Analytical Atomic Spectrometry

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Characterization of a New Absolute Isotope Reference Material for Magnesium: ab initio Calibration of the Mass Spectrometers, and **Determination of Isotopic Compositions and Relative Atomic Weights**

- ELECTRONIC SUPPLEMENT

5 Jochen Vogl*a, Björn Brandta, Janine Noordmannb, Olaf Rienitzb, and Dmitriy Malinovskiyc

AE145^d

Received 1st May 2015, Accepted 2nd May 2015 DOI: 10.1039/b000000x

S1 Preparation of Candidate Solutions

HNO₃ ^a ERM 15 ERM-4 ^b Mass c Mass

10 Setup calculations and the actual setup for the preparation of the three candidates ERM-AE143, -AE144 and -AE145 are shown in Table S1.

AE143

Table S1 Initial Dissolution of the magnesium IRM candidates^a.

Sample (iteration)

A number of individual calibration sequences were measured and evaluated. One sequence ("-1b-3", BAM) is evaluated as an example in this paper to demonstrate the procedure. Table S01 25 compiles the blank corrected raw data from all runs, both signal intensity as well as signal ratios.

R(25/24) / (V/V)

Drift standard, initial measurement

Table S2a Blank-corrected data, sample sequence (BAM, "-1b-3"). Part a): Drift standard initial measurement and IRM candidates.

Mass PFA bottle / g, $N = 10$	314.38593	330.51866	67.78299
Mass of Mg metal / g, $N = 10$	2.14347825	2.019622	0.1780076
	Setup calculations		
Mg target mass fraction / $(\mu g/g)$	1000	1000	2000
Target mass of solution / g	2143.478	2019.622	89.004
HNO ₃ target mass fraction / (g/g)	0.020	0.020	0.015
Required HNO ₃ for dissolution / g	11.1143	10.4721	0.9230
Required HNO ₃ in final sol. / g	42.8696	40.3924	0.8900
Sum required mass of HNO ₃ / g	53.9839	50.8646	2.2581
Mass fraction ^a of HNO ₃ / (g/g)	0.060001	0.060001	0.059979
Required mass 0.06 g/g HNO ₃ / g	899.7123	847.7244	37.6482
	Actual s	setup, HNO ₃	addition
Mass of 0.06 g/g HNO ₃ / g	900.0460	848.1654	37.698405
Mass fraction ^a of HNO ₃ / (g/g)	0.060001	0.060001	0.059979
Mass of HNO ₃ added / g	54.0039	50.8910	2.261113
Mass HNO ₃ after digestion / g ^b	899.5104	847.8193	37.673497
Obs. total mass loss / g	0.5356	0.3461	0.0249
Expected mass loss due to H ₂ / g	0.1778	0.1675	0.0148
Obs. additional mass loss / g ^c	0.3578	0.1786	0.0101
	Actual se	tup, fill-up w	vith water
Mass of water added / g	1243.6238	1170.8520	51.30
Total mass of solution / g	2145.2723	2020.7119	89.8900
Mg mass fraction / (mg/kg)	999.16	999.46	1995.80 ^d
Remaining HNO3 / g	42.8896	40.4189	1.3381
HNO ₃ mass fraction / (g/g)	0.019993	0.020002	0.015003 d
^a ERM-AE145 was dissolved first t ERM-AE143 and -AE144 were dis	o test the diss solved separat	olution condi tely.	tions;
^b Mass of solution after digestion, n	ninus the mas	s of magnesiu	ım.
^c Mass difference between acid fille later, minus the calculated stoichion	ed in, and mas netric mass lo	s of acid detenses due to H_2	rmined formation

Cand. ERM-Cand. ERM-Cand. ERM-

AE144

^d Note: this initial solution was later transferred into a solution of 0.02 g/g

20 HNO₃ by adding 0.509 mL of conc. HNO₃ (0.65 g/g), for details see text. 30 PAPER

R(26/24) / (V/V)

