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Networks for TRanscriptional Activity CEll aRrays (NTRACER) 1	

 NTRACER aims to identify the dynamics of signaling processes that control an observed 2	

phenotype using dynamic measurements of TFr activity1. NTRACER uses a combination of prior 3	

knowledge and an ensemble of inference methods to determine the possible relationships 4	

between the given cellular inputs and TFrs. NTRACER employs normalized activity data from 5	

the significant TFrs as input. The computational pipeline involves three main steps: i) statistical 6	

analysis to identify significant changes in the TFr activity data, ii) generation of an initial network 7	

topology, and iii) network identification. Overall, the envisioned computational pipeline was 8	

developed to identify highly robust and consistent results in the final networks by protecting 9	

against the erroneous identification of edges that could result from noisy data. Robustness and 10	

consistency were accomplished by a combination of data pre-filtering, structure optimization and 11	

bootstrapping techniques. 12	

The dynamic network was originally modeled as a three-level Boolean paradigm1. Herein, 13	

we present an improved methodology to avoid data discretization. The most likely connections 14	

present at each time are established later by minimizing the difference between the 15	

experimental data and the simulation, where the relationships between the nodes are calculated 16	

as linear or quadratic regression models.  Additionally, we have expanded the libraries of 17	

available dynamic inference methods, we have automated the determination of the shortest 18	

paths between each TFr and the applied extracellular stimuli, and we have allowed the inclusion 19	

of self-loops, where a single TFr was allowed to act on itself from the TRACER experimental 20	

data only. Solely new modifications added to NTRACER since our original publication1 are 21	

discussed here.  22	
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Inference methods 24	

Multiple inference methods were incorporated into NTRACER to establish new possible 25	

connections between extracellular cues (i.e., RGD and stiffness) and measured TFrs not 26	

previously reported in the scientific literature1. A combination of modified methods to account for 27	

dynamics, either linear or non-linear, was summarized into a unique inference network. Linear 28	

methods included PLSR2, similarity index, SI3, and linear ordinary differential equations (ODE) 29	

based on TIGRESS4. Non-linear methods included newer strategies, such as dynamic mutual 30	

information methods (ARACNE5, CLR6, MRNET7, dynamic random forest8), as well as well-31	

established dynamic methods, such as dynamic Bayesian networks9. 500 bootstrapping 32	

samples from the normalized TFr data were employed to determine connections using the 33	

above methods. If a connection appeared in any method in more than 65% of the bootstrapping 34	

cases or it appeared greater than 700 times across all methods, it was deemed significant. 35	

Those cut-offs were selected based on the frequency distributions of the bootstrapping results. 36	

The selected cut-offs coincided with initial frequency of the second distribution of the bimodal 37	

bootstrapping results (Fig. S9).   38	

Dynamic PLSR: Dynamic PLSR was employed to infer connections between the stimuli or 39	

inputs and the TFrs using the pls package10. The first two interpolated time points (3 and 4.5 40	

hrs) for each TFr, Xj,t<ti, were employed to regress them against the different conditions (i.e., 41	

stiffness or RGD concentration), Yi (Eq. 4). Connections were considered significant if their 42	

loads for their first component were greater than 0.15. The directionality of the interaction is 43	

given by the sign of the loading. 44	

𝑌" = 𝐵%𝑋%,()(*
+
%,-   (Eq.4) 45	

Identification of TFrs that most likely affected other constructs was based on the differences 46	

between scaled activities acquired at two consecutive time points for the same TFr. TFr 47	
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activities were regressed with respect to activity at the previous time point of the constructs, 48	

which is an approximation to the first derivative over time of the given TFr. Connections were 49	

considered significant if their loads for their first component were greater than 0.3.  50	

𝑋",(,(.- −�",(,( = 𝐵%𝑋%,(,(+
%,-  (Eq. 5) 51	

Dynamic Similarity Index (SI): The SI is defined as the scalar product of the dynamic trajectories 52	

of the average activities of two TFrs over time. Therefore, if the dynamic trends of two TFrs 53	

were similar, the SI is close to 1, and if they were similar but in completely opposite directions 54	

(anti-correlated), the SI value would be -1. A SI index close to 0 indicates that there is no 55	

correlation between the dynamic trends of the two TFrs. Here, we calculated the SI of two 56	

dynamic trajectories, but where one was delayed with respect to the other, so that we could 57	

infer the directionality and sign of the observed correlation in the following manner: 58	

