Sequential Fractionation of Feruloylated Hemicelluloses and Oligosaccharides from Wheat Bran using Subcritical Water and Xylanolytic Enzymes

Supplementary Material

Andrea C. Ruthes,^a Antonio Martínez-Abad, ^a Hwei-Ting Tan,^{a,b.c} Vincent Bulone^{a,b} and Francisco Vilaplana^{*a}

^a Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, SE–106 91 Stockholm, Sweden. E-mail: franvila@kth.se

^b ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064 Australia.

^c Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia.

General composition	Raw wheat bran	Destarched wheat bran		
	wb	Dwb		
Moisture (%) ^a	23.3 (0.5)	18.5 (1.1)		
Carbohydrate content (mg g ⁻¹ DW) ^b	595.9 (0.6)	682.4 (0.09)		
Rha (%)	-	-		
Fuc (%)	-	-		
Ara (%)	17.1 (0.2)	23.0 (0.9)		
Xyl(%)	29.1 (0.7)	34.8 (1.0)		
Man (%)	2.4 (0.7)	2.8 (0.7)		
Gal (%)	3.3 (0.1)	2.0 (0.1)		
Glc (%)	43.3 (0.1)	34.7 (0.0)		
Uronic acids (%) ^c	4.8 (0.1)	2.7 (0.1)		
Starch (mg g ⁻¹ DW) ^d	169.4 (0.6)	28.9 (2.9)		
β-D-glucan (mg g⁻¹ DW) ^e	57.0 (3.0)	60.8 (1.0)		
Protein content (mg g ⁻¹ DW) ^f	202.0 (0.1)	197.0 (0.5)		
Val (%)	34.2 (1.8)	30.1 (0.2)		
Ala (%)	2.9 (0.3)	3.0 (0.1)		
Leu (%)	1.7 (0.3)	1.4 (0.1)		
lle (%)	6.3 (0.2)	6.3 (0.0)		
Asp (%)	36.6 (0.8)	32.4 (0.6)		
Glu (%)	5.8 (0.1)	9.0 (0.1)		
Phe (%)	1.9 (0.1)	5.2 (0.0)		
Trp (%)	10.6 (0.0)	12.5 (0.0)		
Phenolic acid content (mg g ⁻¹ DW) ^g	2.2 (0.1)	2.4 (0.3)		
<i>p</i> -coumaric acid (%)	3.2 (0.4)	9.7 (1.2)		
ferulic acid (%)	96.8 (0.6)	90.3 (1.2)		
Klason lignin (mg g ⁻¹) ^h	90.0 (3.8)	117.8 (1.4)		
Phytic acid (mg g ⁻¹ DW) ⁱ	9.6 (0.5)	n.d.		
Acetyl content (mg g ⁻¹ DW) ^j	9.3 (0.1)	8.2 (0.2)		

Table S1. General composition of raw wheat bran (wb) and after destarching (Dwb).

^a Moisture content was determined gravimetrically after drying in an oven at 110°C for 24 h.

^b Carbohydrate content was determined by phenol-sulphuric acid method ¹.

^c Uronic acid content was determined by colorimetric method ².

^d Starch content was determined using the Total Starch Assay (Megazyme kit).

 e Mixed-linkage β -D-glucan content was determined enzymatically (Megazyme kit).

^f Protein content was determined by hydrolysis, derivatization and GC-MS analysis. Amino acids: Val – valine, Ala – alanine, Leu – leucine, Ile – isoleucine, Asp – aspartic acid, Glu – glutamic acid, Phe – phenylalanine, Trp – tryptophan.

^g Phenolic acid content was determined by saponification, derivatization and GC-MS analysis.³

^h Klason lignin was determined gravimetrically from the residue after acid hydrolysis (H₂SO₄).

