MHz, DMSO- d_6) δ 10.61 (s, 1H), 8.78 (d, J = 2.5 Hz, 1H), 8.56 (d, J = 2.5 Hz, 1H), 7.47 (dd, J = 8.8, 2.7 Hz, 1H), 7.38 (d, J = 2.7 Hz, 1H), 7.01 (d, J = 8.8 Hz, 1H), 3.65 (s, 3H) ppm. ¹³C NMR (100 MHz, DMSO- d_6) δ 193.94, 159.51, 159.32, 156.00, 142.56, 141.67, 137.80, 134.30, 131.31, 128.28, 123.82, 119.25, 43.85 ppm. EI-HRMS:

Anal. Calcd for C₁₃H₉ClN₂O₅: 308.0200, Found: 308.0199.

3c:5-(5-bromo-2-hydroxybenzoyl)-1-methyl-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 85 %, mp: 210-212 °C, ¹H NMR (400 MHz, DMSO- d_6) δ 10.65 (s, 1H), 8.78 (d, J = 2.0 Hz, 1H), 8.57 (d, J = 2.1 Hz, 1H), 7.69–7.37 (m, 2H), 6.97 (d, J = 8.7 Hz, 1H), 3.66 (s, 3H) ppm.¹³C NMR (100 MHz, DMSO- d_6) δ 193.85, 159.92, 159.31, 156.06, 142.60, 141.64, 140.63, 137.14, 131.86, 124.26, 119.25, 115.71, 43.86. EI-HRMS: Anal. Calcd for C₁₃H₉BrN₂O₅: 351.9695, Found: 351.9690.

3d:5-(5-fluoro-2-hydroxybenzoyl)-1-methyl-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 83 %, mp: 210-212 °C, ¹H NMR (400 MHz DMSO- $d_{6,}$) δ 10.32 (s, 1H), 8.77 (d, J = 2.0 Hz, 1H), 8.57 (d, J = 2.4 Hz, 1H), 7.30 (td, J = 8.6, 3.2 Hz, 1H), 7.21 (dd, J = 8.6, 3.2 Hz, 1H), 7.00 (dd, J = 9.0, 4.4 Hz, 1H), 3.66 (s, 3H).¹³C NMR (100 MHz, DMSO- d_6) . δ c 194.09, 161.62, 159.32-159.27 (d, J = 10.0 MHz, DMSO- d_6) . δ c 194.09, 161.62, 159.32-159.27 (d, J = 10.0 MHz, DMSO- d_6) . δ c 194.09, 161.62, 159.32-159.27 (d, J = 10.0 MHz, DMSO- d_6) . δ c 194.09, 161.62, 159.32-159.27 (d, J = 10.0 MHz, DMSO- d_6) . δ c 194.09, 161.62, 159.32-159.27 (d, J = 10.0 MHz, DMSO- d_6) . δ c 194.09, 161.62, 159.32-159.27 (d, J = 10.0 MHz, DMSO- d_6) .

4.10 Hz), 157.06, 156.08, 142.66, 141.65, 130.24-130.17 (d, *J* = 6.70 Hz), 125.16-124.93 (d, *J* = 23.75 Hz), 123.40-123.32 (d, *J* = 8.70 Hz), 121.08-120.84 (d, *J* = 24.69 Hz), 119.21, 43.86.

HRMS: Anal. Calcd for C₁₃H₉FN₂O₅: 292.0495, Found: 292.0491.

3e:5-(4-fluoro-2-hydroxybenzoyl)-1-methyl-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 86 %, mp: 260-261°C, ¹H NMR (400 MHz, DMSO- d_6) δ 8.77 (d, J = 2.3 Hz, 1H), 8.58 (d, J = 2.4 Hz, 1H), 7.50 (dd, J = 8.2, 7.2 Hz, 1H), 6.80 (ddd, J = 12.8, 9.5, 2.1 Hz, 2H), 3.66 (s, 3H).¹³C NMR (100 MHz, DMSO- d_6). δ C 194.35, 171.37, 168.89, 163.37-163.25 (d, J = 13.62 Hz), 159.31,

155.74, 142.75-142.69 (d, J = 5.68 Hz), 141.56, 137.94-137.82 (d, J = 11.35 Hz), 126.34-126.32 (d, J = 2.25 Hz), 119.58, 112.15-108.71 (dd, J = 322.91, 23.01 Hz), 43.81ppm. EI-HRMS: Anal. Calcd for C₁₃H₉FN₂O₅: 292.0495, Found: 292.0493.

