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Table S1. The results of elemental analysis for fresh and used catalysts.

S/N molar ratio

Entry Catalysts
Fresh Used (after first run)  Used (after fifth run)
1 Amberlyst-15 0.96 2 - -
2 SPAN-1/3 0.141 - -
3 SPAN-3/3 0.198 0.154 -
4 SPAN-6/3 0.209 0.174 -
5 SPAN-9/3 0.210 0.175 -
6 SPAN-12/3 0.216 0.191 -
7 SPAN-11/3 0.238 0.202 0.194

aS/(C/8) molar ratio



Table S2. Results of BET characterization of SPAN-x/y catalysts.

Entry Cat. Surface area Pore volume Pore width

(m* g™ (em’ g (A)
1 SPAN-1/3 19.2 0.005 10.2
2 SPAN-3/3 22.9 0.006 10.4
3 SPAN-6/3 36.5 0.011 11.7
4 SPAN-9/3 31.0 0.009 11.6
5 SPAN-11/3 31.7 0.010 13.1
6 SPAN-12/3 32.8 0.009 114

All as-synthesized SPAN catalysts have surface area of about 20~36 m?-g-!. Pore
volume ranges from 0.005 to 0.011 cm? g! while pore width is about 10~13 A.



Table S3. Activity of Amberlyst-15 in water/1,4-dioxane with various volume ratios.?

Entry Solvent Conv. Yield of products (mol%)
(Vwater’V1 4-dioxane) (mol%) HMF LA FA FF

1 0/100 100 25 4 22 8

2 5/95 100 46 12 27 5

3 10/90 100 57 12 16 3

4 15/85 91 61 6 9 2

5 20/80 91 64 4 9 2

6 30/70 86 63 3 10 1

7 40/60 69 43 2 11 <1

8 50/50 60 37 2 8 <1

aReaction conditions: 0.25 mmol of fructose, 5 mg of Amberlyst-15 (0.032 mmol of S,
based on elemental analysis), 1 mL of solvent, 140 °C, 3 h, N,.



Table S4. Conversion of fructose in water/1,4-dioxane over various catalysts.?
Conv. Yield of products (mol%)

Entry Catalyst (mmol) (mol%) HMF LA A R
1 Benzenesulfonic acid (0.032) 100 60 6 12 <1
2b Benzenesulfonic acid (0.032) 100 63 3 4 <1
3 Metanilic acid (0.032) 100 67 - 3 <1
4> Amberlyst-15 (0.032) 98 63 5 15 5
5¢ Benzenesulfonic acid (0.032) 100 50 2 4 <1
64 Benzenesulfonic acid (0.032) 100 42 - 3 <1
7¢ Amberlyst-15 (1.2) 7 - 6 8 -

a Reaction conditions: 0.25 mmol of fructose, 1 mL of water/1,4-dioxane solvent (V/V
= 5/95), 140 °C, 3 h, under N, atmosphere. * Adding 0.032 mmol of diphenylamine
before the reaction. ¢ Adding 0.096 mmol of diphenylamine before the reaction. ¢
Adding 0.096 mmol of aniline before the reaction. ¢ 6.6 mmol of HMF and 7.5 mL of
water/1,4-dioxane (V/V = 5/95) were used. Reaction was conducted at 95 °C for 3 h.



Table S5. Dehydration of fructose over SPAN-11/3 in various solvents.?

Conv. Yield of products (mol%)
Entry Solvents(5/95, V/V)

(mol%) HMF LA FA FF

1 Water/1,4-dioxane 99 71 - 4 2

2 Methanol/1,4-dioxane 100 51 - 4 4

3 Ethanol/1,4-dioxane 100 46 - 4 4

4 Hexane/1,4-dioxane 100 40 - 3 4

5 Acetonitrile/1,4-dioxane 100 41 - 4 5

6 Diethyl ether/1,4-dioxane 100 39 - 5 4

7 Chloroform/1,4-dioxane 100 40 - 4 5

2 Reaction conditions: 0.025 mmol of fructose, 15 mg of SPAN-11/3, 1 mL of solvent,
140 °C, 3 h, N,.

Protic solvents (water, methanol and ethanol) gave out higher HMF yields than
polar aprotic or weakly polar solvent (hexane, acetonitrile, ethyl ether, and chloroform)

as the latter stabilize the hydrogen-bonded species to a less extent.