ⁱ Phytic acid was measured enzymatically using the total phosphorous kit

^j Acetyl content was measured after saponification with NaOH and HPLC-UV analysis

									Subcriti	cal Water	Extraction	(SWE)				
Composition		Alkaline E	traction		100	°C	120	°C	140	°C			160	°C		
	Na	ЮН	Ca(OH)₂		pH 5.0		pH 5.0		pH 5.0		pH 5.0		pH 7.0		рН 9.0	
	NE	NR	CE	CR	HE	HR	HE	HR	HE	HR	HE	HR	HE	HR	HE	HR
Yield (% DW) ^a	31.3	14.8	12.4	37.0	13.3	47.2	9.2	42.5	15.6	26.6	20.9	39.0	22.3	39.3	15.1	38.0
Carbohydrate content (mg g ⁻¹) ^b	871.9	750.0	882.2	837.9	679.7	474.9	794	892.7	780	779.3	870.2	761.8	919.8	694.1	897.8	785.0
AX (%) ^c Glc (%) ^d	72.8 22.3	43.8 51.9	80.6 14.1	57.0 39.7	24.1 73.0	59.0 37.5	51.8 41.4	58.5 36.5	55.9 37.8	59.4 35.5	73.1 23.4	57.2 38.1	74.3 21.8	60.1 34.6	77.7 18.3	57.9 38.9
A/X ^e	0.90	0.63	1.03	0.59	0.50	0.65	0.62	0.66	0.60	0.73	0.48	0.77	0.51	0.54	0.68	0.86
Ara (%)	34.4	16.9	40.9	21.2	8.0	23.2	19.9	23.3	20.9	25.0	23.8	24.9	25.2	21.1	31.5	26.9
Xyl (%)	38.4	26.9	39.8	35.8	16.1	35.8	31.9	35.2	35.0	34.4	49.3	32.3	49.1	39.0	46.2	31.1
Man (%)	0.5	2.9	0.7	1.4	0.8	1.4	1.3	1.3	1.3	2.0	0.4	1.4	0.6	2.6	0.5	1.4
Gal (%)	4.4	1.4	4.6	1.9	2.0	2.1	5.5	3.7	5.0	3.1	3.1	3.3	3.3	2.7	3.5	1.8
Glc (%)	22.3	51.9	14.1	39.7	73.0	37.5	41.4	36.5	37.8	35.5	23.4	38.1	21.8	34.6	18.3	38.9
Uronic acid (%) ^f	3.6 (0.2)	n.d. ^g	3.3 (0.1)	n.d.	1.8 (0.1)	n.d.	1.9 (0.1)	n.d.	1.8 (0.1)	n.d.	1.9 (0.1)	n.d.	1.9 (0.1)	n.d.	1.9 (0.1)	n.d.
Protein content (mg g ⁻¹) ^h	125.9 (7.7)	n.d.	149.8 (13.8)	n.d.	100.0 (10.0)	n.d.	172.9 (2.9)	n.d.	80.1 (0.8)	n.d.	64.8 (0.4)	n.d.	70.9 (0.87)	n.d.	60.2 (0.2)	n.d.
Phenolic acid content (mg g ⁻¹) ⁱ	0.2 (0.0)	0.3 (0.0)	0.2 (0.0)	0.3 (0.0)	1.3 (0.2)	1.5 (0.2)	2.2 (0.4)	3.8 (0.4)	2.2 (0.1)	4.1 (0.3)	2.0 (0.3)	3.7 (0.4)	3.8 (0.2)	3.0 (0.3)	0.8 (0.1)	0.5 (0.1)
Ferulic acid (%)	98.7 (0.6)	94.5 (1.8)	98.4 (1.8)	100.0 (0.0)	97.6 (0.5)	97.5 (0.3)	97.6 (1.0)	86.1 (0.9)	98.6 (1.7)	86.5 (0.9)	97.9 (1.6)	95.8 (0.5)	98.3 (3.2)	93.7 (0.6)	98.9 (0.8)	97.7 (0.3)
M _w × 10 ⁵ (g mol ⁻¹)	4.6	-	4.7	-	n.d.	-	3.2	-	2.1	-	1.9	-	2.7	-	3.0	-

Table S2. Detailed yields, monosaccharide composition and phenolic acid content of the extracts (E) and residues (R) after alkaline [NaOH and Ca(OH)₂] and subcritical water extraction (SWE)