Dynamic Article Links

3	Standard, 1	0.1355317	0.1593208
6	2	0.1355302	0.1593149
9	3	0.1355206	0.1592927
12	4	0.1355152	0.1592767
15	5	0.1355100	0.1592672
		Cand	lidate 3
18	Candidate 3, 1	0.1355250	0.1592997
21	2	0.1355243	0.1592904
24	3	0.1355214	0.1592832
27	4	0.1355139	0.1592727
30	5	0.1355114	0.1592632
		Drift s	tandard
33	Standard, 6	0.1354859	0.1592074
		Cand	lidate 2
36	Candidate 2, 1	0.1354835	0.1592040
39	2	0.1354784	0.1591979
42	3	0.1354760	0.1591918
45	4	0.1354727	0.1591848
48	5	0.1354717	0.1591828
		Drift s	tandard
51	Standard, 7	0.1354690	0.1591728
		Cand	lidate 1
54	Candidate 1, 1	0.1355822	0.1594348
57	2	0.1355762	0.1594263
60	3	0.1355803	0.1594290
63	4	0.1355738	0.1594159
66	5	0.1355712	0.1594170
		Drift s	tandard
69	Standard, 8	0.1354621	0.1591555

This data is the result of an outlier test, and the subtraction of blank values (after removal of outliers), from the individual cycles of the runs (50 before outlier removal, max. 11 outliers found in test sequence – typically less than 5 per cycle). The signal ratios were 5 then drift-corrected; Table S02 compiles the results after drift

b then drift-corrected; Table S02 compiles the results after drift correction for all runs. This data is the basis for the averaged data and standard uncertainties, which are fed into the evaluation (see table 05 in the main part)

 Table S2b
 Blank-corrected data, sample sequence (BAM, "-1b-3").

 10
 Part b): Calibration mixtures and intermediate drift standards.

Run #		Sample (iteration)	R(25/24) / (V/V)	R(26/24) / (V/V)
			Drift s	tandard
6	9	Standard, 8	See T	able 01a
			Calibration mixt	ures "24"+"25"-1b
7	2	"24"+"25"-1b, 1	1.009878	0.0037220
7	5	2	1.009846	0.0037205
7	8	3	1.009841	0.0037191
8	1	4	1.009888	0.0037107
8	4	5	1.009869	0.0037096
		_	Drift s	tandard
8	7	Standard, 9	0.1354514	0.1591328
9	0	Standard, 10	0.1354513	0.1591318
		_	Calibration mixt	ures "25"+"26"-1b
9	13	"25"+"26"-1b, 1	46.432	51.249
9	6	2	46.425	51.241
9	9	3	46.423	51.238
10	2	4	46.421	51.235
10	15	5	46.410	51.223
		-	Drift s	tandard
10	8	Standard, 11	0.1354351	0.1591073
11	1	Standard, 12	0.1354397	0.1591071
		_	Calibration mixt	ures "24"+"26"-1b
11	4	"24"+"26"-1b, 1	0.0022684	1.022096
11	7	2	0.0022723	1.022008
12	0	3	0.0022724	1.022030
12	3	4	0.0022693	1.021973
12	6	5	0.0022705	1.021986
		-	Drift s	tandard
12	9	Standard, 13	0.1354325	0.1590916

Table S2c Blank-corrected data, sample sequence (BAM, "-1b-3").

 Part b): Isotopically enriched materials and intermediate drift standards.

Run #	Sample (iteration)	R(25/24) / (V/V)	R(26/24) / (V/V)
		Drift st	andard
13	Standard, 14	0.1354370	0.1590974
		Enriched m	aterial "24"
13	35 "24"-1b, 1	0.0008386	0.0007491
13	8 2	0.0008404	0.0007516
14	1 3	0.0008398	0.0007515
14	4 4	0.0008438	0.0007559
14	7 5	0.0008437	0.0007555
	-	Drift st	andard
15	50 Standard, 15	0.1354268	0.1590791
15	53 Standard, 16	0.1354263	0.1590728
	· -	Enriched m	aterial "25"
15	6 "25"-1b, 1	56.961	0.168625
15	59 2	56.966	0.168628
16	52 3	56.966	0.168607
16	5 4	56.990	0.168554
16	58 5	56.970	0.168602
	-	Drift st	andard
17	1 Standard, 17	0.1354211	0.1590654
17	4 Standard, 18	0.1354202	0.1590575
		Enriched m	aterial "26"
17	"26"-1b, 1	0.38728	274.34
18	30 2	0.38646	273.95
18	33 3	0.38645	273.92
18	36 4	0.38638	273.71
18	39 5	0.38635	273.86
	-	Drift st	andard
19	92 Standard, 19	0.1354154	0.1590597
19	95 Standard, 20	0.1354161	0.1590537
	,		