3f:5-(3,5-dichloro-2-hydroxybenzoyl)-1-methyl-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 84 %, mp: 209-211°C,¹H NMR (400 MHz, DMSO- d_6) δ 8.72 (d, J = 1.8 Hz, 1H), 8.56 (d, J = 2.0 Hz, 1H), 7.72 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 2.2 Hz, 1H), 3.60 (s, 3H).¹³C NMR (100 MHz, DMSO- d_6) δ 188.11, 154.03, 150.92, 150.50, 136.81, 136.60, 131.89, 128.11, 127.84, 123.54, 123.36, 113.82,

38.62 ppm. EI-HRMS: Anal. Calcd for C₁₃H₈Cl₂N₂O₅: 341.9810, Found: 341.9810.

3g: 5-(2-hydroxy-5-methylbenzoyl)-1-methyl-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 80 %, mp: 216-218 °C,¹H NMR (400 MHz, DMSO- d_6) δ 10.18 (s, 1H), 8.77 (d, J = 2.4 Hz, 1H), 8.56 (d, J = 2.5 Hz, 1H), 7.27 (dd, J = 8.3, 1.9 Hz, 1H), 7.20 (d, J = 1.7 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 3.68 (s, 3H), 2.26 (s, 3H).¹³C NMR (100 MHz, DMSO- d_6) δ 195.55, 159.29, 158.83, 155.73, 143.10,

141.37, 139.31, 135.36, 133.50, 129.06, 121.92, 119.63, 43.86, 25.05 ppm. EI-HRMS: Anal. Calcd for $C_{14}H_{12}N_2O_5$: 288.0746, Found: 288.0743.

3h:5-(2-hydroxy-5-methoxybenzoyl)-1-methyl-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 78 %, mp: 215-217 °C,¹H NMR (400 MHz, DMSO- d_6) δ 9.86 (s, 1H), 8.71 (s, 1H), 8.52 (d, J = 2.0 Hz, 1H), 7.02 (dd, J = 8.9, 2.9 Hz, 1H), 6.91 – 6.77 (m, 2H), 3.68 (s, 3H), 3.62 (s, 3H).¹³C NMR (100 MHz, DMSO- d_6) δ 195.05, 159.34, 157.40, 155.77, 154.79, 142.97, 141.35, 129.46, 125.20, 123.13,

119.46, 118.86, 60.74, 43.80. EI-HRMS: Anal. Calcd for $C_{14}H_{12}N_2O_6$: 304.0695, Found: 304.0689.

3i: 5-(2-hydroxybenzoyl)-3-nitro-1-propylpyridin-2(1H)-one

Isolated as yellow solid, 75 %, mp: 170-172°C, ¹H NMR (400 MHz, DMSO- d_6) $\delta_{\rm H}$ 10.43 (1H, s), 8.70 (1H, d, J = 2.5), 8.55 (1H, d, J = 2.5), 7.51–7.36 (2H, m), 7.05 –6.89 (2H, m), 4.08 (2H, t, J = 7.2), 1.70 (2H, dd, J = 14.6, 7.3), 0.88 (3H, t, J = 7.4) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta_{\rm C}$ 190.68, 156.30, 154.09, 150.36, 137.91,

137.26, 133.99, 130.84, 124.58, 120.00, 117.25, 115.02, 52.49, 22.24, 11.06 ppm. EI-HRMS: Anal. Calcd for C₁₅H₁₄N₂O₅: 302.0903, Found: 302.0900.

3j:5-(5-chloro-2-hydroxybenzoyl)-3-nitro-1-propylpyridin-2(1H)-one

Isolated as yellow solid, 82 %, mp: 192-194°C, ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ 10.55 (1H, d, J = 63.9), 8.72 (1H, d, J = 2.5), 8.56 (1H, d, J = 2.5), 7.47 (1H, dd, J = 8.8, 2.7), 7.38 (1H, d, J = 2.7), 7.01 (1H, d, J = 8.8), 4.08 (2H, t, J = 7.2), 1.66 (2H, dd, J = 14.5, 7.3), 0.88 (3H, t, J = 7.3). ¹³C NMR (100 MHz, DMSO- d_6): $\delta_{\rm C}$ 189.13,

154.83, 154.09, 150.69, 137.50, 137.47, 133.15, 129.73, 126.47, 123.55, 119.10, 114.66, 52.44, 22.22, 11.04. EI-HRMS: Anal. Calcd for $C_{15}H_{13}CIN_2O_5$: 336.0513, Found: 336.0512.

3k: 5-(2-hydroxy-5-methylbenzoyl)-3-nitro-1-propylpyridin-2(1H)-one

Isolated as yellow solid, 79 %, mp: 177-179°C, ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ 10.16 (1H, s), 8.69 (1H, d, J = 2.5), 8.56 (1H, t, J = 6.3), 7.25 (1H, dt, J = 17.6, 8.8), 7.20 (1H, s), 6.90 (1H, d, J = 8.3), 4.16–3.98 (2H, m), 2.25 (3H, s), 1.77–1.63 (2H,

m), 0.88 (3 H, t, J = 7.6) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta_{\rm C}$ 190.74, 154.13, 154.09, 150.38, 137.95, 137.28, 134.66, 130.76, 128.75, 124.27, 117.20, 115.05, 52.46, 22.23, 20.30, 11.07 ppm. EI-HRMS: Anal. Calcd for C₁₆H₁₆N₂O₅: 316.1059, Found: 316.1054.