^a Yields were determined gravimetrically based on the dry weight (DW) of the samples; ^b Carbohydrate content was determined by phenol-sulphuric acid method ¹; ^c Arabinoxylan (AX) content was calculated based on the total of arabinose (Ara) and xylose (Xyl) composition. This value includes the residual Ara potentially present in arabinogalactan; ^d Glucose (Glc) content can be potentially assigned to mixed-linkage β -D-glucans in the extracts (E) after TFA hydrolysis and to cellulose in the residues (R) after H₂SO₄ hydrolysis; ^e A/X is the ratio between Ara and Xyl; ^f Uronic acid content was determined by colorimetric method ²; ^g n.d. – Not determined; ^h Protein content was determined by Bradford colorimetric method ⁴; ⁱ Phenolic acid content was determined by saponification, derivatization and GC-MS analysis.³ Ferulic acid content is presented as % of the total phenolic acid content. NOTE: The numbers in parenthesis represents the standard deviation of the triplicates.

		Linkage composition (%mol) ^a									
	NE-H	HE-120-H	HE-140-H	HE-160-5-H	HE-160-7-H	HE-160-9-H					
Total Ara (%) ^b	39.9 (2.7)	29.8 (2.7)	25.7 (1.1)	24.7 (0.8)	25.3 (0.8)	22.8 (0.7)					
Araf-(1→	30.4 (1.4)	23.7 (1.5)	20.3 (0.5)	18.9 (0.4)	19.9 (0.6)	18.7 (0.5)					
→2)-Araf-(1→	2.1 (0.1)	1.5 (0.1)	1.5 (0.1)	1.4 (0.1)	1.7 (0.0)	1.4 (0.0)					
→3)-Araf-(1→	4.9 (0.6)	1.4 (0.6)	1.4 (0.1)	1.2 (0.0)	1.9 (0.1)	1.7 (0.1)					
→5)-Araf-(1→	1.6 (0.5)	2.4 (0.3)	1.8 (0.3)	2.7 (0.2)	1.4 (0.1)	1.0 (0.1)					
→2,3,5)-Araf-(1→	-	0.8 (0.1)	0.7 (0.1)	0.5 (0.1)	0.5 (0.0)	-					
Total Xyl (%) ^b	54.2 (3.6)	48.1 (3.2)	49 (1.9)	49.1 (0.5)	54.3 (2.3)	63.1 (2.2)					
Xylp-(1→	5.4 (0.4)	2.4 (0.5)	0.3 (0.0)	1.8 (0.1)	2.5 (0.1)	2.5 (0.2)					
→4)-Xylp-(1→	25.9 (0.3)	28.4 (1.1)	31.8 (1.2)	30.1 (0.1)	31.4 (1.4)	39.7 (0.8)					
\rightarrow 2,4)-Xylp-(1 \rightarrow	3.7 (0.8)	2.6 (0.4)	3.1 (0.1)	3.2 (0.0)	4.6 (0.8)	4.1 (0.1)					
→3,4)-Xylp-(1→	7.7 (1.0)	5.5 (0.5)	5.0 (0.3)	6.5 (0.1)	7.4 (0.7)	7.8 (0.3)					
→2,3,4)-Xylp-(1→	11.5 (1.1)	9.2 (0.7)	8.7 (0.5)	7.6 (0.1)	8.4 (0.6)	9.0 (0.9)					
Total Glc (%) ^b	1.7 (0.3)	15.6 (1.8)	22.0 (2.4)	21.0 (0.4)	17.4 (1.9)	12.1 (0.4)					
Glcp-(1→	0.2 (0.0)	1.3 (0.3)	3.0 (0.5)	2.4 (0.1)	2.0 (0.5)	1.2 (0.0)					
\rightarrow 3)-Glcp-(1 \rightarrow	0.2 (0.0)	2.3 (0.3)	7.0 (0.8)	5.8 (0.0)	5.0 (0.5)	3.1 (0.1)					
\rightarrow 4)-Glcp-(1 \rightarrow	1.3 (0.2)	10.2 (0.3)	12.0 (1.1)	12.8 (0.3)	10.4 (0.8)	7.8 (0.2)					
Total Gal (%) ^b	3.7 (0.9)	6.3 (1.0)	3.2 (0.7)	4.9 (0.2)	2.5 (0.4)	2.0 (0.1)					
Galp-(1→	1.2 (0.2)	1.7 (0.3)	0.8 (0.1)	0.9 (0.0)	0.9 (0.2)	0.8 (0.1)					
\rightarrow 3)-Galp-(1 \rightarrow	0.5 (0.2)	0.8 (0.1)	0.7 (0.2)	0.8 (0.1)	0.4 (0.1)	0.3 (0.0)					
\rightarrow 4)-Galp-(1 \rightarrow	1.1 (0.2)	0.3 (0.1)	0.7 (0.1)	1.3 (0.1)	0.6 (0.1)	0.6 (0.0)					
\rightarrow 3,6)-Galp-(1 \rightarrow	0.9 (0.3)	3.6 (0.5)	1.0 (0.3)	1.8 (0.0)	0.7 (0.1)	0.3 (0.0)					
Total AX (%) ^c	84.9	72.2	74.1	72.3	80.6	83.2					
A/X ^d	0.74	0.62	0.52	0.50	0.47	0.36					