𝑆𝐼 = 2345264 78,9:; <- 2345264 7*∈>,9 <-

2345264 78,? <- @A
?B; 	 2345264 78,? <- @A

?B;

 (Eq. 6) 59	

Similarly, we have employed the original definition to calculate the relationships between 60	

extracellular conditions or stimuli and TFrs by only employing the first two interpolation times. All 61	

the connections that have an abs(SI) ≥ 0.95 were considered significant and 0.9 in the case of 62	

edges between stimuli and TFrs. 63	

ODE-TIGRESS: Lasso regression with feature selection stabilization has been successfully 64	

applied to infer biological connections4. Here, we presented a modification of the procedure, 65	

ODE-TIGRESS, where an approximation of the first derivative over time for a given TFr is 66	

regressed with respect to all the other TFrs and stimuli present in the system. Lasso regression 67	

was performed using the lars package, with a regularization penalty, λ, equal to unity, aiming to 68	

minimize L: 69	
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𝐿 = 7*,9B9:;<7*,9B9
(9:;<(9

− 𝛽%+
%,- 𝑋%,(,( + 𝜆 𝛽%+

%,-  (Eq. 7) 70	

1000 samples were generated from the original data by randomly multiplying each value by a 71	

factor between 0 to 1.  An interaction was deemed significant if it was present in at least 99% of 72	

the iterations. Directionality and sign were granted by the regression parameters. 73	

Dynamic mutual information: Mutual information (MI) methods were not only considered to 74	

determine interactions between stimuli and TFrs, as in the original version of NTRACER, but 75	

also between TFrs. The mutual information matrices (MIM) for relationships between inputs and 76	

TFrs were constructed as for the dynamic PLSR case. The sign of each interaction between a 77	

stimulus and a given TFr was determined by the initial slope over time for each stimulus. For 78	

interactions between TFrs, MIM was merged from two matrices: one that contained all the data 79	

except the last time point and another that contained all the data points except the first time 80	

point. This method provided the MI between the different TFrs with directionality, representing 81	

changes between immediately successive time points. The minet package11 was selected to 82	

assess the MIM with the Schurmann-Grassberger estimate of the entropy12 by equal frequency 83	

for discretization of the data for ARACNE, CLR and MRNET. Inference networks were created 84	

from interactions between each TFr at an initial time point versus all TFrs at the following time 85	

points with values greater than 0, as found using any of the above methods. Default parameters 86	

were used otherwise.  87	

Dynamic Bayesian Networks: Dynamic Bayesian networks were obtained assuming that all the 88	

data were not independent, due to the short experimental frequency used, and no prior 89	

knowledge was provided to BANJO13, http://www.cs.duke.edu/~amink/software/banjo/. No 90	

parents were allowed for any of the stimuli, and all the data were discretized into three intervals 91	

for each type of extracellular stimulus. Simulated annealing with random local moves was the 92	

choice for the searching strategy with the default parameters and a maximum parent size of 5. 93	
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Banjo was run 500 times, and interactions were obtained from the top network for each run. 94	

Interaction signs were given by the influence score.  95	

Dynamic random forest: For the dynamic random forest version, concepts from GENIE314 were 96	

incorporated, but with modifications to permit handling time-series data by the non-linear 97	

random forest approach. The approximation to the first derivative over time was calculated as 98	

above.  A total of 1000 random trees were created using the data for all the TFrs and treatments 99	

for each time point employing the randomForest package15. The square root of the total number 100	

of all the TFrs and conditions was used to select the number of random TFrs to start populating 101	

the trees. The importance of a node was measured by the reduction in the residuals. Edges 102	

were considered significant if they appeared in the top 10% ranked weights. Directionality was 103	

guaranteed by the temporal order.  104	

Consensus inference network: A total of 500 bootstrap samples were generated using the 105	

weights described above and the inference methods listed above applied to each bootstrapping 106	

sample. To combine all bootstrap samples, edges were deemed significant if there were present 107	

in more than 65% of the runs for at least one inference method or if the number of the times that 108	

was significant by some of the investigated inference methods exceeded the 700 counts (140% 109	

of the 500 bootstrap samples). These cut-offs were selected based on the bimodal frequency 110	

distribution for each method alone and all methods combined. Specifically, they were selected 111	

to coincide with the start of the second distribution of the bimodal graph (Fig. S9) 112	

