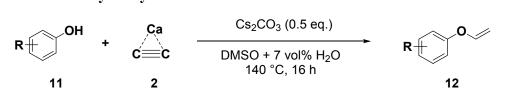
Supporting Information

Direct vinylation of natural alcohols and derivatives with calcium carbide

Siew Ping Teong, Ariel Chua Yi Hui, Shiyun Deng, Xiukai Li, Yugen Zhang


General Information

All solvents and chemicals used were obtained from commercial suppliers and used directly without any pre-treatment, unless otherwise indicated. All reactions were set up under argon atmosphere unless otherwise stated.

Analytical thin layer chromatography (TLC) was performed using Merck 60 F-254 silica gel plates with visualization by ultraviolet light (254 nm) and/or I₂ stain. ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on Bruker AV-400 (400 MHz) spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) with the residual solvent peak of tetramethylsilane used as the internal standard at 0.00 ppm. ¹H NMR data are reported in the following order: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet and m = multiplet), coupling constants (J, Hz), integration and assignment. High resolution mass spectra (HRMS) were recorded on a Bruker micrOTOF-QII spectrometer.

General Experimental Procedure

Preparation of Phenyl Vinyl Ethers

In a 8 mL pressure vial, Cs_2CO_3 (0.5 mmol), alcohol (1 mmol) and CaC_2 (4 mmol) were added. The vial was then purged and refilled with argon thrice before DMSO + 7 vol%

 H_2O (5 mL) was added to the vial using a syringe. The reaction was stirred at 140 °C for 16 h, cooled to room temperature before it was diluted with H_2O (10 mL) and extracted with diethyl ether (3 x 10 mL). The combined organic layer was dried over anhydrous Na_2SO_4 and concentrated in vacuum. The residue was further purified by column chromatography on silica gel to afford the corresponding vinyl ethers. The NMR spectra data of compounds $12a^1$, $12d^2$, $12f^3$, $12g^3$, $12h^3$ and $12k^2$, are available in the literature and are referenced accordingly.

1,5-bis(vinyloxy)pentane (3b)

This compound was prepared according to the optimized condition (Table S1, Entry 8) and purified by liquid-liquid extraction with ether as described above to give the product as an orange liquid (151 mg, 97%). ¹**H NMR** (400 MHz, CDCl₃) δ 6.47 (dd, *J* = 6.8, 14.4 Hz, 2H, CH), 4.17 (dd, *J* = 2.0, 14.4 Hz, 2H, =CH₂), 3.98 (dd, *J* = 2.0, 6.9 Hz, 2H, =CH₂), 3.69 (t, *J* = 6.5 Hz, 4H, CH₂), 1.74 – 1.67 (m, 4H, CH₂), 1.53 – 1.43 (m, 2H, CH₂); ¹³**C NMR** (101 MHz, CDCl₃) δ 152.0, 86.4, 67.9, 28.9, 22.8; HRMS (ESI+) calc. for C₉H₁₆O₂ [M+H]⁺ 157.1223; found 157.1220

1,2,3-tris(vinyloxy)propane (6)

This compound was prepared according to the optimized condition (Table S2, Entry 5) under general procedure and isolated by column chromatography (hexane) to give the product as a light yellow liquid (105 mg, 62%). ¹**H NMR** (400 MHz, CDCl₃) δ 6.48 (dd, J = 6.8, 14.4 Hz, 2H, CH), 6.39 (dd, J = 6.6, 14.1 Hz, 1H, CH), 4.40 (dd, J = 2.0, 14.1 Hz, 1H, =CH₂), 4.29 – 4.25 (m, 1H, CH), 4.22 (dd, J = 2.4, 14.3 Hz, 2H, =CH₂), 4.10 (dd, J = 2.0, 6.5 Hz, 1H, =CH₂), 4.05 (dd, J = 2.4, 6.8 Hz, 2H, =CH₂), 3.90 – 3.83 (m, 4H, CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 151.4, 150.8, 89.5, 87.2, 75.8, 66.5; HRMS (ESI+) calc. for C₉H₁₄O₃ [M+H]⁺ 171.1016; found 171.1015

1,2,3,4-tetrakis(vinyloxy)butane (8a)

This compound was prepared according to the optimized condition (Scheme 3) under general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/30) to give the product as a colourless liquid (90 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ

6.48 (dd, J = 6.8, 14.3 Hz, 2H, CH), 6.33 (dd, J = 6.5, 14.1 Hz, 2H, CH), 4.40 (dd, J = 2.0, 14.0 Hz, 2H, =CH₂), 4.27 – 4.23 (m, 2H, CH), 4.22 (dd, J = 2.2, 14.2 Hz, 2H, =CH₂), 4.09 (dd, J = 2.1, 6.4 Hz, 2H, =CH₂), 4.05 (dd, J = 2.3, 6.8 Hz, 2H, =CH₂), 3.96 (dd, J = 2.8, 11.0 Hz, 2H, CH₂), 3.86 (dd, J = 4.5, 11.0 Hz, 2H, CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 151.6, 151.1, 90.0, 87.4, 76.5, 66.1; HRMS (ESI+) calc. for C₁₂H₁₈O₄ [M+Na]⁺ 249.1097; found 249.1093

2,3-bis(vinyloxy)buta-1,3-diene (8b)

This compound was prepared according to the optimized condition (Scheme 3) under general procedure and isolated by column chromatography (hexane) to give the product as a light yellow liquid (17 mg, 12%). Low isolated yield was attributed to the volatility of the product. ¹H NMR (400 MHz, CDCl₃) δ 6.48 (dd, *J* = 6.0, 13.7 Hz, 2H, CH), 5.02 (d, *J* = 1.6 Hz, 2H, =CH₂), 4.81 (dd, *J* = 1.6, 13.8 Hz, 2H, =CH₂), 4.56 (d, *J* = 1.6 Hz, 2H, =CH₂), 4.45 (dd, *J* = 1.6, 6.0 Hz, 2H, =CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 147.5, 96.0, 91.4; HRMS (ESI+) calc. for C₈H₁₀O₂ [M+H]⁺ 139.0754; found 139.0753

1,2,3,4,5-pentakis(vinyloxy)pentane (10)

This compound was prepared according to the optimized condition (Scheme 4) under general procedure and isolated by column chromatography (DCM/hexane = 1/5 to 1/3) to give the product as a colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.47 (dd, J = 6.8, 14.3 Hz, 2H, CH), 6.35 (dd, J = 6.6, 14.1 Hz, 2H, overlapping CH), 6.31 (dd, J = 6.4, 14.0 Hz, 1H, overlapping CH), 4.47 – 4.40 (m, 3H,overlapping =CH₂), 4.28 – 4.19 (m, 5H, overlapping CH, =CH₂), 4.11 (dd, J = 2.1, 6.5 Hz, 2H, =CH₂), 4.07 – 4.04 (m, 3H, overlapping CH, =CH₂), 3.91 (dd, J = 4.7, 10.7 Hz, 2H, CH₂), 3.82 (dd, J = 5.0, 10.7 Hz, 2H, CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 152.6, 151.3, 151.1, 90.0, 89.7, 87.6, 78.4, 76.9, 65.9; HRMS (ESI+) calc. for C₁₅H₂₂O₅ [M+Na]⁺ 305.1359; found 305.1360