Table S6. Catalytic conversion of various carbohydrates over SPAN-11/3 catalyst.?
Yield of products (mmol%)
HMF Fructose  Glucose FA LA FF

Entry Substrate

1 Inulin 59 <1 - 7 - 2
2 Glucose 11 - 14 17 - <1
3 Sucrose 41 - 6 23 - 2

2 Reaction conditions: 0.25 mmol of carbohydrates (based on monosaccharide), 15 mg
of SPAN-11/3, 1 mL of water/1,4-dioxane solvent (V/V = 5/95), 140 °C, 3 h, N,.

SPAN catalyst was active for the conversion of inulin and sucrose, giving out HMF
yields of 59% and 41%, respectively. However, only 11% of HMF yield was obtained
when glucose was used as the substrate, suggesting that this polymer catalyst was less

active for glucose-to-fructose isomerization.
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Fig. S1 XRD patterns of SPAN-x/y catalysts.

The XRD patterns show typical amorphous structure with a single broad diffraction
peak centered at 20 of ca. 23.9° except SPAN-3/3 and SPAN-6/3 wherein larger 20 at
ca. 25.8° and smaller crystallographic spacing (d) indicate the obvious presence of

external dopants on these two polymer catalysts.



Fig. S2 TEM images of a) SPAN-6/3, b) SPAN-9/3, ¢) SPAN-11/3, and d) SPAN-
12/3.

TEM images of the SPAN-x/y catalysts reveal the formation of nanorod structures
for SPAN-6/3, SPAN-9/3, and SPAN-11/3. For SPAN-12/3, irregular nanogranules

formed. These results are consistent with that observed in their SEM images.
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Fig. S3 Deconvoluted S 2p XPS of a) SPAN-1/3, b) SPAN-3/3, ¢) SPAN-6/3, d)
SPAN-9/3, ¢) SPAN-11/3, and f) SPAN-12/3.

Six peaks (three doublets) are resolvable for the S 2p spectra of all catalysts except
SPAN-1/3. The doublet with binding energies (BEs) of 167.0(£0.1 eV) and 168.1
(0.1 eV) is from the sulfur in the ring-attached sulfonic acid group that protonates
the imine and/or amine nitrogen.!'l However, the two doublets with higher BEs of
167.4(£0.1 eV)/168.6(£0.1 eV) and 167.9(£0.1 eV)/169.0(£0.1 eV) are lower than
that reported as the sulfur in free sulfonic acid group,!'! which are tentatively ascribed
to the sulfur in the sulfonic acid groups that hydrogen-bonded with benzenoid amine
(-NH-) and quinoid imine (-N=) nitrogen, respectively. That is, all of the sulfonic acid
groups in SPAN catalysts interact with adjacent nitrogen atom. As a result, no free
sulfonic acid group exists.



Fig. S4 Theoretical simulation of selected fragments of SPAN catalyst at MO06-
2x/def2-tzvpp level showing the distance between H atom in sulfonic acid group and

adjacent (a, b) quinoid imine N, and (c) benzenenoid amine N atoms.



The N-H distances in a, b and ¢ were simulated to be 1.798, 1.981 and 2.140 A,
respectively. The results reveal that the ring-attached sulfonic acid group would
interact with the benzenoid amine and quinoid imine nitrogen via hydrogen bonding,
among which the interaction with quinoid imine N is thermodynamically more

favored.



Fig. S5 Schematic showing the internal and external doping of SPAN. The green
dashed line bracketed regions indicate the internal doping of SPAN by H-bonding
between the ring-attached sulfonic acid group and the benzenoid amine/quinoid imine
nitrogen. The pink dashed line bracketed regions indicate the external doping of
SPAN by salification of metanilic acid by the benzenoid amine/quinoid imine

nitrogen.
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Fig. S6 Deconvoluted N Is XPS of a) SPAN-1/3, b) SPAN-3/3, ¢) SPAN-6/3, d)

SPAN-9/3, ) SPAN-11/3, and f) SPAN-12/3.

For the six SPAN-x/y catalysts, the N 1s XPS spectra are deconvoluted to four
components at BEs of 398.6(0.1), 399.3(+0.1), 400.3(£0.1), and 401.6(=0.1) eV,
which are assigned to quinoid imine N, benzenoid amine N, polarized quinoid imine
(-N*=) N and protonated amine/imine (-NH"-/-NH"=) N, respectively. The latter two

components are originated from acid-base interactions in the solid SPAN catalysts.
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Fig. S7 Effect of SPAN-11/3 amount on fructose dehydration. Reaction
conditions: 0.25 mmol of fructose, 1 mL of water/1,4-dioxane (V/V = 5/95),
140 °C, 3 h, N,.