31:1-butyl-5-(2-hydroxybenzoyl)-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 83 %, mp: 155-157°C, ¹H NMR (400 MHz, DMSO- d_6): $\delta_{\rm H}$ 10.42 (1H, s), 8.70 (1H, d, J = 2.5), 8.55 (1H, d, J = 2.5), 7.50 – 7.35 (2H, m), 6.99 (2H, dd, J = 16.0, 7.9), 4.12 (1H, t, J = 7.3), 3.40 (1H, d, J = 6.3), 1.74 – 1.50 (2H, m), 1.37 – 1.22 (2 H, m), 0.88 (3 H, td, J = 7.3, 3.4) ppm.¹³C NMR (100 MHz,

DMSO- d_6): δ_C 190.66, 156.37, 154.04, 150.30, 137.88, 133.96, 130.83, 124.54, 119.95, 117.25, 115.05, 112.70, 50.81, 30.96, 19.55, 13.87 ppm. EI-HRMS: Anal. Calcd for C₁₆H₁₆N₂O₅: 316.1059, Found: 316.1052.

3m:1-butyl-5-(5-chloro-2-hydroxybenzoyl)-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 78 %, mp: 160-162°C, ¹H NMR (400 MHz, DMSO-*d*₆): $\delta_{\rm H}$ (400 MHz, DMSO) 10.61 (1H, s), 8.72 (1H, d, *J* = 2.5), 8.56 (1H, d, *J* = 2.5), 7.47 (1H, dd, *J* = 8.8, 2.7), 7.38 (1H, d, *J* = 2.7), 7.02 (1H, d, *J* = 8.8), 4.11 (2H, t, *J* = 7.3), 1.71 – 1.56 (2H, m), 1.29 (2H, m), 0.90 (3 H, t, *J* = 7.3) ppm. ¹³C NMR (100

MHz, DMSO-*d*₆): δ _C 189.11, 154.86, 154.07, 150.60, 137.51, 137.43, 133.15, 129.73, 126.48, 123.54, 119.11, 114.70, 50.77, 30.94, 19.52, 13.92. ppm. EI-HRMS: Anal. Calcd for C₁₆H₁₅ClN₂O₅: 350.0669, Found: 350.0664.

3n: 1-Butyl-5-(5-fluoro-2-hydroxybenzoyl)-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 75 %, mp: 144-146 °C, ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 10.86 (1H, s), 8.68 (1H, d, *J*= 2.6), 8.30 (1H, d, *J*= 2.6), 7.33 (1H, dd, *J*= 9.2, 7.7), 7.21 (1H, dd, *J*= 8.4, 3.0), 7.10 (1H, dd, *J*= 9.2, 4.5), 4.22–4.04 (2 H, m), 1.89–1.77 (2H, m), 1.44 (2H, dd, *J*= 15.1, 7.5), 1.00 (3H, t, *J*= 7.4).¹³C NMR (100 MHz,

CDCl₃): δ _C 192.21, 158.68-158.66 (d, J = 2.18 Hz), 156.10, 153.71, 153.65, 147.43, 137.42, 124.73-124.49 (d, J = 23.84 Hz), 120.70-120.63 (d, J = 7.59 Hz), 117.80-117.74 (d, J = 7.11 Hz), 116.13-115.89 (d, J = 23.69 Hz), 113.92, 52.04, 31.08, 19.80, 13.50 ppm. EI-HRMS: Anal. Calcd for C₁₆H₁₅FN₂O₅: 334.0965, Found: 334.0961.

30: cyclohexyl-5-(2-hydroxybenzoyl)-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 87 %, mp: 206-208°C, ¹H NMR (400 MHz, DMSO- d_6): δ_H 10.47 (1H, s), 8.51 (2H, d, J = 3.7), 7.56–7.28 (2H, m), 7.12–6.83 (2H, m), 4.72 (1H, dd, J = 16.2, 7.5), 1.85 (4H, t, J = 13.5), 1.62 (3H, dd, J = 20.7, 11.8), 1.41 (2H, q, J = 12.7), 1.22 (1H, t, J = 12.8) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ_C 190.51, 156.29,

153.86, 146.42, 137.36, 137.17, 134.15, 131.02, 124.45, 120.09, 117.25, 115.09, 57.43, 31.61, 25.74, 24.90 ppm. EI-HRMS: Anal. Calcd for $C_{18}H_{18}N_2O_5$: 342.1216, Found: 342.1212.