(vinyloxy)benzene (12a)¹

This compound was prepared according to the general procedure and isolated by column chromatography (hexane) to give the product as a light yellow liquid (102 mg, 85%). ¹H **NMR** (400 MHz, CDCl₃) δ 7.35 – 7.30 (m, 2H, ArH), 7.10 – 7.06 (m, 1H, ArH), 7.02 –

6.99 (m, 2H, ArH), 6.65 (dd, J = 6.1, 13.7 Hz, 1H, CH), 4.77 (dd, J = 1.6, 13.7 Hz, 1H, =CH₂), 4.43 (dd, J = 1.7, 6.1 Hz, 1H, =CH₂); ¹³C **NMR** (101 MHz, CDCl₃) δ 156.9, 148.3, 129.8, 123.3, 117.2, 95.2

1,4-bis(vinyloxy)benzene (12b)

This compound was prepared according to the general procedure and isolated by column chromatography (hexane) to give the product as a light yellow liquid (154 mg, 95%). ¹H **NMR** (400 MHz, CDCl₃) δ 6.96 (s, 4H, ArH), 6.59 (dd, J = 6.1, 13.8 Hz, 2H, CH), 4.70 (dd, J = 1.7, 13.8 Hz, 2H, =CH₂), 4.39 (dd, J = 1.7, 6.1 Hz, 2H, =CH₂); ¹³C **NMR** (101 MHz, CDCl₃) δ 152.6, 149.0, 118.6, 94.7; HRMS (APCI+) calc. for C₁₀H₁₀O₂ [M+H]⁺ 163.0754; found 163.0749

1-(tert-butyl)-4-(vinyloxy)benzene (12d)²

This compound was prepared according to the general procedure and isolated by column chromatography (hexane) to give the product as a light yellow liquid (162 mg, 92%). ¹H **NMR** (400 MHz, CDCl₃) δ 7.35 – 7.32 (m, 2H, ArH), 6.96 – 6.92 (m, 2H, ArH), 6.64 (dd, J = 6.1, 13.7 Hz, 1H, CH), 4.74 (dd, J = 1.6, 13.7 Hz, 1H, =CH₂), 4.39 (dd, J = 1.6, 6.1 Hz, 1H, =CH₂), 1.31 (s, 9H, CH₃); ¹³C **NMR** (101 MHz, CDCl₃) δ 154.7, 148.7, 146.1, 126.6, 116.7, 94.7, 34.4, 31.7

1-ethynyl-3-(vinyloxy)benzene (12e)

This compound was prepared according to the general procedure and isolated by column chromatography (hexane) to give the product as a light yellow liquid (58 mg, 40%). ¹H **NMR** (400 MHz, CDCl₃) δ 7.29 – 7.20 (m, 2H, ArH), 7.13 – 7.12 (m, 1H, ArH), 7.02 – 6.99 (m, 1H, ArH), 6.61 (dd, J = 6.1, 13.7 Hz, 1H, CH), 4.79 (dd, J = 1.8, 13.7 Hz, 1H, =CH₂), 4.48 (dd, J = 1.8, 6.1 Hz, 1H, =CH₂), 3.09 (s, 1H, CH); ¹³C **NMR** (101 MHz, CDCl₃) δ 156.7, 147.8, 129.8, 127.1, 123.6, 120.6, 118.2, 96.1, 83.1, 77.8; HRMS (APCI+) calc. for C₁₀H₈O [M+H]⁺ 145.0648; found 145.0653

2-(vinyloxy)aniline (12f)³

This compound was prepared according to the general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/10) to give the product as an orange brown liquid (101 mg, 75%). ¹**H NMR** (400 MHz, CDCl₃) δ 6.95 – 6.89 (m, 2H, ArH), 6.77 – 6.69 (m, 2H, ArH), 6.61 (dd, J = 6.1, 13.8 Hz, 1H, CH), 4.68 (dd, J = 1.8, 13.8 Hz, 1H, =CH₂), 4.39 (dd, J = 1.8, 6.1 Hz, 1H, =CH₂), 3.80 (broad s, 2H, NH₂); ¹³C NMR (101 MHz, CDCl₃) δ 149.0, 143.8, 137.5, 124.4, 118.7, 117.6, 116.2, 94.0

3-(vinyloxy)aniline (12g)³

This compound was prepared according to the general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/5) to give the product as an orange liquid (88 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.08 (t, 1H, ArH), 6.61 (dd, *J* = 6.1, 13.7 Hz, 1H, CH), 6.41 – 6.38 (m, 2H, ArH), 6.33 (t, 1H, ArH), 4.75 (dd, *J* = 1.6, 13.7 Hz, 1H, =CH₂), 4.40 (dd, *J* = 1.6, 6.1 Hz, 1H, =CH₂), 3.71 (broad s, 2H, NH₂); ¹³C NMR (101 MHz, CDCl₃) δ 158.1, 148.2, 148.0, 130.4, 110.2, 107.0, 104.0, 95.1

4-(vinyloxy)aniline (12h)³

This compound was prepared according to the general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/4) to give the product as a brown liquid (122 mg, 90%). ¹**H NMR** (400 MHz, CDCl₃) δ 6.84 – 6.82 (m, 2H, ArH), 6.65 – 6.62 (m, 2H, ArH), 6.56 (dd, *J* = 6.2, 13.8 Hz, 1H, CH), 4.60 (dd, *J* = 1.7, 13.8 Hz, 1H, =CH₂), 4.29 (dd, *J* = 1.7, 6.2 Hz, 1H, =CH₂), 3.54 (broad s, 2H, NH₂); ¹³**C NMR** (101 MHz, CDCl₃) δ 150.0, 149.4, 142.4, 118.9, 116.2, 93.1

1-methoxy-4-(vinyloxy)benzene (12i)

This compound was prepared according to the general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/30) to give the product as a light yellow liquid (123 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 6.96 – 6.93 (m, 2H, ArH), 6.86 – 6.84 (m, 2H, ArH), 6.59 (dd, *J* = 6.1, 13.8 Hz, 1H, CH), 4.64 (dd, *J* = 1.7, 13.8 Hz, 1H, =CH₂), 4.33 (dd, *J* = 1.7, 6.1 Hz, 1H, =CH₂), 3.78 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 155.8, 150.6, 149.6, 118.8, 114.8, 93.7, 55.8; HRMS (ESI) calc. for C₉H₁₀O₂ 150.0675; found 150.0674

5-methoxy-2-(vinyloxy)aniline (12j)