Determination of TFr networks evolution over time upon chemical and physical 113	

alterations of the extracellular environment 114	

The initial network topology originated from an equally weighted number of prior knowledge 115	

sources and inference methods. Prior knowledge and inference networks were combined into a 116	

unique structure that served as a combined initial knowledge network model for the modified 117	
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version of CellNOptR16 in NTRACER. The improved NTRACER (NTRACER v2.0) was 118	

employed to identify the most likely connections present at each time point, penalizing network 119	

complexity. First, the initial network was simplified by removing all connections that did not 120	

include edges between the external stimuli (i.e., adhesion peptide concentration and gel 121	

stiffness) and TFrs or between TFrs.  122	

NTRACER v2.0 was adapted from the three-level Boolean to a continuous paradigm, where 123	

edges represent linear and non-linear interactions between the nodes. This modification allowed 124	

accommodating continuous variable levels (i.e., stiffness and RGD concentration). These 125	

features were required in order to capture the cellular biphasic response upon chemical and 126	

physical environmental cues. The prediction of the output from the model was obtained from a 127	

regression model that accounts for the contributions of all the input nodes to a given TFr activity.  128	

Initially the regression model was assumed linear. However, lack of fit to a linear model was 129	

estimated with the rainbow test17 (p-value≤0.1), and a quadratic term was added to model the 130	

non-linear effects. 131	

Assume that the following reactions are active in the random structure i: 132	

A → B 133	

B ┤C 134	

A → C 135	

NTRACER v2.0 fits a linear model for each of the output nodes, in this case, B and C, as a 136	

function of their input nodes: 137	

𝐵(,(.- = 𝛼-𝐴(,(   (Eq.8) 138	

𝐶(,(.- = 𝛼-𝐴(,( − 𝛼K𝐵(,(   (Eq.9) 139	

Note that NTRACER v2.0 aims to predict the next temporal response of a given node, in this 140	

case, B and C, based on the previous temporal values of A and B. In addition, for each of the 141	
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models and coefficients, NTRACER v2.0 determines the lack of fit to a linear model using the 142	

rainbow test 17 from the lmtest package18. If the alternative hypothesis is significant (p-143	

value≤0.1), in other words, if the relationship is not linear, an additional squared term is added 144	

to the model. Assume that ifα2 were not significant, then NTRACER v2.0 will fit the following 145	

model: 146	

𝐶(,(.- = 𝛼-𝐴(,( − 𝛼K𝐵(,( + 𝛼L𝐵(,(K     (Eq.10) 147	

Another addition to NTRACER v2.0 is the manner in which TFrs are allowed to participate in 148	

self-loop edges. Here, we incorporated a penalty for self-loop edges and avoided models with 149	

only auto-regressive edges. 150	

𝑆𝑐𝑜𝑟𝑒 = -
Q

𝑥S − 𝑥" KQT
",- + 0.1(𝑁 − 𝑁𝐶) + -

Q[+\
𝑠𝑖�𝑒_4+𝑁𝑆𝑖𝑔 + 𝑆𝑡𝑖𝑚_4+𝑆𝑃(d5ef<-)𝑁𝑆𝑡𝑖𝑚 +151	

𝐼𝑛ℎ𝑀_4+𝑠𝑖𝑧𝑒_4+𝑁𝐼𝑛ℎ𝑀 + 𝑠𝑙_4+𝑁𝑆𝑙  (Eq. 11) 152	

Here, N is the total number of experimental observations; NC is the total number of simulations 153	

in which the model converged; xM represents the simulation results from the model; xi denotes 154	

the discretized experimental results; NAPen, sizePen, StimPen, InhMPen,and slPen are the penalties 155	

assigned to the size of non-converged simulation results, number of edges from TFrs, stimuli, 156	

InhM, and self-loops, respectively; NInp, NSig, NStim,NInhM and NSl are the size of the total 157	

number of edges, number of edges originated from TFrs, stimuli, InhM and self-loops 158	

respectively; SP is the stimuli policy increased to penalize the appearance of long-term stimuli 159	

edges, and OrdT indicates the order of the experimental time whose structure is being 160	

optimized.  161	

Only TFrs with significantly different activities among treatments in at least one time point 162	