3p:5-(5-chloro-2-hydroxybenzoyl)-1-cyclohexyl-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 85 %, mp: 210-212°C, ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 11.05 (1H, s), 8.62 (1H, s), 8.29 (1H, s), 7.52 (H, d, J = 8.9), 7.47 (1H, s), 7.09 (1H, d, J = 8.9), 5.00 (1H, t, J = 11.5), 2.16 – 1.93 (4H, m), 1.82 (1H, d, J = 13.9), 1.66 – 1.40 (4H, m), 1.32 – 1.06 (1H, m) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 192.38,

161.06, 153.52, 144.21, 137.67, 136.77, 136.41, 130.13, 124.27, 120.85, 118.88, 113.78, 57.05, 32.81, 25.63, 25.02 ppm. EI-HRMS: Anal. Calcd for $C_{18}H_{17}CIN_2O_5$: 376.0826, Found: 376.0820.

3q: 1-Benzyl-5-(5-chloro-2-hydroxybenzoyl)-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 65 %, mp: 186-188 °C, ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 11.00 (s, 1H), 8.67 (d, J = 2.6 Hz, 1H), 8.23 (d, J = 2.6 Hz, 1H), 7.46 – 7.40 (m, 5H), 7.32 (d, J = 2.6 Hz, 1H), 7.26 (s, 1H), 7.05 (d, J = 8.9 Hz, 1H), 5.29 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 191.99, 161.00, 153.81, 146.69, 137.31, 136.80, 133.52, 129.95, 129.74, 129.57, 129.06, 127.42, 124.22, 120.81, 118.81, 114.01.

54.11 ppm. EI-HRMS: Anal. Calcd for C₁₉H₁₃ClN₂ O₅: 384.0513, Found: 384.0511.

3r:1-Benzyl-5-(3,5-dichloro-2-hydroxybenzoyl)-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 78 %, mp: 180-182 °C, ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 11.07 (1H, s), 8.66 (1H, d, *J*= 2.6), 8.24 (1H, d, *J*= 2.6), 7.61 (1H, d, *J*= 2.4), 7.48–7.37 (5H, m), 7.26 (1H, d, *J*= 2.2), 5.29 (2H, s).¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 191.44, 160.47, 156.13, 153.78, 147.03, 137.17, 136.03, 133.38, 129.75, 129.62, 129.10, 128.56, 124.77, 124.24, 119.88, 113.70, 54.14 ppm. EI-

HRMS: Anal. Calcd for C₁₉H₁₂Cl₂N₂O₅: 418.0123, Found: 418.0122.

3s:1-Benzyl-5-(2-hydroxy-5-methylbenzoyl)-3-nitropyridin-2(1H)-one

Isolated as yellow solid, 72 %, mp: 184-186°C, ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 10.96 (1H, s), 8.67 (1H, d, *J* 2.5), 8.26 (1H, d, *J* 2.5), 7.46–7.39 (5H, m), 7.34 (1H, dd, *J* 8.5, 2.0), 7.10 (1H, d, *J* 1.3), 6.97 (1H, d, *J* 8.5), 5.30 (2H, s), 2.22 (3 H, s).¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 192.91, 160.57, 153.93, 146.80, 138.09, 137.92,

137.80, 133.96, 130.73, 129.55, 129.37, 129.02, 128.69, 118.91, 117.83, 114.71, 53.84, 20.49 ppm. EI-HRMS: Anal. Calcd for C₂₀H₁₆N₂O₅: 364.1059, Found: 364.1056.

5a:1-methyl-2-(methylamino)-3-nitro-1H-chromeno[2,3-b]pyridin-5(10aH)-one

Isolated as yellow solid, 94 %, mp: 200-202°C,¹H NMR (400 MHz, DMSO- d_6) δ 10.59 (d, J = 3.7 Hz, 1H), 7.90 (s, 1H), 7.81 (dd, J = 7.8, 1.5 Hz, 1H), 7.63 – 7.56 (m, 1H), 7.15 (t, J = 7.2 Hz, 1H), 7.07 (d, J = 8.2 Hz, 1H), 6.40 (d, J = 16.6 Hz, 1H), 3.51

(s, 3H), 3.25 (d, J = 5.1 Hz, 3H).¹³C NMR (100 MHz, DMSO- d_6) δ 179.39, 157.41, 156.49, 136.07, 126.85, 126.52, 122.87, 122.47, 118.14, 113.10, 112.97, 90.49, 42.71, 33.89.EI-HRMS: Anal. Calcd for C₁₄ H₁₃ N₃ O₄: 287.0906, Found: 287.0902.