This compound was prepared according to the general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/10) to give the product as an orange brown liquid (127 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 6.82 (d, *J* = 8.7 Hz, 1H, ArH), 6.55 (dd, *J* = 6.2, 13.8 Hz, 1H, CH), 6.32 (d, *J* = 2.9 Hz, 1H, ArH), 6.25 (dd, *J* = 2.9, 8.7 Hz, 1H, ArH), 4.56 (dd, *J* = 1.9, 13.8 Hz, 1H, =CH₂), 4.29 (dd, *J* = 1.8, 6.2 Hz, 1H, =CH₂), 3.80 (broad s, 2H, NH₂), 3.74 (s, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 156.9, 150.1, 138.8, 137.7, 119.4, 103.1, 102.2, 92.6, 55.6; HRMS (APCI+) calc. for C₉H₁₁NO₂ [M+H]⁺ 166.0863; found 166.0863

1-bromo-2-(vinyloxy)benzene (12k)²

This compound was prepared according to the general procedure and isolated by column chromatography (hexane) to give the product as a light yellow liquid (100 mg, 50%). ¹H **NMR** (400 MHz, CDCl₃) δ 7.58 (dd, J = 1.6, 8.0 Hz, 1H, ArH), 7.30 – 7.26 (m, 1H, ArH), 7.05 – 6.96 (m, 2H, ArH), 6.59 (dd, J = 6.1, 13.7 Hz, 1H, CH), 4.76 (dd, J = 2.0, 13.8 Hz, 1H, =CH₂), 4.50 (dd, J = 2.0, 6.1 Hz, 1H, =CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 148.2, 133.8, 128.7, 124.9, 118.5, 113.6, 96.0

1-bromo-3-(vinyloxy)benzene (12l)

This compound was prepared according to the general procedure and isolated by column chromatography (hexane) to give the product as a light yellow liquid (101 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.16 (m, 3H, ArH), 6.95 – 6.92 (m, 1H, ArH), 6.59 (dd, J = 6.0, 13.7 Hz, 1H, CH), 4.81 (dd, J = 1.8, 13.7 Hz, 1H, =CH₂), 4.50 (dd, J = 1.8, 6.0 Hz, 1H, =CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 157.6, 147.6, 130.9, 126.4, 123.0, 120.5, 115.9, 96.6; HRMS (APCI+) calc. for C₈H₇BrO [M+H]⁺ 198.9753; found 198.9755

1-bromo-4-(vinyloxy)benzene (12m)

This compound was prepared according to the general procedure and isolated by column chromatography (hexane) to give the product as a light yellow liquid (86 mg, 43%). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.41 (m, 2H, ArH), 6.90 – 6.87 (m, 2H, ArH), 6.58

(dd, J = 6.1, 13.7 Hz, 1H, CH), 4.78 (dd, J = 1.8, 13.7 Hz, 1H, =CH₂), 4.47 (dd, J = 1.8, 6.0 Hz, 1H, =CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 147.9, 132.7, 119.0, 115.8, 96.1; HRMS (APCI+) calc. for C₈H₇BrO [M+H]⁺ 198.9753; found 198.9754

2-(vinyloxy)naphthalene (12p)

This compound was prepared according to the general procedure and isolated by column chromatography (hexane) to give the product as a light yellow liquid (92 mg, 54%). ¹H **NMR** (400 MHz, CDCl₃) δ 7.79 – 7.72 (m, 3H, ArH), 7.47 – 7.43 (m, 1H, ArH), 7.40 – 7.36 (m, 1H, ArH), 7.32 – 7.31 (m, 1H, ArH), 7.23 – 7.20 (m, 1H, ArH), 6.76 (dd, J = 6.0, 13.7 Hz, 1H, CH), 4.85 (dd, J = 1.7, 13.7 Hz, 1H, =CH₂), 4.51 (dd, J = 1.7, 6.1 Hz, 1H, =CH₂); ¹³C **NMR** (101 MHz, CDCl₃) δ 154.8, 148.2, 134.3, 130.2, 130.0, 127.9, 127.2, 126.8, 124.8, 119.0, 111.7, 95.9; HRMS (APCI+) calc. for C₁₂H₁₀O [M+H]⁺ 171.0804; found 171.0802

4-(vinyloxy)benzamide (12q)

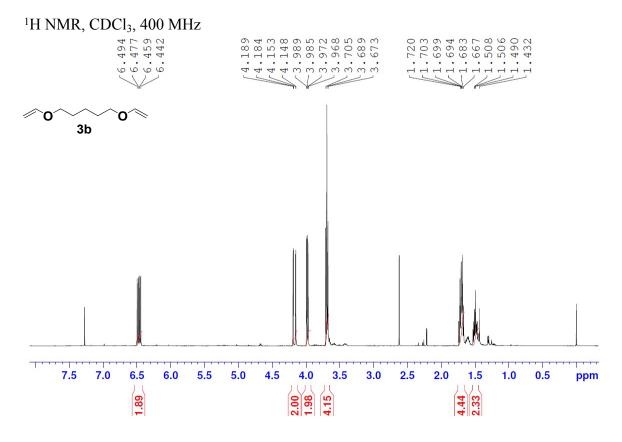
This compound was prepared according to the general procedure and isolated by column chromatography (ethyl acetate/hexane = 1/1) to give the product as a light yellow solid (63 mg, 39%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.8 Hz, 2H, ArH), 7.03 (d, *J* = 8.7 Hz, 2H, ArH), 6.67 (dd, *J* = 6.0, 13.7 Hz, 1H, CH), 6.27 (broad s, 2H, NH₂), 4.89 (dd, *J* = 1.8, 13.6 Hz, 1H, =CH₂), 4.57 (dd, *J* = 1.8, 6.0 Hz, 1H, =CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 159.8, 147.0, 129.5, 127.9, 116.6, 97.3; HRMS (APCI+) calc. for C₉H₉NO₂ [M+H]⁺ 164.0706; found 164.0704

References

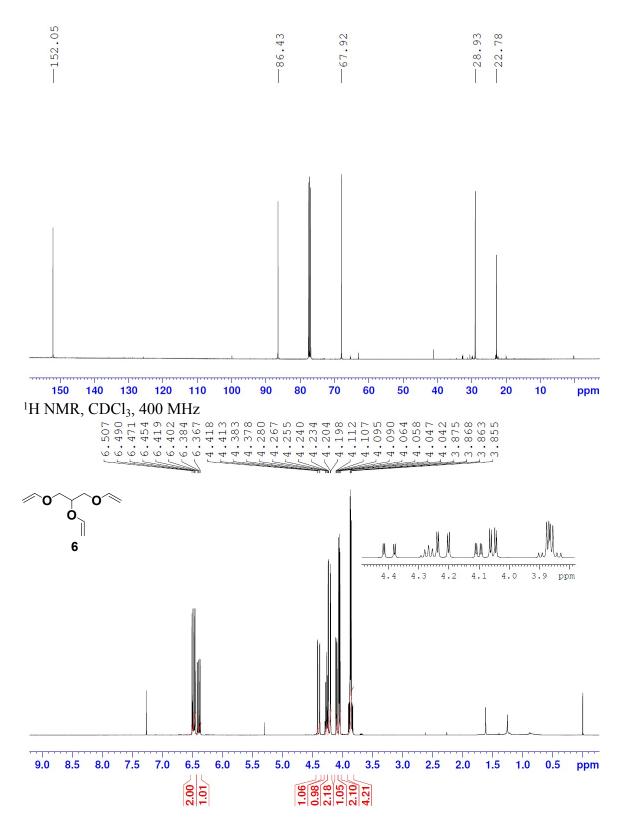
- [1] T. C. Mauldina, M. R. Kessler, J. Mater. Chem., 2010, 20, 4198
- [2] N. F. McKinley, D. F. O'Shea, J. Org. Chem., 2004, 69, 5087
- [3] E. Rattanangkool, T. Vilaivan, M. Sukwattanasinitt, S. Wacharasindhu, Eur. J. Org. Chem., 2016, 25, 4347

