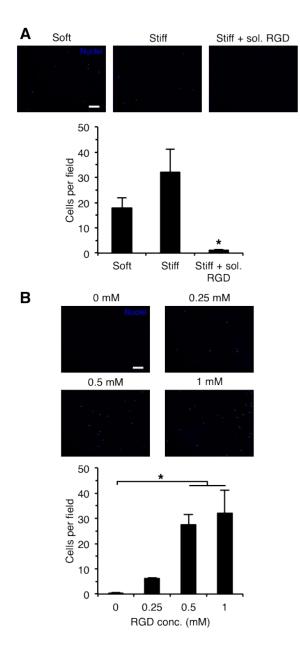
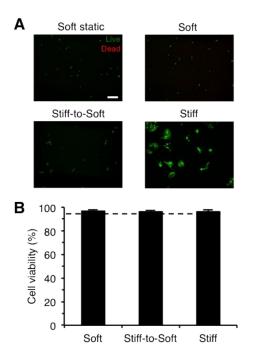
Electronic Supplementary Material (ESI) for Integrative Biology. This journal is © The Royal Society of Chemistry 2016

Gradually softening hydrogels for modeling hepatic stellate cell behavior during fibrosis regression

Steven R. Caliari¹, Maryna Perepelyuk², Elizabeth M. Soulas¹, Gi Yun Lee¹, Rebecca G. Wells², Jason A. Burdick¹


 ¹ Department of Bioengineering
² Department of Medicine University of Pennsylvania Philadelphia, PA 19104

Corresponding Authors:


J.A. Burdick Department of Bioengineering University of Pennsylvania 240 Skirkanich Hall 210 S. 33rd St. Philadelphia, PA 19104 Phone: (215) 898-8537 Fax: (215) 573-2071 email: burdick2@seas.upenn.edu

Rebecca G. Wells, MD Associate Professor of Medicine (Gastroenterology) and Pathology and Laboratory Medicine University of Pennsylvania School of Medicine 905 BRB/6160 421 Curie Blvd. Philadelphia, PA 19104 Tel: (215) 573-1860 Fax: (215) 573-2024 email: rgwells@mail.med.upenn.edu

Supplemental Figures

Supplemental Figure 1. Hepatic stellate cell attachment to hyaluronic acid hydrogels is mediated by tethered RGD. (A) Stellate cell attachment to soft and stiff HA hydrogels (1 mM covalently-tethered RGD, with or without 1 mM soluble RGD added to culture media). (B) Stellate cell attachment to stiff hydrogels with varying levels of covalently-attached RGD peptide (0, 0.25, 0.5, and 1 mM). *Blue:* nuclei. *: P < 0.05. Scale bars: 500 µm.

Supplemental Figure 2. Hepatic stellate cells on HA hydrogels are viable. (A) Representative images and (B) quantification of viability for stellate cells cultured for 21 days total on soft hydrogels (soft static, dashed lines) or 7 day mechanically primed stellate cells cultured for an additional 14 days on soft, stiff, or stiff-to-soft hydrogels. *Green:* live cells, *Red*: dead cells. (*Dashed lines:* soft static control). Scale bar: 500 µm.