5b:7-chloro-1-methyl-2-(methylamino)-3-nitro-1H-chromeno[2,3-b]pyridin-5(10aH)-one

Isolated as yellow solid, 93 %, mp: 219-221°C, ¹H NMR (400 MHz, DMSO- d_6) δ 10.54 (s, 1H), 7.94 (s, 1H), 7.74 (d, J = 2.7 Hz, 1H), 7.65 (dd, J = 8.8, 2.7 Hz, 1H), 7.14 (d, J = 8.8 Hz, 1H), 6.44 (s, 1H), 3.52 (s, 3H), 3.25 (d, J = 5.2 Hz,

3H).¹³C NMR (100 MHz, DMSO) δ 179.42, 157.41, 154.48, 136.86, 131.61, 126.43, 126.36, 122.51, 117.94, 113.32, 112.92, 90.38, 42.68, 33.88 ppm. EI-HRMS: Anal. Calcd for C₁₄ H₁₂Cl N₃ O₄: 321.0516, Found: 321.0513

5c: 7-bromo-1-methyl-2-(methylamino)-3-nitro-1H-chromeno[2,3-b]pyridin-5(10aH)-one

Isolated as yellow solid, 95 %, mp: 220-222°C,¹H NMR (400 MHz, DMSO- d_6) δ 10.54 (s, 1H), 7.94-7.81 (m, 2H), 7.74 (dd, J = 8.7, 2.3, 1H) 7.08 (d, J = 8.8 Hz, 1H), 6.45 (s, 1H), 3.52 (s, 3H), 3.25 (d, J = 5.3 Hz, 3H) ppm. ¹³C NMR (100

MHz, DMSO- d_6) δ_C 178.67, 157.83, 156.03, 138.84, 132.12, 129.31, 124.96, 121.34, 114.69, 113.69, 112.39, 91.36, 43.32, 34.46 ppm. EI-HRMS: Anal. Calcd for C₁₄ H₁₂Br N₃ O₄: 365.0011, Found: 365.0010

5d: 7-methyl-1-methyl-2-(methylamino)-3-nitro-1*H*-chromeno[2,3-b]pyridin-5(10a*H*)-one

Isolated as yellow solid, 92 %, mp: 192-194°C,¹H NMR (400 MHz, DMSO- d_6) δ 10.60 (d, J = 4.5 Hz, 1H), 7.90 (s, 1H), 7.60 (d, J = 1.5 Hz, 1H), 7.42 (dd, J = 8.4, 2.1 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.33 (s, 1H), 3.51 (s, 3H), 3.26 (d, J = 5.2 Hz, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 179.42, 157.42,

154.49, 136.86, 131.62, 126.43, 126.36, 122.52, 117.94, 113.32, 112.93, 90.39, 42.66, 33.87, 20.00. EI-HRMS: Anal. Calcd for C_{15} $H_{15}N_3$ O_4 : 301.1063, Found: 301.1060

5e:1-Butyl-2-(butylamino)-3-nitro-1H-chromeno[2,3-b]pyridin-5(10aH)-one

Isolated as yellow semi solid, 87 %, ¹H NMR (400 MHz, CDCl₃) δ _H 11.07 (1 H, d, *J* = 2.5), 8.16 (1 H, s), 7.92 (1 H, dd, *J* = 7.8, 1.6), 7.54 – 7.43 (1 H, m), 7.12 – 7.02 (1 H, m), 6.97 (1 H, d, *J* = 8.2), 6.13 (1 H, s), 3.91 – 3.43 (4 H, m), 1.92 – 1.71 (4 H, m), 1.50 (2 H, dd, *J* = 15.1, 7.5), 1.46 – 1.30 (2 H, m), 0.99 (6

H, td, J = 7.3, 5.7). ¹³C NMR (100 MHz, CDCl₃) δ _C 180.44, 157.03, 156.66, 135.87, 127.65, 123.39, 122.66, 117.98, 114.18, 114.12, 89.09, 54.18, 47.48, 32.10, 29.97, 19.86, 19.83, 13.73, 13.52 ppm. EI-HRMS: Anal. Calcd for C₂₀ H₂₅ N₃ O₄: 371.1845, Found: 371.1838

5f:1-Butyl-2-(butylamino)-7-chloro-3-nitro-1H-chromeno[2,3-b]pyridin-5(10aH)-one

Isolated as yellow semi solid, 85 %, ¹H NMR (400 MHz, CDCl₃) δ _H 11.01 (1H, s), 8.19 (1H, s), 7.88 (1H, d, *J* = 1.1), 7.43 (1H, dd, *J* = 8.7, 2.8), 6.93 (1H, d, *J* = 8.8), 6.12 (1H, s), 3.92 – 3.79 (1H, m), 3.78 – 3.64 (1H, m), 3.65 – 3.53 (1H, m), 3.48 (1H, dd, *J* = 12.5, 6.3), 1.79 (4 H, dd, *J* = 12.9, 5.7),