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Run #	Sample (iteration)	R(25/24) / (V/V)	R(26/24) / (V/V)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Candidate 3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	8 Candidate 3, 1	0.1355406	0.1593370	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1 2	0.1355439	0.1593377	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	4 3	0.1355450	0.1593404	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	7 4	0.1355415	0.1593399	
Candidate 2, 1 0.13552192 0.15929689 39 2 0.13551970 0.15929653 42 3 0.13551963 0.15929407 45 4 0.13551963 0.15929407 48 5 0.13552145 0.15929869 Candidate 1 54 Candidate 1, 1 0.1356359 0.1595596 57 2 0.1356310 0.1595595 63 4 0.1356310 0.1595595 63 4 0.1356310 0.1595595 63 4 0.1356295 0.1595533 66 5 0.1355295 0.1595533 78 3 1.010334 0.0037254 78 3 1.010378 0.0037132 Calibration mixtures "25"+"26"-1b 93 "25"+"26"-1b, 1 46.4571 51.3029 96 2 46.4511 51.2929 105 5 46.4383 51.2817 Calibration mixtures "2	3	0 5_	0.1355430	0.1593403	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	Cano	lidate 2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	6 Candidate 2, 1	0.13552192	0.15929689	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	9 2	0.13551970	0.15929653	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	2 3	0.13552012	0.15929617	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	5 4	0.13551963	0.15929497	
Candidate 1 54 Candidate 1, 1 0.1356359 0.1595596 57 2 0.1356311 0.1595595 63 4 0.1356310 0.1595595 63 4 0.1356310 0.1595593 66 5 0.1356295 0.1595533 Calibration mixtures "24"+"25"-1b 72 "24"+"25"-1b, 1 1.010334 0.0037254 75 2 1.010315 0.0037239 78 3 1.010323 0.0037132 Calibration mixtures "25"+"26"-1b 93 "25"+"26"-1b, 1 46.4571 51.3029 96 2 46.4511 51.2929 99 3 46.4502 51.2945 102 4 46.4486 51.2929 105 5 46.4383 51.2817 Calibration mixtures "24"+"26"-1b 114 "24"+"26"-1b, 1 0.0022737 1.023243 120 3 0.0022717 <td< td=""><td>4</td><td>8 5_</td><td>0.13552145</td><td>0.15929869</td></td<>	4	8 5_	0.13552145	0.15929869	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_		Cano	lidate 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	4 Candidate 1, 1	0.1356359	0.1595596	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	2	0.1356311	0.1595539	
65 4 0.1356310 0.1595494 66 5 0.1356295 0.1595533 Calibration mixtures "24"+"25"-1b 75 2 1.010334 0.0037254 75 2 1.010315 0.0037239 78 3 1.010323 0.0037132 Calibration mixtures "25"+"26"-1b 93 "25"+"26"-1b, 1 46.4571 51.3029 96 2 46.4511 51.2929 99 3 46.4502 51.2945 102 4 46.4486 51.2929 105 5 46.4383 51.2817 Calibration mixtures "24"+"26"-1b 114 "24"+"26"-1b, 1 0.0022698 1.023245 100 3 0.0022737 1.023244 126 5 0.0022717 1.023273 Enriched material "24" 135 "24"-1b, 1 0.0008391 0.0007500 138 2 0.0008443 0.0007565 Enriched material "25" 156	6	0 3	0.1356363	0.1595595	
66 5 0.1395295 0.159533 Calibration mixtures " $24"+"25"-1b$ 1 1.010334 0.0037254 75 2 1.010315 0.0037239 78 3 1.010323 0.0037227 81 4 1.010384 0.0037132 $Calibration mixtures "25"+"26"-1b 1 46.4571 51.3029 96 2 46.4511 51.2959 99 3 46.4502 51.2945 102 4 46.4383 51.2917 102 4 46.4383 51.2945 102 4 46.4383 51.2945 102 4 46.4383 51.2945 102 4 46.4383 51.2945 102 4 40.4486 51.2929 105 2 0.0022737 1.023245 120 3 0.0022737 1.023243 120 3 0.0002730$	6	3 4	0.1356310	0.1595494	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	6	6 5	0.1356295	0.1595533	