Table S3. Glycosidic linkage composition of the high molar mass (H) fractions from alkaline and subcritical water extraction.

^a The linkage composition (%mol) was obtained after analysis of the partially-methylated alditol acetates (PMAA) by GC-MS and corrected to the monosaccharide composition.

^b The total monosaccharide composition (%mol) was obtained after TFA hydrolysis and further analysis of the alditol acetates by GC-MS.

^c The total arabinoxylan (AX) content is calculated from the linkage composition of the Xyl and Araf residues.

^d The arabinose-to-xylose (A/X) ratio is calculated from the monosaccharide composition.

		Linkage composition (%mol) ^a									
	NE-L	HE-120-L	HE-140-L	HE-160-5-L	HE-160-7-L	HE-160-9-L					
Total Ara (%) ^b	29.3 (2.9)	17.9 (1.4)	26.2 (2.2)	21.6 (0.5)	31.1 (3.1)	26.1 (0.4)					
Araf-(1→	22.1 (1.4)	8.4 (0.4)	16.6 (0.5)	16.2 (0.3)	19.2 (1.6)	19.9 (0.3)					
\rightarrow 2)-Araf-(1 \rightarrow	2.0 (0.3)	n.d.	1.4 (0.5)	1.3 (0.1)	0.9 (0.3)	1.7 (0.0)					
\rightarrow 3)-Araf-(1 \rightarrow	3.1 (0.6)	0.5 (0.1)	1.5 (0.2)	1.3 (0.0)	0.9 (0.3)	2.3 (0.0)					
→5)-Araf-(1→	2.0 (0.3)	6.2 (0.7)	3.8 (0.1)	2.8 (0.1)	6.2 (0.4)	1.6 (0.0)					
→2,3,5)-Araf-(1→	n.d.	2.1 (0.1)	2.6 (0.8)	0.2 (0.0)	3.8 (0.4)	0.6 (0.0)					
Total Xyl (%) ^b	31.3 (2.9)	35.0 (1.3)	41.2 (2.5)	48.8 (0.9)	48.6 (1.6)	49.7 (1.3)					
Xylp-(1→	3.5 (0.3)	6.3 (0.4)	1.2 (0.2)	2.0 (0.0)	1.1 (0.5)	3.6 (0.3)					
\rightarrow 4)-Xylp-(1 \rightarrow	13.4 (1.1)	19.2 (0.3)	22.6 (0.8)	27.6 (0.5)	30.4 (0.9)	25.5 (0.5)					
\rightarrow 2,4)-Xylp-(1 \rightarrow	3.1 (0.6)	1.6 (0.1)	2.5 (0.6)	3.1 (0.2)	3.5 (0.2)	3.5 (0.5)					
\rightarrow 3,4)-Xylp-(1 \rightarrow	6.0 (0.3)	2.7 (0.1)	5.7 (0.9)	6.7 (0.1)	5.8 (0.7)	7.6 (0.2)					
→2,3,4)-Xylp-(1→	5.3 (0.6)	5.3 (0.4)	9.3 (0.0)	9.5 (0.1)	7.8 (0.7)	9.5 (0.3)					
Total Glc (%) ^b	29.4 (2.3)	41.8 (2.4)	28.9 (1.9)	25.3 (1.4)	20.4 (2.0)	20.2 (0.6)					
Glcp-(1→	12.5 (0.5)	6.2 (0.5)	5.3 (0.6)	2.7 (0.1)	2.2 (0.7)	1.4 (0.2)					
\rightarrow 3)-Glcp-(1 \rightarrow	2.4 (0.9)	4.3 (0.1)	5.2 (0.4)	6.1 (0.6)	5.1 (0.9)	5.9 (0.0)					
\rightarrow 4)-Glcp-(1 \rightarrow	8.3 (0.7)	23.8 (1.5)	17.7 (0.7)	15.8 (0.7)	13.0 (0.4)	12.2 (0.1)					
\rightarrow 4,6)-Glcp-(1 \rightarrow	6.3 (0.3)	7.6 (0.3)	0.7 (0.1)	0.8 (0.1)	n.d. ^f	0.7 (0.3)					
Total Gal (%) ^b	9.0 (0.5)	5.3 (0.6)	3.6 (0.6)	4.3 (0.2)	n.d.	4.1 (0.3)					
Galp-(1→	5.4 (0.1)	3.8 (0.1)	1.4 (0.1)	1.0 (0.0)	n.d.	1.1 (0.0)					
\rightarrow 3)-Galp-(1 \rightarrow	1.2 (0.1)	0.6 (0.3)	0.5 (0.2)	0.6 (0.0)	n.d.	0.5 (0.0)					
\rightarrow 4)-Galp-(1 \rightarrow	0.5 (0.1)	0.7 (0.1)	0.3 (0.1)	0.9 (0.1)	n.d.	1.3 (0.2)					
\rightarrow 3,6)-Galp-(1 \rightarrow	1.9 (0.2)	<0.1	0.5 (0.1)	1.5 (0.1)	n.d.	0.6 (0.0)					
Total AX (%) ^c	49.5	43.7	68.3	66.4	68.7	71.3					
A/X ^d	0.94	0.51	0.64	0.44	0.64	0.53					