1.50 (2H, dd, J = 15.0, 7.5), 1.45 – 1.33 (2H, m), 0.99 (6H, td, J = 7.3, 5.4) ppm. ¹³C NMR (100 MHz, CDCl₃) δ _C179.26, 157.01, 154.99, 135.60, 128.53, 128.21, 127.07, 124.33, 119.64, 114.36, 112.99, 89.32, 54.31, 47.54, 32.10, 29.95, 19.87, 19.83, 13.72, 13.51 ppm. EI-HRMS: Anal. Calcd for C₂₀H₂₄Cl N₃ O₄: 405.1455, Found: 405.1454

5g: 1-Butyl-2-(butylamino)-7,9-dichloro-3-nitro-1H-chromeno[2,3-b]pyridin-5(10aH)-one

Isolated as yellow semi solid, 89 %, ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 11.04 (1 H, s), 8.25 (1 H, s), 7.81 (1 H, d, J = 2.5), 7.55 (1H, d, J = 2.5), 6.19 (1H,

s), 3.78 (2H, t, J = 7.9), 3.66–3.40 (2H, m), 2.03 – 1.77 (4H, m), 1.59–1.33 (4 H, m). 1.0 (6H, t, J = 7.0).¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 178.41, 156.95, 155.36, 135.17, 129.41, 127.94, 125.82, 125.24, 124.17, 114.39, 111.77, 90.44, 54.63, 47.61, 32.14, 30.40, 19.95, 19.87, 13.71, 13.51 ppm. EI-HRMS: Anal. Calcd for C₂₀ H₂₃ Cl₂ N₃ O₄: 439. 1066, Found: 439. 1063

5h:7-Bromo-1-butyl-2-(butylamino)-3-nitro-1H-chromeno[2,3-b]pyridin-5(10aH)-one

Isolated as yellow semi solid, 80 %, ¹H NMR (400 MHz, CDCl₃). δ _H 11.01 (1H, d, *J* = 2.5), 8.18 (1H, s), 8.02 (1H, d, *J* = 2.5), 7.56 (1H, dd, *J* = 8.7, 2.5), 6.87 (1H, d, *J* = 8.7), 6.12 (1H, s), 3.97– 3.34 (4H, m), 1.94–1.69 (4H, m), 1.58–1.33 (4H, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 1.58–1.33 (4H, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 1.58–1.33 (4H, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 1.58–1.33 (4H, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 1.58–1.33 (4H, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 1.58–1.33 (4H, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 1.58–1.33 (4H, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 1.58–1.33 (4H, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 0.99 (6H, td, *J* = 7.3, 5.1) ppm. ¹³C NMR (100 MHz, m), 0.99 (

CDCl₃) δ _C 179.14, 157.00, 155.47, 138.41, 130.16, 128.55, 124.75, 119.99, 115.42, 114.36, 112.90, 89.31, 54.32, 47.54, 32.10, 29.96, 19.87, 19.83, 13.73, 13.52 ppm. EI-HRMS: Anal. Calcd for C₂₀ H₂₄ Br N₃ O₄: 449.0950, Found: 449.0950

5i: 1-Butyl-2-(butylamino)-7-fluoro-3-nitro-1*H*-chromeno[2,3-b]pyridin-5(10a*H*)-one

Isolated as yellow semi solid, 84 %, ¹H NMR (400 MHz, CDCl₃) δ _H 11.03 (1 H, s), 8.18 (1 H, d, *J* = 2.5), 7.60 – 7.53 (1 H, m), 7.24 – 7.15 (1 H, m), 6.96 (1 H, dd, *J* = 9.0, 4.2), 6.12 (1 H, s), 3.90 – 3.43 (4 H, m), 1.80 (4 H, dd, *J* = 14.3, 7.0), 1.45 (4 H, ddd, *J* = 44.7, 14.8, 7.4), 1.00 (6 H, dt, *J* = 11.8, 6.0) ppm. ¹³C

NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 179.56, 157.04, 152.69-152.68 (d, J = 1.96 Hz), 128.42, 124.27-124.20 (d, J = 6.47 Hz), 123.28-123.03 (d, J = 24.31 Hz), 119.64-119.56 (d, J = 7.59 Hz), 114.34, 113.20, 113.03, 112.79, 89.25, 54.24, 47.53, 32.09, 29.93, 19.86, 19.83, 13.72, 13.51 ppm. EI-HRMS: Anal. Calcd for $C_{20}H_{24}FN_3O_4$: 389.1751, Found: 389.1748.