		 `OH + _/`` 	Ca Cs ₂ CO ₃	0	ОН	
	HO		DMSO + vol% H 120 °C, time	$\frac{120 \text{ °C, time}}{120 \text{ °C, time}} + 0^{-1}$		
Entry	CaC ₂	Cs ₂ CO ₃	vol% H ₂ O	Time (h)	Yield ^b (%)	
	(mmol)	(mmol)	V0170 H ₂ O		mono:di	
1	-	0.3	4	3	NR	
2	4	0.2	4	3	28:61	
3	4	0.3	4	3	12:87	
4	4	0.4	4	3	15:84	
5	3	0.3	3	3	5:92	
6	3	0.3	4	3	8:86	
7	3	0.3	3	4	5:93	
8	3	0.3	3	8	0:99	
9°	4	0.3	4	3	85	
10 ^{c,d}	4	0.3	4	3	79	

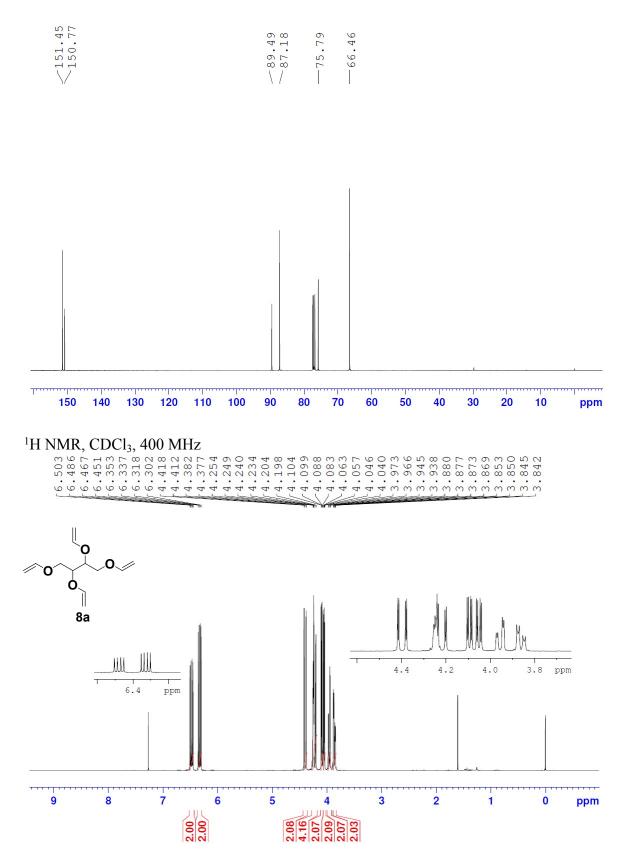
Table S1. Optimization of Reaction Conditions for Pentanediol^a

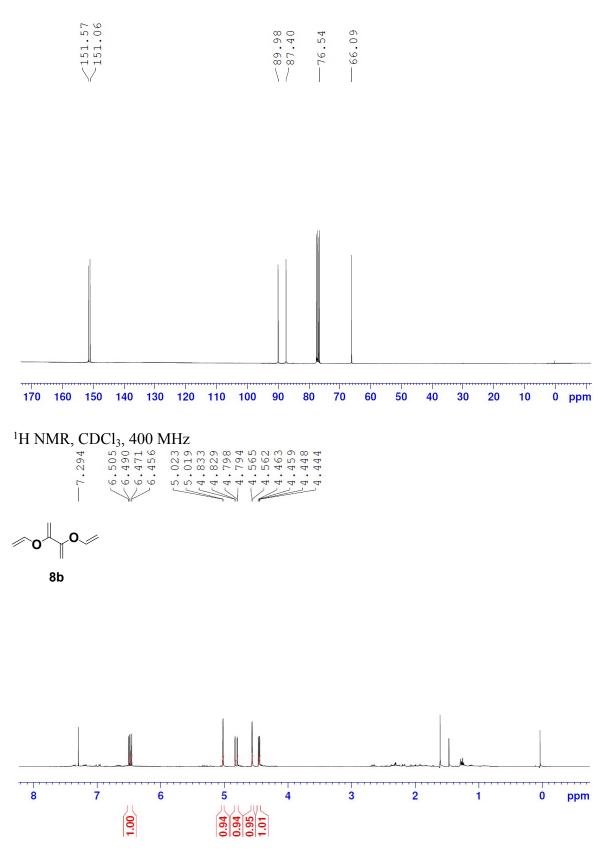

^aReaction conditions: Diol (1 mmol), DMSO + vol% H₂O (5 mL), base (0.3 mmol), 120 °C, time. ^b NMR yield. ^c Ethylene glycol as the substrate. ^d Without argon atmosphere.

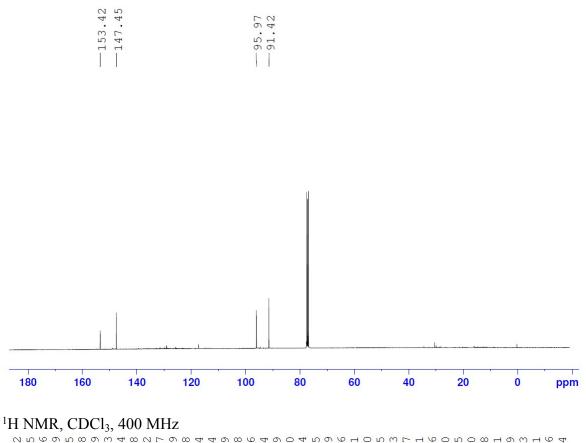
		Ca	Cs ₂ CO ₃ (1.2 mmol)	<i></i> 0 [_]	<i></i> 0^0^	
но ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́ ́		+ c=c -	DMSO + 7 vol% H ₂ O 100 °C, 3 h		→ o	
Entry	CaC ₂ (mmol)	vol% H ₂ O	Temp (°C)	Time (h)	Yield ^b (%)	
1	5	5	100	3	60	
2	5	6	100	3	64	
3	5	7	100	3	55	
4	6	6	100	3	52	
5	6	7	100	3	69	
6	6	8	100	3	55	
7	6	7	100	1	trace	
8	6	7	100	5	30	
9	6	7	120	0.5	38	
10	6	7	120	1	46	
11	6	7	120	2	trace	
12	6	7	80	8	27	
13	6	7	80	16	68	
14	6	7	80	24	34	