Table S4. Glycosidic linkage composition of the low molar mass (L) fractions from alkaline and subcritical water extraction.

^a The linkage composition (%mol) was obtained after analysis of the partially-methylated alditol acetates (PMAA) by GC-MS and corrected to the monosaccharide composition.

^b The total monosaccharide composition (%mol) was obtained after TFA hydrolysis and further analysis of the alditol acetates by GC-MS.

^c The total arabinoxylan (AX) content is calculated from the linkage composition of the Xylp and Araf residues.

 $^{\rm d}$ The arabinose-to-xylose (A/X) ratio is calculated from the monosaccharide composition. $^{\rm f}$ n.d. – Not detected.

n.a. – Not detected.

Oligosaccharide family	m/z	Proposed assignation*
	305	[P ₂ +Na] ⁺
	437	[P ₃ +Na] ⁺
	569	[P ₄ +Na] ⁺
	701	[P ₅ +Na] ⁺
Arabinoxylan oligosaccharides (AXOs)	833	[P ₆ +Na] ⁺
	965	[P ₇ +Na] ⁺
	1097	[P ₈ +Na] ⁺
	1229	[P ₉ +Na] ⁺
	1361	[P ₁₀ +Na] ⁺
	613	[P₃F+Na]⁺
Feruloviated Arabino-vulo-	745	[P ₄ F+Na] ⁺
	877	[P₅F+Na]⁺
oligosaccitatioes (FAAOS)	1009	[P ₆ F+Na] ⁺
	1141	[P ₇ F+Na] ⁺
	527	[H ₃ +Na] ⁺
	689	[H ₄ +Na] ⁺
Hexo-oligosaccharides (galactan	851	[H ₅ +Na] ⁺
oligosaccharides, cello-oligosaccharides and	1013	[H ₆ +Na] ⁺
mixed-linkage β -D-glucan oligosaccharides)	1175	[H ₇ +Na] ⁺
	1337	[H ₈ +Na] ⁺
	1499	[H ₉ +Na] ⁺

Table S5. Peak annotation and assignment of the oligosaccharide mass profiles obtained by ESI-MS.

*P – pentose; F – ferulic acid; H - hexose. The subscript number is related to the degree of polymerization (DP).