With increasing SPAN-11/3 dosage, the yield of HMF increased and
reached a maximum of 71% when 15 mg of SPAN-11/3 was used. A further
increase of the catalyst dosage to 30 mg decreased the HMF yield to 57%
accompanied with the increase of FA yield to ~8%. The yield of FF was kept
at about 2% in all catalyst dosage. Notably, no LA formed, revealing that the
rehydration of HMF was completely inhibited by SPAN-11/3 catalyst.
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Fig. S8 Effect of reaction temperature on fructose dehydration. Reaction conditions:
0.25 mmol of fructose, 15 mg of SPAN-11/3, 1 mL of water/1,4-dioxane solvent (V/V
=5/95), 3 h, N,

With increasing the reaction temperature, the yield of HMF increased and reached a
maximum of 71% when reaction was performed at 140 °C. A further increase of the
temperature to 170 °C decreased the HMF yield to 50% accompanied with the
increase of FA yield to ~10% and FF yield to 4%. Significantly, no LA formed even
at high temperature (170 °C), revealing that the rehydration of HMF was completely
inhibited by SPAN-11/3 catalyst.
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Fig. S9 Effect of reaction time on fructose dehydration. Reaction conditions: 0.25
mmol of fructose, 15 mg of SPAN-11/3, 1 mL of water/1,4-dioxane solvent (V/V
=5/95), 140 °C, N,.

As reaction progressed, HMF formed with time, giving out a maximum yield of 71%
at 3 h. Further increase of the reaction time to 5 h did not lead to the improvement of
HMEF yield. The yield of FF was always no more than 2%, and FA yield increased to
6%. It should be noted that the rehydration of HMF was still completely restrained by
SPAN-11/3 in the whole process of reaction.
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Fig. S10 In situ ATR-IR spectra of a) HMF at 95 °C in the presence of SPAN-11/3. b)
Magnified view of the bracketed regions in a). Blank in a) and b) represents the ATR-
IR spectra of HMF in water/1,4-dioxane solvent (V/V = 5/95) at 95 °C in the absence
of catalysts. Reaction conditions: 6.6 mmol of HMF, 1.2 mmol of SPAN-11/3, 7.5 mL
of water/1,4-dioxane solvent (V/V = 5/95), 95 °C.

ATR-IR spectra were collected at 95 °C on the ReactIR iC10 system (Mettler
Toledo) equipped with a liquid nitrogen cooled mercury cadmium telluride (MCT)
detector with a resolution of 4 cm™!. The characteristic IR bands of HMF kept almost
invariable within 3 h except that a weak band at 1731 cm! appeared at 2 h. This new
IR band corresponded to the carboxylic C=0 stretching vibration of FA or LA.[?] The
result of HPLC revealed that only FA (2 mol%) formed after 3 h’s reaction, therefore,
the appearance of the IR band at 1731 cm™! belonged to the C=0 stretching vibration
of FA. The in situ ATR-IR spectra indicate that HMF is stable towards rehydration to
LA after mixing with SPAN catalyst.
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Fig. SI1 In situ ATR-IR spectroscopy of a) HMF at 95 °C in the presence of
Amberlyst-15. b) Magnified view of the bracketed regions in a). Blank represents the
ATR-IR spectra of HMF in water/1,4-dioxane solvent (V/V = 5/95) at 95 °C in the

absence of catalysts. Reaction conditions: 6.6 mmol of HMF, 1.2 mmol of Amberlyst-
15 (based on S), 7.5 mL of water/1,4-dioxane solvent (V/V = 5/95), 95 °C.

ATR-IR spectra were collected at 95 °C on the ReactIR iC10 system (Mettler
Toledo) equipped with a liquid nitrogen cooled mercury cadmium telluride (MCT)
detector with a resolution of 4 cm™. The band at 1346 cm! originates from
hydroxymethyl O-H stretching vibration in HMF.B! A downshift from 1346 to 1340
cm’!' revealed that the interaction between Amberlyst-15 and HMF occurred.
Furthermore, a new IR band at 1731 cm™! was observed after 0.5 h’s reaction, which
corresponded to the carboxylic C=0O stretching vibration of FA or LA. Both LA (6%)
and FA (8%) were detected by HPLC. The in situ ATR-IR spectra and the result of
HPLC indicate that the rehydration of HMF to LA and FA resulted from the
interaction of hydroxymethyl -OH in HMF with Amberlyst-15.



Fig. S12 SEM images of a) fresh SPAN-11/3, and b) used SPAN-11/3 after the fifth

catalytic run.
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