5j: 1-Butyl-2-(butylamino)-7-methyl-3-nitro-1*H*-chromeno[2,3-b]-pyridin-5(10a*H*)-one

Isolated as yellow semi solid, 86 %, ¹H NMR (400 MHz, CDCl₃) δ _H 11.09 (1H, d, *J* = 10.6), 8.20 (1H, d, *J* = 0.4), 7.76 (1H, d, *J* = 1.6), 7.32 (1H, dd, *J* = 8.3, 2.1), 6.87 (1H, d, *J* = 8.4), 6.08 (1H, s), 3.82 – 3.45 (4H, m), 1.78 (4H, m), 1.53 (2H, m), 1.37 (2H, dd, *J* = 14.7, 7.3), 1.0 (6H, t, *J* = 6.9) ppm. ¹³C

NMR (100 MHz, CDCl₃) δ _C 180.65, 157.12, 154.63, 136.87, 132.35, 127.64, 127.44, 123.07, 117.69, 114.36, 114.23, 89.02, 54.09, 47.50, 32.13, 29.92, 20.50, 19.88, 19.84, 13.73, 13.53 ppm. EI-HRMS: Anal. Calcd for C₂₁ H₂₇ N₃ O₄: 385.2002, Found: 385.2000

5k:2-(butylamino)-1-methyl-3-nitro-1*H*-chromeno[2,3-*b*]pyridin-5(10*aH*)-one

Isolated as yellow semi solid, 80 %, ¹H NMR (400 MHz, DMSO- d_6) $\delta_{\rm H}$ 11.68 (1H, s), 8.94 (1H, s), 8.85 (1H, d, J = 7.6), 8.65 (1H, t, J = 7.6), 8.20 (1H, t, J = 7.5), 8.12 (1H, d, J = 8.3), 7.42 (1H, s) 4.81–4.74 (1 H, m), 4.63 (1H, d, J = 7.5)

4.6), 4.55 (3H, s), 2.73–2.61 (2H, m), 2.41 (2H, dd, J = 14.9, 7.3), 1.95 (3H, t, J = 7.3) ppm. ¹³C NMR (100 MHz, DMSO- d_6) $\delta_{\rm C}$ 181.03, 158.18, 158.02, 137.75, 128.41, 127.85, 124.34, 124.12, 119.70, 115.08, 114.48, 91.85, 48.25, 44.32, 33.15, 20.70, 14.92 ppm. EI-HRMS: Anal. Calcd for C₁₇H₁₉N₃O₄: 329.1376, Found: 329.1371.

51:2-(butylamino)-7-chloro-1-methyl-3-nitro-1*H*-chromeno[2,3-*b*]pyridin-5(10*aH*)-one

Isolated as yellow semi solid, 84 %, ¹H NMR (400 MHz, DMSO- d_6) δ_H 10.60 (1H, s), 7.93 (1H, s), 7.73 (1H, d, J = 2.7), 7.64 (1H, dd, J = 8.8, 2.7), 7.13 (1H, d, J = 8.8), 6.44 (1H, s), 3.84–3.67 (1H, m), 3.67– 3.54 (1 H, m), 3.51 (3H, s), 1.65 (2H, dt, J = 14.0, 6.9), 1.45– 1.31 (2H, m), 0.92 (3 H, t, J = 7.4)

ppm. ¹³C NMR (100 MHz, DMSO- d_6) δ _C 178.80, 157.09, 155.63, 136.13, 127.13, 126.28, 124.48, 121.03, 118.86, 113.65, 112.89, 91.13, 47.24, 43.40, 32.09, 19.67, 13.89 ppm. EI-HRMS: Anal. Calcd for C₁₇H₁₈ClN₃O₄: 363.0986, Found: 363.0980.

5m:2-(butylamino)-1,7-dimethyl-3-nitro-1*H*-chromeno[2,3-*b*]pyridin-5(10*aH*)-one

Isolated as yellow semi solid, 83 %, ¹H NMR (400 MHz, DMSO- d_6) $\delta_{\rm H}$ 10.65 (1H, d, J= 2.5), 7.88 (1H, s), 7.59 (1H, d, J= 1.6), 7.41 (1H, dd, J= 8.4, 2.1), 6.96 (1H, d, J= 8.4), 6.31 (1H, s), 3.85–3.64 (1H, m), 3.57 (1H, dd, J= 13.6, 7.1), 3.50 (3H, s), 2.29 (3H, s), 1.71–1.57 (2H, m), 1.36 (2H, m), 0.91 (3H, t,

J= 7.4) ppm.¹³C NMR (100 MHz, DMSO- d_6) δ_C 179.95, 157.14, 154.98, 137.43, 132.20, 126.93, 126.65, 122.97, 118.44, 114.21, 113.40, 90.72, 47.21, 43.20, 32.14, 20.49, 19.68, 13.87..EI-HRMS: Anal. Calcd for C₁₈H₂₁N₃O₄: 343.1532, Found: 343.1529.

