Supporting Information

Quantum Dot-MUC1 Aptamer Conjugate for Targeted Delivery of Protoporphyrin IX and Specific Photokilling of Cancer Cells through ROS Generation

Seema Singh,^a Pravin Jha,^b Vandana Singh,^a Kislay Sinha,^b Sahid Hussain,^a Manoj K. Singh*^c and Prolay Das*^a.

^a Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India ^b Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844101, Bihar, India ^cAtomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India

Corresponding Author

- * E-mail: prolay@iitp.ac.in Tel: +91 612 302 8057
- * E-mail: mksingh@barc.gov.in, singh_manojk@yahoo.com,Tel: +91-22-2559 3987

Figure S1. SDS-PAGE analysis of MUC1-CF dye conjugate before **A.** and after **B.** silver staining MUC1-CF conjugate shows retarded mobility as compared to free CF dye and free MUC1.

Figure S2. 30% denaturing PAGE showing formation of PpIX-(S1)₁ and PpIX-(S1)₂.

Figure S3. MALDI-TOF spectra of PpIX-ssDNA (S1) conjugate.

Figure S4. A. UV-Visible spectra **B**. Steady-State fluorescence spectra of PpIX and PpIX-DNA (S1).

Figure S5. A. UV-Visible spectra **B**. Steady-State fluorescence spectra of QD and QD-aptamer (S2).

	Absorption	Emission
QD	~390 nm	400 nm
PpIX	402 nm	630 nm
CF dye	628 nm	653 nm

Figure S6. Normalised PpIX (acceptor) absorption spectra and QD (donor) fluorescence spectra.

Figure S7. Normalised CF dye (acceptor) absorption spectra and PpIX (donor) fluorescence spectra.

Table S2: Comparison of FRET efficiency between QD and PpIX in PpIX-QD-S2 and QD-S2-S1-PpIX assembly.

	Reactant	Product	FRET Efficiency %		
	ratio	ratio			
			Steady	Lifetime	Average
			State	Measurement	
PpIX-QD-S2	1:4	1:3.2	78	81	80.5
QD-S2-S1-PpIX	1:4	1:2.9	70	72	71

Figure S8. FRET analysis of PpIX-CF dye **A**. UV-visible absorption spectra and **B**. Fluorescence spectra ($\lambda_{ex} = 402 \text{ nm}$) of PpIX-QD-S2 in absence and presence of MUC1-CF dye.

Figure S9. FRET analysis of PpIX-CF dye **A.** UV-visible absorption and **B.** Fluorescence spectra ($\lambda_{ex} = 402 \text{ nm}$) of QD-S2-S1-PpIX in absence and presence of MUC1-CF dye.

Figure S10. A. UV-Visible spectra of PpIX-QD-S2 direct conjugates with DHR 123 before and after irradiation **B.** Fluorescence spectra of Rhodamine 123 at $\lambda ex = 485$ nm in PpIX-QD-S2 direct conjugates **C.** Fluorescence spectra of Rhodamine 123 at $\lambda ex = 485$ nm in PpIX-QD-S2-MUC1 direct conjugates on ROS generation.

Figure S11. Fluorescence spectra of Rhodamine 123 at $\lambda ex = 485$ nm in QD and QD-S2 conjugates on 8 min irradiation indicates ROS generation.

Figure S12. Viability of RAW cells treated with PpIX-QD-S2 and QD-S2-S1-PpIX with and without light activation by UV at 24 h post exposure. Control (PBS alone) and treatments with nanoassemblies/components and their concentrations are indicated on X axis. Absorbance readings were presented as OD570±SD on Y axis.