SWE + Enzymatic treatment + SWE 160°C. pH 7.0160°C. pH 7.0										
	Con	trol	F	E	2	ĸ	FE+X			
	ZE	ZR	ZE	ZR	ZE	ZR	ZE	ZR		
Yield (% DW) ^a	6.9	79.9	5.8	70.1	8.0	75.5	17.9	66.2		
Carbohydrate content (mg g ⁻¹) ^b	308.2	331.2	839.9	456.5	894.7	473.4	871.6	408.4		
AX (%) ^c	70.4	58.2	72.6	59.2	73.1	58.9	62.6	59.1		
Glc (%) ^d	22.6	37.9	20.0	36.8	18.0	37.1	30.0	36.8		
A/X ^e	0.88	0.77	0.97	0.79	1.20	0.84	0.97	0.78		
Rha (%)	1.5	-	1.9	-	2.0	-	1.8	-		
Ara (%)	32.9	25.3	35.8	26.0	39.8	26.9	30.8	26.0		
Xyl (%)	37.5	32.9	36.8	33.1	33.3	31.9	31.9	33.1		
Man (%)	0.8	2.3	0.9	2.2	1.9	2.1	1.4	2.2		
Gal (%)	4.7	1.8	4.5	1.9	5.0	1.9	4.1	1.9		
Glc (%)	22.6	37.9	20.0	36.8	18.0	37.1	30.0	36.8		
Phenolic acid content (mg g ⁻¹) ^f	-	1.0 (0.003)	1.8 (0.00)	-	-	1.1 (0.07)	3.8 (0.03)	-		
Ferulic acid (%) ^g	-	100 (0.10)	100 (0.05)	-	-	100 (0.03)	100 (0.06)	-		

Table S6. Detailed yields, monosaccharide composition and phenolic acid content of SWE residue after enzymatic treatment [Feruloyl sterase (FE) and Xylanase (X)] followed by a second round of SWE

^a Yields were determined gravimetrically based on the dry weight (DW) of the samples;

^b Carbohydrate content was determined by phenol-sulphuric acid method ¹;

^c Arabinoxylan (AX) content was calculated based on the total of arabinose (Ara) and xylose (Xyl) composition. This value includes the residual Ara potentially present in arabinogalactan;

^d Glucose (Glc) content can be potentially assigned to mixed-linkage β -D-glucans in the extracts (E) after TFA hydrolysis and to cellulose in the residues (R) after H₂SO₄ hydrolysis;

^e A/X is the ratio between Ara and Xyl;

^f Phenolic acid content was determined by saponification, derivatization and GC-MS analysis.³

^g Ferulic acid content is presented as % of the total phenolic acid content.

