Supplemental Information

Antimony(V) Catalyzed Acetalisation of Aldehydes: An Efficient, Solvent-Free, and RecyclableProcess

Renzo Arias Ugarte and Todd W. Hudnall

Table of Contents

1.)	NMR spectra of all compounds	S1-S31
2.)	Procedure for testing recyclability of $[1]^+$	S 32

Figure S1: ¹H NMR spectroscopy of isolated butyraldehyde diethylacetal (A₁) in CDCl3

Figure S3: Dept 135 NMR spectroscopy of isolated butyraldehyde diethylacetal (A1) in CDCl₃

Figure S4: ¹³C NMR Spectroscopy of isolated decanal diethylacetal (A2) in CDCl₃

Figure S5: Dept 135 NMR Spectroscopy of isolated decanal diethylacetal (A2) in CDCl₃

Figure S6: ¹H NMR Spectroscopy of isolated decanal diethylacetal (A₂) in CDCl₃

Figure S7: ¹H NMR Spectroscopy of isolated 2-phenylethanaldehyde diethylacetal (A₃) in CDCl₃

Figure S9: Dept 135 NMR Spectroscopy of isolated 2-phenylethanaldehyde diethylacetal (A₃) in CDCl₃

Figure S10: ¹H NMR Spectroscopy of isolated 3-phenylpropionaldehyde diethylacetal (A₄) in CDCl₃

Figure S11: ¹³C NMR Spectroscopy of isolated 3-phenylpropionaldehyde diethylacetal (A₄) in CDCl₃

Figure S12: Dept 135 NMR Spectroscopy of isolated 3-phenylpropionaldehyde diethylacetal (A4) in CDCl3

Figure S13: ¹³C NMR Spectroscopy of isolated isobutyraldehyde diethylacetal (A₅) in CDCl₃

Figure S14: Dept 135 NMR Spectroscopy of isolated isobutyraldehyde diethylacetal (A₅) in CDCl₃

Figure S15: ¹HNMR Spectroscopy of isolated isobutyraldehyde diethylacetal (A₅) in CDCl₃

Figure S16: ¹³C NMR Spectroscopy of isolated butyraldehyde 2-ethyl diethylacetal (A₆) in CDCl₃

Figure S17: Dept 135 NMR Spectroscopy of isolated butyraldehyde 2-ethyl diethylacetal (A₆) in CDCl₃

Figure S18: ¹H NMR Spectroscopy of isolated butyraldehyde 2-ethyl diethylacetal (A₆) in CDCl₃

Figure S20: Dept 135 NMR Spectroscopy of isolated 2,2 dipheylacetaldehyde diethylacetal (A7) in CDCl3

Figure S21: ¹H NMR Spectroscopy of isolated 2,2 dipheylacetaldehyde diethylacetal (A₇) in CDCl₃

Figure S23: Dept 135 NMR Spectroscopy isolated cyclohexanecarboxaldehyde diethylacetal (A₈) in CDCl₃

Figure S24: ¹H NMR Spectroscopy isolated cyclohexanecarboxaldehyde diethylacetal (A₈) in CDCl₃

Figure S26: Dept 135 NMR Spectroscopy of isolated benzaldehyde diethylacetal (A₉) in CDCL₃

Figure S27: ¹H NMR Spectroscopy of isolated benzaldehyde diethylacetal (A₉) in CDCL₃

Figure S28: ¹³C NMR Spectroscopy of new isolated 2,3,4,5,6 pentafluorobenzaldehyde diethylacetal (A₁₀) in CDCl₃

Figure S29: Dept 135 NMR Spectroscopy of new isolated 2,3,4,5,6 pentafluorobenzaldehyde diethylacetal (A₁₀) in CDCl₃

Figure S30: ¹⁹F NMR Spectroscopy of new isolated 2,3,4,5,6 pentafluorobenzaldehyde diethylacetal (A₁₀) in CDCl₃

Figure S31: ¹H NMR Spectroscopy of new isolated 2,3,4,5,6 pentafluorobenzaldehyde diethylacetal (A₁₀) in CDCl₃

Figure S32: ¹³C NMR Spectroscopy of isolated 2-bromobenzaldehydediethylacetal (A₁₁) in CDCl₃

Figure S33: Dept 135 NMR Spectroscopy of isolated 2-bromobenzaldehydediethylacetal (A₁₁) in CDCl₃