Table S2. Optimization of Reaction Condition for Glyercol^a

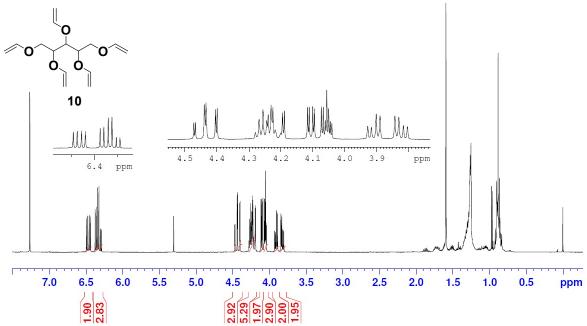
^a Reaction conditions: Glycerol (1 mmol), DMSO + vol% H₂O (5 mL), base (1.2 mmol), temp, time. ^b NMR yield.


¹H and ¹³C NMR Spectra of Vinyl Ethers

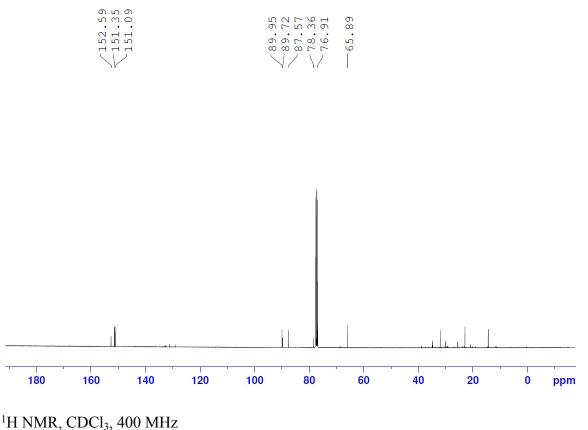

¹³C NMR, CDCl₃, 101 MHz

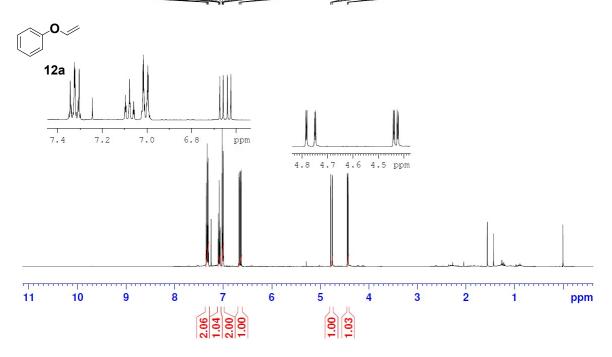