(meta-analysis false discovery rate (fdr)-corrected p-value ≤ 0.02) were subsequently studied. In 163	

order to reduce the computational time, a two-level factorial design with a central point was 164	
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conducted to determine the parameters that yielded the lowest score for the same number of 165	

iterations (Table S1).  166	

  167	
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Supplemental Figures and Tables 203	

 204	

Figure S1. Swelling rations of human foreskin fibroblasts cultured on PEG hydrogels 205	
with varying modulus or RGD concentration. Swelling ratios were calculated by comparing 206	
the weight of hydrogels swollen to equilibrium (>12 hrs at room temperature) in PBS, pH 7.4 207	
and after lyophilization: swelling ratio = wet weight/dry weight. 208	

209	
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 210	

Figure S2. Dynamic TFr activity trends different levels of adhesion motif (RGD) 211	
concentration. Mean weighted normalized and 95% confidence intervals. Green squares 212	
indicate that there is at least there is one significant difference between the RGD concentrations 213	
at one of the measured times (meta-analysis fdr-corrected p-value ≤0.02). Gel stiffness 1.5 kPa. 214	
 215	
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 216	
Figure S3. Dynamic TFr activity trends different levels of gel stiffness.  Mean weighted 217	
normalized and 95% confidence intervals. Green squares indicate that there is at least there is 218	
one significant difference between the upon variation of the gel stiffness in at least one of the 219	
measured times (meta-analysis fdr-corrected p-value ≤0.02). Adhesion concentration 2.0 mM. 220	

 221	
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 222	
Figure S4. Mechanotransduction signaling network. Purple nodes are the two 223	
mechanotransduction explored variables, S for gel stiffness and R for RGD concentration; green 224	
nodes are ligands such as fibronectin or collagen; red nodes are membrane proteins such as 225	
receptors, integrins or cadherins; yellow nodes represent cytosolic proteins (i.e, kinases, 226	
phosphatases); blue nodes are the transcription factors whose consensus sequences was 227	
employed to generate the TFr employed in the study. Connections were obtained from the 228	
GENEGO database. The initial experimental network employed for NTRACER that incorporate 229	
the connections between the ECM and TFs also contained experimentally determined 230	
connections from the adhesome database (see methods for more details).  231	

 232	

 233	
  234	
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 235	

Figure S5 Initial networks for NTRACER for A) variations in RGD concentration; B) 236	
variation in gel stiffness. A) Number of edges originated only from literature curation (i.e., prior 237	
knowledge), or only from inference methods and those that were common between both 238	
approaches. Total number of edges is indicated between parenthesis. B) The two 239	
mechanotransduction explored variables (adhesion and stiffness) correspond to the blue and 240	
red nodes, respectively; Green nodes are transcription factors reporters. Only edges that are 241	
common between the two sources, prior knowledge and inference methods, are represented. 242	
Adhesion common edges are indicated in light blue and stiffness common edges are 243	
represented in light red. 244	
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Fig. S6: Dynamic TF activity networks for changes in stiffness (A-E) and RGD levels (F-J) 246	
in PEG hydrogels. Hydrogel conditions and TFrs are represented as nodes, while the 247	
connections between them are represented by directed edges. Only edges active at each 248	
temporal step (e.g., 0-3 hrs, A and F; 3-6 hrs, B and G; 6-9 hrs, C and H; 9-12 hrs, D and I; and 249	
12-27 hrs, E and J) are represented. Nodes affected by changes in both RGD and stiffness 250	
levels are represented in purple. Nodes only affected by RGD changes or only by stiffness 251	
changes are colored in red and aqua, respectively. Edges corresponding to linear relationships 252	
between nodes are represented by continuous lines. Edges corresponding to non-linear 253	
relationships are represented with dashes. Node size is proportional to the number of nodes 254	
that can potentially alter the TFr activity level. Similarly, edge thickness is proportional to the 255	
number of times that are activated during the measured experimental times. Activation or 256	
inhibitory effects on the downstream nodes is represented by an arrow or a T respectively.  257	
 258	
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 259	

Fig S7. Dynamic TF abundance trends for different levels of adhesion motif (RGD) 260	
concentration and PEG gel stiffness levels. Mean normalized protein abundance and 95% 261	
confidence intervals. The colors of each trends are the same as Fig. S2 and Fig. S3 262	
 263	