				DP	PH• 🛛		ABTS*+ b							
Sample			Concentration (µg mL ⁻¹)											
		10	30	50	100	EC ₅₀	10	30	50	100	EC ₅₀			
	Ascorbic acid	67.1 ± 0.61	76.6 ± 0.20	81.1 ± 0.06	81.6 ± 0.03	3.9 ±0.39	84.8 ± 0.17	95.4 ± 0.06	95.5 ± 0.04	95.7 ± 0.07	2.9 ± 0.24			
Control	Ferulic acid	70.2 ± 0.09	74.7 ± 0.00	82.6 ± 0.50	84.0 ± 0.09	4.4 ± 0.39	66.2 ± 0.67	68.6 ± 0.09	77.8 ± 0.74	85.0 ± 0.64	6.1 ± 0.13			
	WE-AX	-5.2 ± 0.95	-4.7 ± 1.77	-7.2 ± 0.00	-6.2 ± 1.45	1174.7 ± 5.35	0.9 ± 0.27	2.8 ± 0.10	4.6 ± 0.25	5.3 ± 0.25	1147.7 ±0.63			
Low molar mass	NE-L	-6.8 ± 0.23	-3.4 ± 0.10	-0.1 ± 0.01	2.1 ± 0.25	285.6 ± 1.15	-	-	-	4.3 ± 0.25				
	HE-120-5-L	11.3 ± 0.12	22.0 ± 0.00	28.5 ± 0.79	36.5 ± 0.47	135.6 ± 1.12	-	-	-	8.1 ±0.10	-			
	HE-140-5-L	16.7 ± 0.38	16.7 ± 0.06	20.1 ± 1.52	26.5 ± 1.46	377.6 ± 2.24	-	-	-	8.1 ± 0.10	-			
(L)	HE-160-5-L	5.8 ± 1.20	9.7 ± 0.09	14.3 ± 0.93	20.2 ± 0.73	246.7 ± 2.58	-	-	-	8.1 ± 0.10	-			
	HE-160-7-L	15.5 ± 0.26	16.7 ± 0.12	19.7 ± 0.38	36.1 ± 0.35	78.79 ± 1.12	-	-	-	9.1 ± 0.10	-			
	HE-160-9-L	5.8 ± 0.18	7.8 ± 0.16	9.6 ± 0.18	14.4 ± 0.10	631.4 ± 3.36	-	-	-	2.6 ± 0.20	-			
	NE-H	-7.9 ± 1.43	-2.8 ± 0.41	0.3 ± 0.47	1.8 ± 0.40	294.9 ± 1.34	2.2 ± 0.05	5.3 ± 0.25	7.0 ± 0.15	9.2 ± 0.21	679.8 ± 0.38			
	HE-120-5-H	22.6 ± 0.73	27.9 ± 0.50	35.4 ± 0.15	50.7 ± 0.25	75.0 ± 0.75	-	-	-	7.6 ± 0.10	-			
High molar mass	HE-140-5H	23.2 ± 1.46	27.6 ± 0.99	35.3 ± 0.29	50.5 ± 0.50	79.59 ± 0.84	-	-	-	9.4 ± 0.10	-			
(H)	HE-160-5-H	19.8 ± 0.54	24.3 ± 0.22	41.9 ± 0.80	49.9 ± 0.01	86.47 ± 0.84	-	-	-	10.2 ± 0.20	-			
	HE-160-7-H	37.9 ± 0.26	40.5 ± 0.18	41.9 ± 0.26	55.1 ± 0.06	53.6 ± 1.34	10.7 ± 0.05	13.5 ± 0.10	17.2 ± 0.20	23.8 ± 0.10	286.1 ± 0.19			
	HE-160-9-H	0.00 ± 0.26	12.0 ± 0.15	19.7 ± 0.38	20.6 ± 0.35	136.0 ± 0.96	-	-	-	3.7 ± 0.10	-			

Table S7. Scavenging activity of different concentrations of wb alkaline and subcritical water extracts against DPPH[•] and ABTS[•]

* Data are expressed as means ± standard deviations of triplicate measurements.

^a DPPH[•] scavenging activity was measured according to Brand-Willians et al., ⁵.

^b DPPH[•]^E scavenging activity was measured according to Re et al., ⁶.

Figure S1. Mass pofiling of the oligomeric fractions by ESI-MS. (a) Low molar mass fraction after membrane filtration (HE-160-7-L); (b) Enzymatic treatment of the residue: control (C) and feruloyl esterase (FE). NOTE: P: pentose, H: hexose.

Figure S2. Valorization of the crosslinked residue by treatment with auxiliary enzymes (lichenase and/or cellulase) followed by subcritical water extraction. (a) Activity of the enzymatic treatments as measured by reducing sugar analysis: L: Lichenase; C: cellulase; L+C: combination of lichenase and cellulase; (b) Total solid yields of the extracts and the residue after the enzymatic treatment (EZ) and the subsequent subcritical water extraction (HE: extract; HR: residue).

References

- 1. M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith, *Analytical Chemistry*, 1956, **28**, 350-356.
- 2. T. M. C. C. Filisetti-Cozzi and N. C. Carpita, *Analytical Biochemistry*, 1991, **197**, 157-162.
- 3. P. Comino, H. Collins, J. Lahnstein, C. Beahan and M. J. Gidley, *Food Hydrocolloids*, 2014, **41**, 219-226.
- 4. M. M. Bradford, *Analytical Biochemistry*, 1976, **72**, 248-254.
- 5. W. Brand-Williams, M. E. Cuvelier and C. Berset, *LWT Food Science and Technology*, 1995, **28**, 25-30.
- 6. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, *Free Radical Biology & Medicine*, 1999, **26**, 1231-1237.