¹³C NMR, CDCl₃, 101 MHz

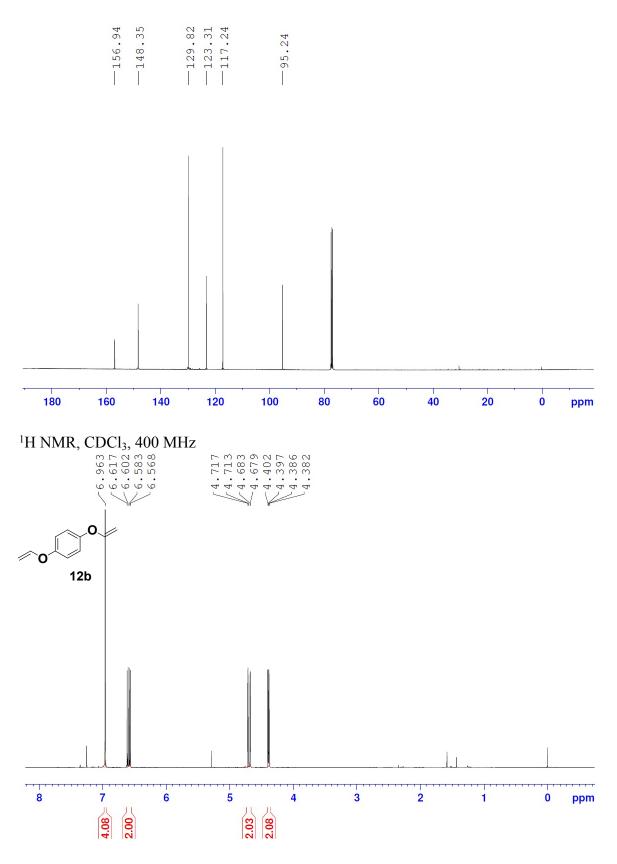
¹³C NMR, CDCl₃, 101 MHz



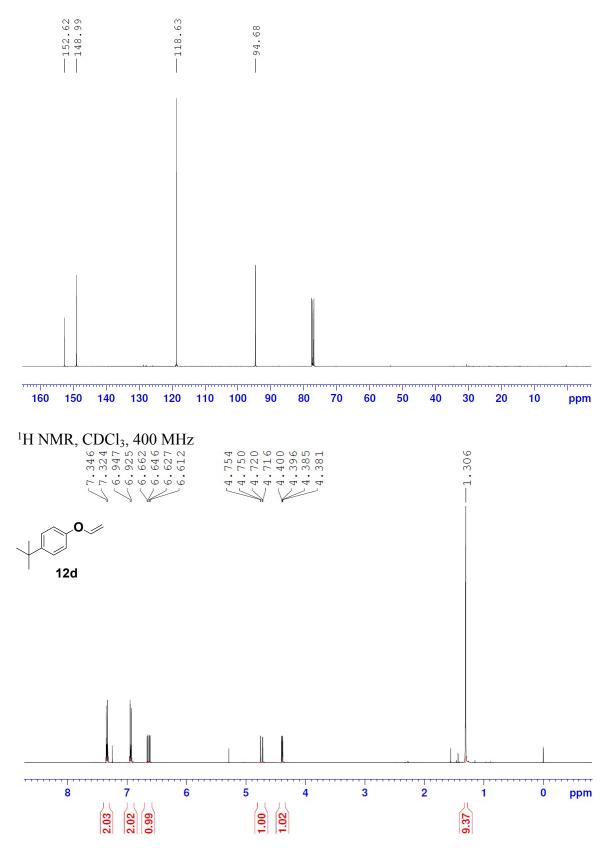
¹³C NMR, CDCl₃, 101 MHz

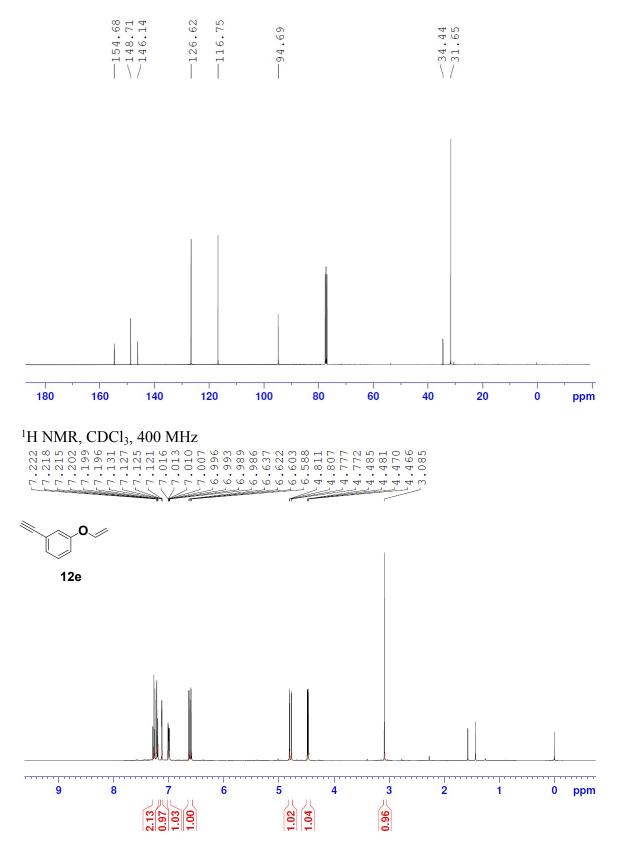


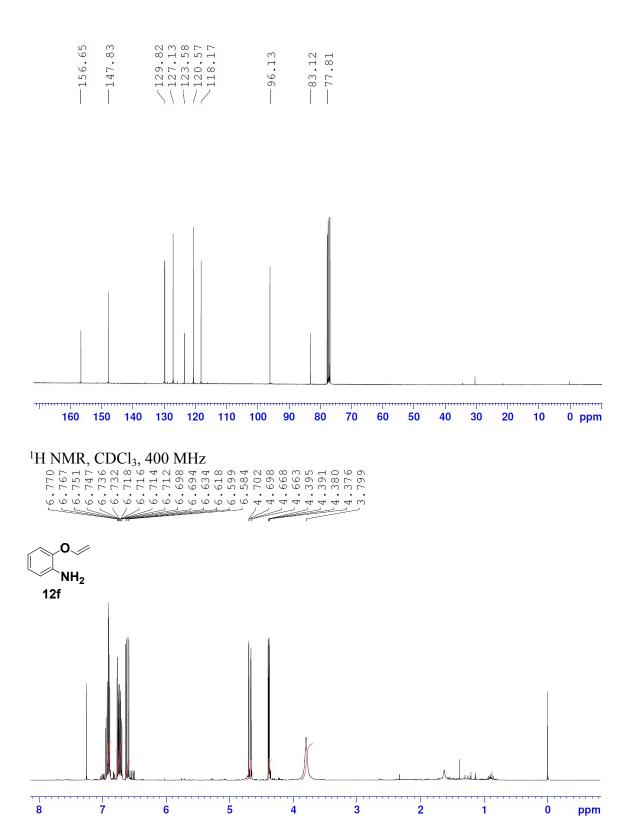




¹³C NMR, CDCl₃, 101 MHz

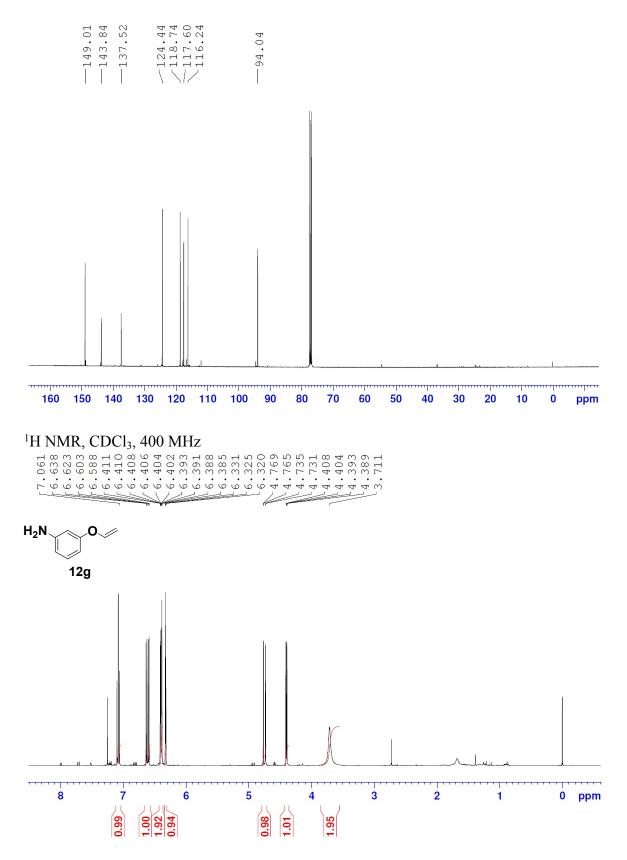



¹³C NMR, CDCl₃, 101 MHz