 264	
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Figure S8.Possible TFs binding to each of the studied TF reporters. Each sequences for all 266	
the TFr employed in the study were scanned to determine the most likely TFs whose consensus 267	
binding sequences were highly similar to TFr sequence itself. The binding score represents the 268	
likelihood of a given TF to bind a given reporter, accounting for sequence similarity and the non-269	
overlapping motifs. Only the top 3 rank TF for each TFr are represented as well as the TF 270	
whose consensus binding sequence was employed for the design of each reporter (i.e., for AP1 271	
reporter, the AP1 consensus sequence was employed).  272	

 273	
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 274	
Figure S9. Validation of TRACER measurements using microWesterns arrays (MWA). A) 275	
Possible binding sites of the proteins whose abundance was measured by MWA. Using FIMO, 276	
we identified the most likely reporters that could bind to each of the studied TFrs. We limited the 277	
list to the top 3 proteins as well as the protein that was employed for the design of the reporter 278	
(i.e., for AP1 reporter, the AP1 consensus sequence was employed). B) Most likely TF reporters 279	
that selected proteins that were analyzed by MWA arrays could bind, using the same time scale 280	
(left panel) and delayed time scale (right panel). 281	
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 282	

Figure S10. Histograms of edge presence for the different explored inference methods. A) 283	
Histogram forthe presence of an edge in a given method (e.g., TD-PLSR, TD-MI) in the 500 284	
bootstrapping runs for the experiments in which stiffness was altered; B) Histogram for the total 285	
summation of the presence of each edge independently of the inference method runs for the 286	
experiments in which stiffness was altered. C and D panels represents the same histograms for 287	
the experiments in which adhesion was altered.  288	

  289	
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Table S1: Optimized parameters employed for NTRACER 290	
 291	

Parameters Values 

Population size 50 

Percentage of non-present edges for random 
start 

0.5 

Elitism 5 

Probability of mutations 0.001 

Selective pressure 3 

Deactivation mechanism factor penalty 48 

Edge penalty 2 

Self-loop penalty 6 

Stimuli penalty 2 

 292	
 293	
  294	
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Table S2: List of the TF antibodies employed in the microwestern arrays 295	

Antibody Company Catalog number 
TFAP2C/AP2-
gamma 

Aviva ARP38284_T100 

FOS Santa Cruz Biotechnology sc-52 
FOXO1 Cell Signaling 

Technologies 
9462 

HSF4 Aviva ARP32652 
MEF2A Cell Signaling 

Technologies 
9736 

P53 Cell Signaling 
Technologies 

9282 

RELA Aviva P100779 
RUNX2 Cell Signaling 

Technologies 
8486 

SP1 Abcam ab13370 
Lamin A+C AbCam ab8984 

 296	

 297	

 298	

 299	

 300	

 301	

 302	

 303	

 304	
  305	
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Table S3: List of microarrays employed for the identification of overexpressed TF gene 306	
targets in mechanotransduction related transcriptomic measurements 307	
 308	

 309	
 310	
 311	

Group Array Express 
ID 

Cells/Tissue Variables FC p-value fdr 
corrected 

Stiffness 

E-GEOD-22011 Human lung 
fibroblasts 

Different matrix 
stiffness 1.3 0.005 no 

E-GEOD-33603 Young patient 
quadriceps 

Massage 
therapy after 
exercise 

1.3 0.01 no 

E-GEOD-10125 Human dermal 
fibroblast cells 

3 hours of cycle 
mechanical 
loading 

1.3 0.01 yes 

RGD 

E-MEXP-1273 Human  
mesenchymal 
stem cells from 
adipose tissue 

Monolayer or 
LVG or RGD 
alginate 1.3 0.05 no 

Both 

E-GEOD-6432 Human fibroblasts Culture in petri 
dish or attached 
to a tissue 
engineered 
scaffold 

1.3 0.01 yes 

E-GEOD-44811 Adipose stromal 
cells 

2D or 3D 
collagen culture 1.3 0.01 yes 

E-GEOD-39475 Human foreskin 
fibroblasts 

Attached versus 
released 3D 
collagen matrix 

1.3 0.01 yes 

E-GEOD-3003 Human CD34+ 
hematopoietic 
cells 

Suspension 
culture or 
collagen I matrix 

1.2 0.05 yes 

Fibrosis 

E-GEOD-17978 Non-culture 
pulmonary 
fibroblasts from 
idiopathic 
pulmonary fibrosis 
(IPF) 

Patients versus 
normal control 
donors 1.3 0.01 yes 