5n:1-benzyl-5-(5-chloro-2-hydroxybenzoyl)-3-nitropyridin-2(1H)-one

Isolated as yellow semi solid, 85 %, ¹H NMR (400 MHz, DMSO- d_6) $\delta_{\rm H}$ 10.69 (1H, d, J= 8.2), 7.89 (1H, s), 7.81 (1H, dd, J= 7.8, 1.3), 7.6–7.51 (1H, m), 7.16 (2H, d, J= 7.4), 6.40 (1H, s), 4.02–3.92 (1H, m), 3.50 (3H, s), 2.08 (1H, d, J= 9.6), 1.91–1.81 (1H, m), 1.71 (1H, d, J= 8.8), 1.60–1.14 (7H, m) ppm.¹³C NMR (100 MHz, DMSO- d_6) $\delta_{\rm C}$ 179.94, 156.92, 156.37, 136.66, 127.35, 126.64, 123.32, 123.06, 118.68, 114.12,

113.84, 90.94, 55.21, 43.24, 34.12, 33.15, 25.17, 24.07, 23.88 ppm.EI-HRMS: Anal. Calcd for $C_{19}H_{21}N_3O_4$: 355.1532, Found: 355.1533.

50:7-chloro-2-(cyclohexylamino)-1-methyl-3-nitro-1*H*-chromeno[2,3-*b*]pyridin-5(10*aH*)-one

Isolated as yellow semi solid, 87 %, ¹H NMR (400 MHz, DMSO- d_6) $\delta_{\rm H}$ 10.45 (1H, d, J= 7.7), 7.71 (1H, s), 7.51 (1H, d, J= 2.1), 7.42 (1H, dd, J= 8.7, 2.2), 6.92 (1H, d, J= 8.8), 6.23 (1H, s), 3.77 (1H, s), 3.29 (3H, s), 1.87 (1H, s), 1.67 (1H, d,

J= 8.5), 1.50 (1H, s), 1.44 –1.02 (7H, m) ppm.¹³C NMR (100 MHz, DMSO- d_6) $\delta_{\rm C}$ 178.87, 156.32, 155.59, 136.19, 127.50, 127.18, 126.28, 124.47, 121.10, 114.02, 113.08, 91.21, 55.27, 43.40, 34.07, 33.11, 25.14, 24.05, 23.89 ppm.EI-HRMS: Anal. Calcd for C₁₉H₂₀ClN₃O₄: 389.1142, Found: 389.1140.

5p:2-(cyclohexylamino)-1,7-dimethyl-3-nitro-1*H*-chromeno[2,3-*b*]pyridin-5(10*aH*)-one

Isolated as yellow semi solid, 86 %, ¹H NMR (400 MHz, DMSO- d_6) δ_H 10.70 (1 H, d, J= 8.2), 7.88 (1H, s), 7.60 (1H, d, J= 1.3), 7.42 (1H, dd, J= 8.4, 2.0), 6.99 (1H, d, J= 8.4), 6.36 (1H, s), 4.01–3.91 (1H, m), 3.49 (3H, s), 2.29 (3H, s), 2.08 (1H, d, J= 9.9), 1.95–1.82 (1H, m), 1.72 (1H, dd, J= 9.4, 3.8), 1.45 (7H, m) ppm.¹³C NMR (100 MHz, DMSO- d_6) δ_C 180.04, 156.41, 154.95, 137.52, 132.27,

126.95, 126.49, 122.98, 118.52, 114.40, 113.79, 90.84, 55.20, 43.24, 34.10, 33.14, 25.16, 24.06, 23.87, 20.50 ppm. EI-HRMS: Anal. Calcd for C₂₀H₂₃N₃O₄: 369.1689, Found: 369.1684.

EI-HRMS Spectrum:

EI-HRMS spectrum of compound 3a

EI-HRMS spectrum of compound 3b

EI-HRMS spectrum of compound 3c

EI-HRMS spectrum of compound 3d

EI-HRMS spectrum of compound 3e

EI-HRMS spectrum of compound 3f

EI-HRMS spectrum of compound 3g

EI-HRMS spectrum of compound 3h

EI-HRMS spectrum of compound 3i

EI-HRMS spectrum of compound 3j

EI-HRMS spectrum of compound 3k

EI-HRMS spectrum of compound 31

EI-HRMS spectrum of compound 3m

EI-HRMS spectrum of compound 3n

EI-HRMS spectrum of compound 30

EI-HRMS spectrum of compound 3p

EI-HRMS spectrum of compound 3q

EI-HRMS spectrum of compound 3s

EI-HRMS spectrum of compound 5a

EI-HRMS spectrum of compound 5b

EI-HRMS spectrum of compound 5c

EI-HRMS spectrum of compound 5d

EI-HRMS spectrum of compound 5e

EI-HRMS spectrum of compound 5f

EI-HRMS spectrum of compound 5g

EI-HRMS spectrum of compound 5h

EI-HRMS spectrum of compound 5i

EI-HRMS spectrum of compound 5j

EI-HRMS spectrum of compound 5k

EI-HRMS spectrum of compound 5l

EI-HRMS spectrum of compound 5m

EI-HRMS spectrum of compound 5n

EI-HRMS spectrum of compound 50

EI-HRMS spectrum of compound 5p