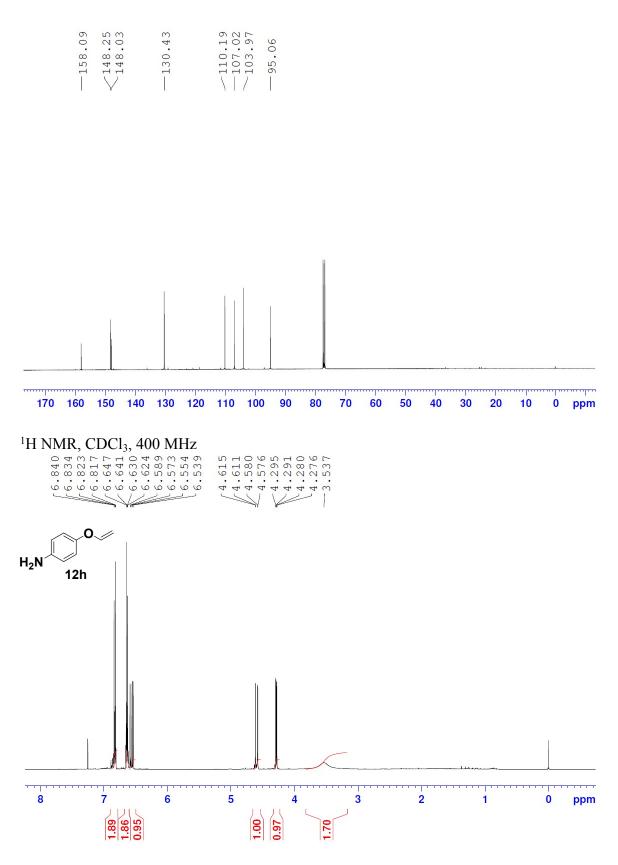

¹³C NMR, CDCl₃, 101 MHz

¹³C NMR, CDCl₃, 101 MHz

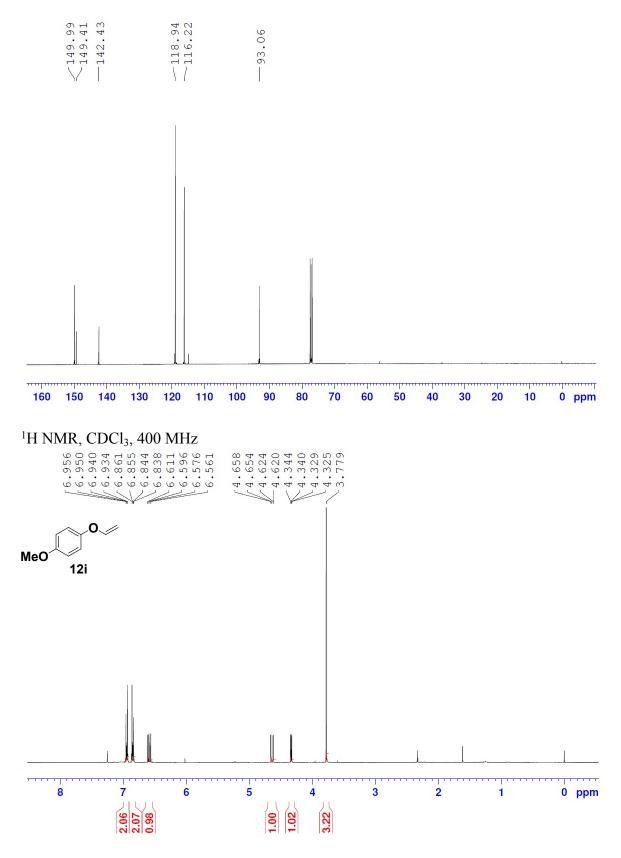
¹³C NMR, CDCl₃, 101 MHz

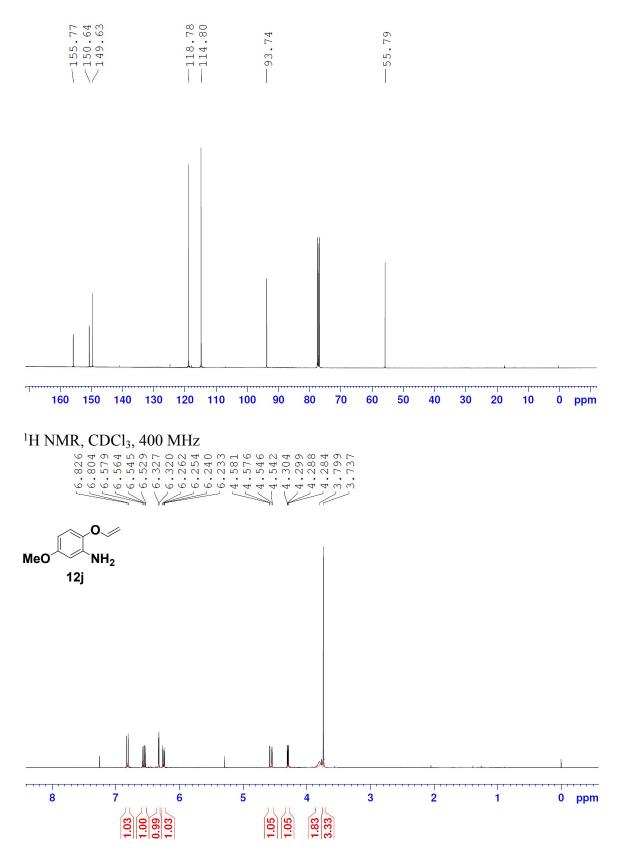


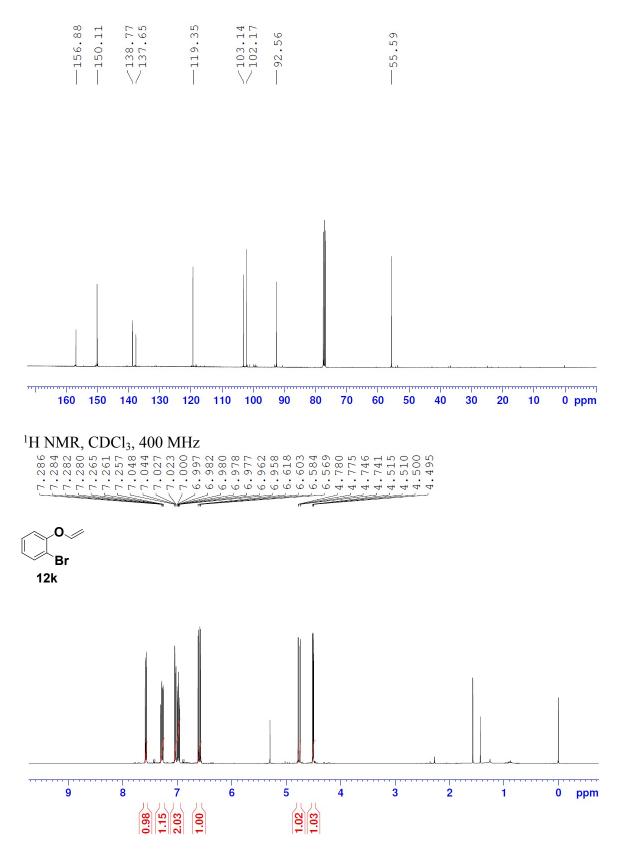
¹³C NMR, CDCl₃, 101 MHz

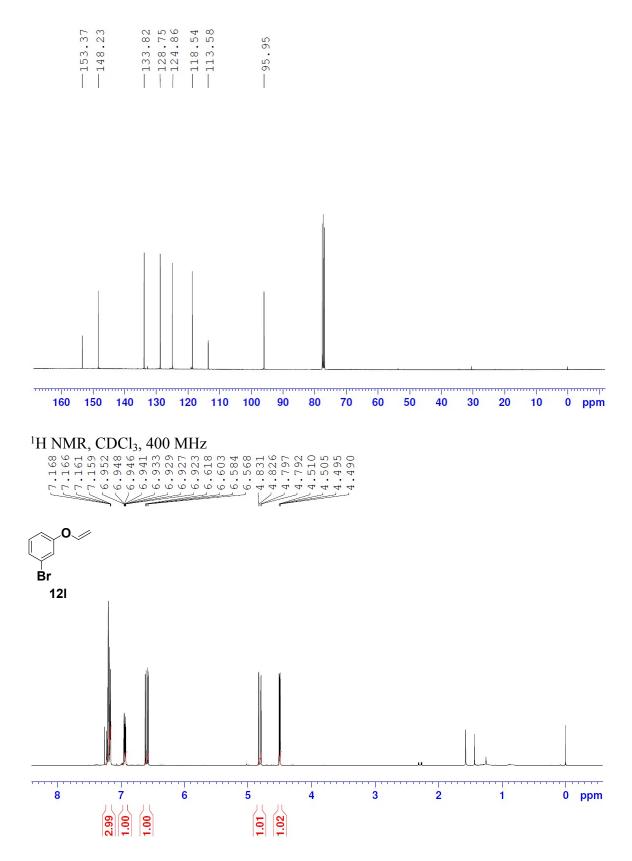

2.05 2.07 1.00

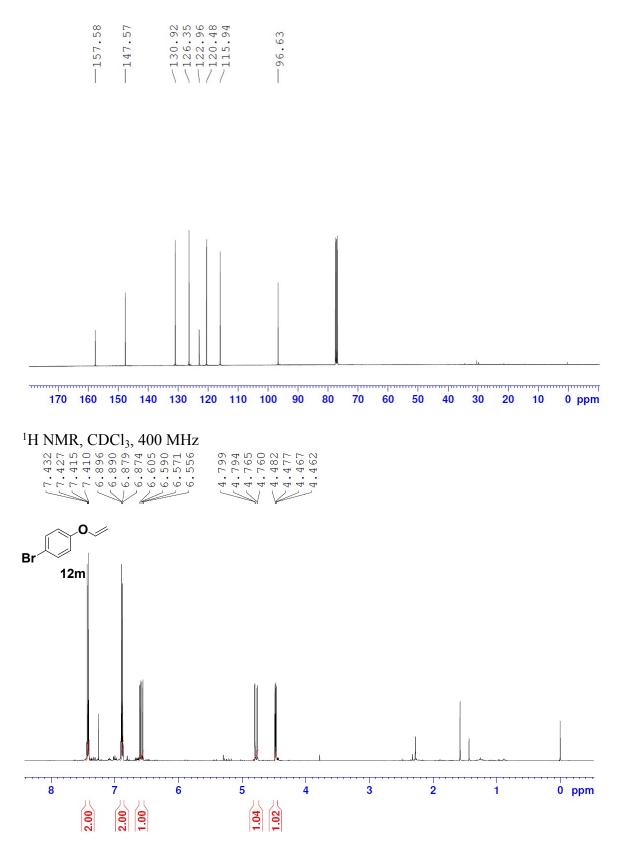
1.15