Figure S34: ¹H NMR Spectroscopy of isolated 2-bromobenzaldehydediethylacetal (A₁₁) in CDCl₃

Figure S35: ¹³C NMR Spectroscopy of isolated 3-bromobenzaldehyde diethylacetal (A₁₂) in CDCl₃

Figure S36: Dept 135 NMR Spectroscopy of isolated 3-bromobenzaldehyde diethylacetal (A12) in CDCl3

Figure S37: ¹H NMR Spectroscopy of isolated 3-bromobenzaldehyde diethylacetal (A₁₂) in CDCl₃

Figure S38: ¹³C NMR Spectroscopy of isolated 3-fluorobenzaldehyde diethylacetal (A₁₃) in CDCl₃

Figure S39: Dept 135 NMR Spectroscopy of isolated 3-fluorobenzaldehyde diethylacetal (A13) in CDCl3

Figure S40: ¹⁹F NMR Spectroscopy of isolated 3-fluorobenzaldehyde diethylacetal (A₁₃) in CDCl₃

Figure S41: ¹H NMR Spectroscopy of isolated 3-fluorobenzaldehyde diethylacetal (A₁₃) in CDCl₃

Figure S42: ¹³C NMR Spectroscopy of isolated 4-trifluorobenzaldehyde diethylacetal (A₁₄) in CDCl₃

Figure S43: Dept 135 NMR Spectroscopy of isolated 4-trifluorobenzaldehyde diethylacetal (A14) in CDCl3

Figure S44: ¹⁹F NMR Spectroscopy of isolated 4-trifluorobenzaldehyde diethylacetal (A₁₄) in CDCl₃

Figure S45: ¹H NMR Spectroscopy of isolated 4-trifluorobenzaldehyde diethylacetal (A₁₄) in CDCl₃

Figure S46: ¹³C NMR Spectroscopy of isolated 4-nitrobenzaldehyde diethylacetal (A₁₅) in CDCl₃

Figure S47: Dept 135 NMR Spectroscopy of isolated 4-nitrobenzaldehyde diethylacetal (A15) in CDCl3

Figure S48: ¹H NMR Spectroscopy of isolated 4-nitrobenzaldehyde diethylacetal (A₁₅) in CDCl₃

Figure S49: ¹³C NMR Spectroscopy of isolated 4-methoxybenzaldehydediethylacetal (A₁₆) in CDCl_{3.}

Figure S50: Dept 135 NMR Spectroscopy of isolated 4-methoxybenzaldehydediethylacetal (A₁₆) in CDCl_{3.}

Figure S51: ¹H NMR Spectroscopy of isolated 4-methoxybenzaldehydediethylacetal (A₁₆) in CDCl_{3.}

Figure S52: ¹³C NMR Spectroscopy of isolated 4-methylbenzaldehyde diethylacetal (A₁₇) in CDCl_{3.}

Figure S53: Dept 135 NMR Spectroscopy of isolated 4-methylbenzaldehyde diethylacetal (A17) in CDCl3.

Figure S54: ¹H NMR Spectroscopy of isolated 4-methylbenzaldehyde diethylacetal (A₁₇) in CDCl₃.

Procedure for testing the recyclability of [1]+ using 2-ethylbutanal as a model substrate and TES as an ethoxide source. (All reactions were monitored by ¹³C NMR).

Procedure:

In a NMR tube 0.1mol % of [1][OTf] was added initially, and then 1 mol triethoxysilane (TES) was added dropwise directly to the stibonium salt to ensure complete dissolutione. After that 100 mg (1 mmol) of the 2-ethylbutanal was added dropwise over this mixture and was stirred and monitored by ¹³C NMR spectroscopy in CDCl₃. After 1h we confirmed that all the aldehyde was consumed, and the reaction was purified according to the main text in the manuscript. The resulting compound was then characterized by ¹³C NMR in CDCl₃, and was labeled Run 1. The residue containing the catalyst after distillation of the acetal was then recycled by adding more reagents (TES and aldehyde). We found that the acetalisation could be performed 5 times without a noticeable drop in activity of the catalyst (see Figure S55 below).

Figure S55: Stacked ¹³C NMR spectra (CDCl₃) demonstrating that the catalytic activity of [1]+ could be recycled for up to 5 cycles without significant loss in activity.