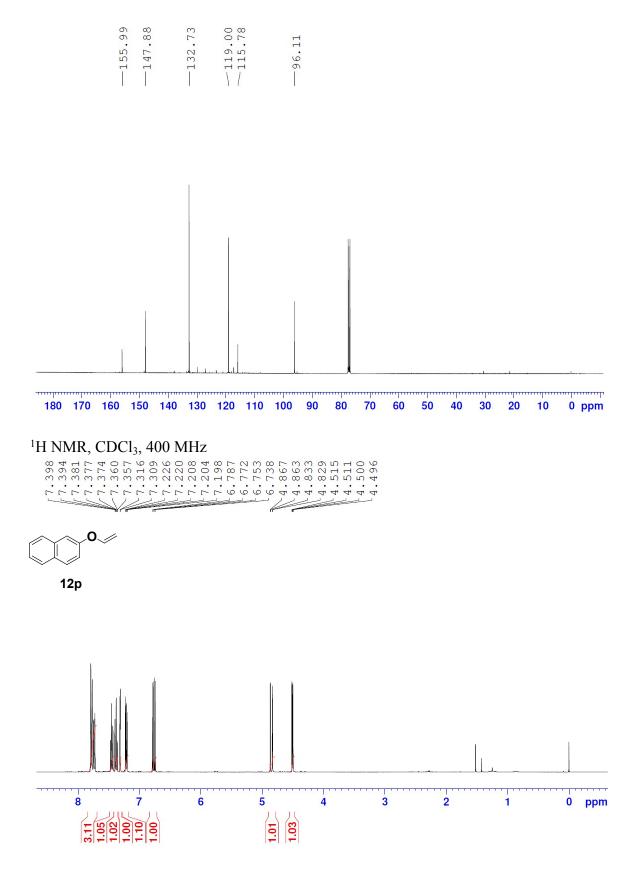

1.93

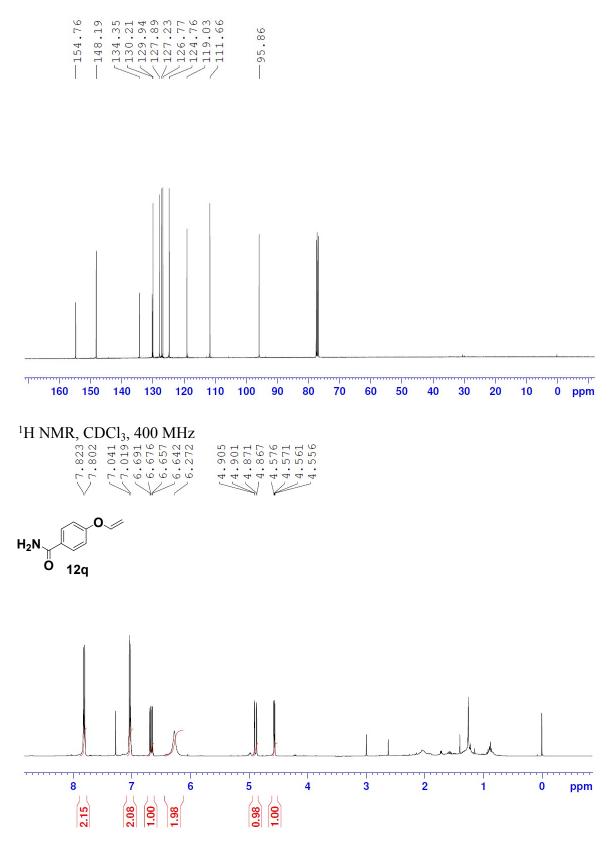

¹³C NMR, CDCl₃, 101 MHz

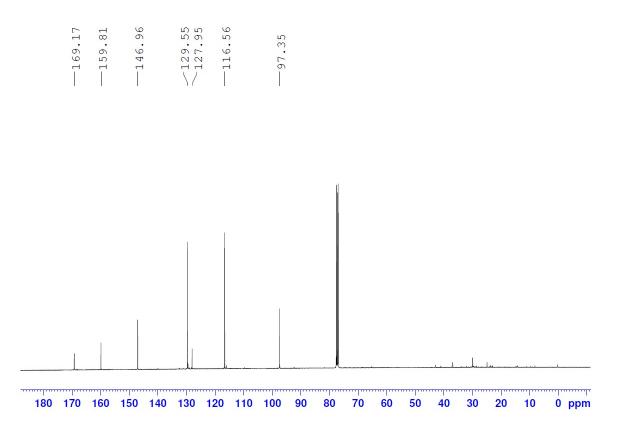

¹³C NMR, CDCl₃, 101 MHz


¹³C NMR, CDCl₃, 101 MHz


¹³C NMR, CDCl₃, 101 MHz


¹³C NMR, CDCl₃, 101 MHz


¹³C NMR, CDCl₃, 101 MHz


¹³C NMR, CDCl₃, 101 MHz

¹³C NMR, CDCl₃, 101 MHz

¹³C NMR, CDCl₃, 101 MHz