$\begin{array}{c} \textbf{Calibration initures} \ 24 + 25 + 10 \\ 72 & "24"+"25"+1b, 1 & 1.010334 & 0.0037254 \\ 75 & 2 & 1.010315 & 0.0037239 \\ 78 & 3 & 1.010323 & 0.0037227 \\ 81 & 4 & 1.010384 & 0.0037143 \\ 84 & 5 & 1.010378 & 0.0037132 \\ \hline \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$		-	Calibration mint		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	o "o4"⊥"o5" 1b 1		0.0027254	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, 7	2 24 + 23 - 10, 1	1.010334	0.0037234	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, 7	8 3	1.010313	0.0037239	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	o 5 1 4	1.010323	0.0037227	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	1 1 1	1.010378	0.0037132	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	- 3_	Calibration mixt	ures "25"+"26"-1b	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	3 "25"+"26"-1b. 1	46.4571	51.3029	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	6 2	46.4511	51.2959	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	9 3	46.4502	51,2945	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	2 4	46.4486	51.2929	
$\begin{tabular}{ c c c c c c } \hline Calibration mixtures "24"+"26"-1b\\ \hline 114 "24"+"26"-1b, 1 0.0022698 1.023316\\ \hline 117 2 0.0022737 1.023245\\ \hline 120 3 0.0022738 1.023283\\ \hline 123 4 0.0022707 1.023244\\ \hline 126 5 0.0022719 1.023273\\ \hline Enriched material "24"\\ \hline 135 "24"-1b, 1 0.0008391 0.0007500\\ \hline 138 2 0.0008410 0.0007526\\ \hline 141 3 0.0008403 0.0007525\\ \hline 141 3 0.0008443 0.0007569\\ \hline 147 5 0.0008443 0.0007569\\ \hline 147 5 0.0008443 0.0007565\\ \hline Enriched material "25"\\ \hline 156 "25"-1b, 1 57.0012 0.168862\\ \hline 159 2 57.0069 0.168865\\ \hline 162 3 57.0072 0.168846\\ \hline 165 4 57.0315 0.168794\\ \hline 168 5 57.0120 0.168843\\ \hline Enriched material "26"\\ \hline 177 "26"-1b, 1 0.38757 274.74\\ \hline 180 2 0.38675 274.36\\ \hline 183 3 0.38675 274.32\\ \hline 186 4 0.38668 274.11\\ \hline \end{tabular}$	10	5 5	46.4383	51.2817	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	Calibration mixt	tures "24"+"26"-1b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	4 "24"+"26"-1b, 1	0.0022698	1.023316	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	7 2	0.0022737	1.023245	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	0 3	0.0022738	1.023283	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	3 4	0.0022707	1.023244	
$\begin{tabular}{ c c c c c } \hline Enriched material "24" \\ \hline Enriched material "24" \\ \hline 135 & "24"-1b, 1 & 0.0008391 & 0.0007500 \\ \hline 138 & 2 & 0.0008410 & 0.0007526 \\ \hline 141 & 3 & 0.0008403 & 0.0007525 \\ \hline 144 & 4 & 0.0008443 & 0.0007569 \\ \hline 147 & 5 & 0.0008443 & 0.0007565 \\ \hline \hline Enriched material "25" \\ \hline \hline Enriched material "25" \\ \hline 156 & "25"-1b, 1 & 57.0012 & 0.168862 \\ \hline 159 & 2 & 57.0069 & 0.168865 \\ \hline 162 & 3 & 57.0072 & 0.168846 \\ \hline 165 & 4 & 57.0315 & 0.168794 \\ \hline 168 & 5 & 57.0120 & 0.168843 \\ \hline \hline \hline 177 & "26"-1b, 1 & 0.38757 & 274.74 \\ \hline 180 & 2 & 0.38675 & 274.36 \\ \hline 183 & 3 & 0.38675 & 274.32 \\ \hline 186 & 4 & 0.38668 & 274.11 \\ \hline \end{tabular}$	12	6 5_	0.0022719	1.023273	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Enriched 1	naterial "24"	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	5 "24"-1b, 1	0.0008391	0.0007500	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	8 2	0.0008410	0.0007526	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	1 3	0.0008403	0.0007525	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	4 4	0.0008443	0.0007569	
$\begin{tabular}{ c c c c c c c } \hline Enriched material "25" \\ \hline Enriched material "25" \\ \hline 156 & "25"-1b, 1 & 57.0012 & 0.168862 \\ \hline 159 & 2 & 57.0069 & 0.168865 \\ \hline 162 & 3 & 57.0072 & 0.168846 \\ \hline 165 & 4 & 57.0315 & 0.168794 \\ \hline 168 & 5 & 57.0120 & 0.168843 \\ \hline \hline $ I68 & 5 & 27.0120 & 0.168843 \\ \hline \hline $ I77 & "26"-1b, 1 & 0.38757 & 274.74 \\ \hline 180 & 2 & 0.38675 & 274.36 \\ \hline 183 & 3 & 0.38675 & 274.32 \\ \hline 186 & 4 & 0.38668 & 274.11 \\ \hline \end{tabular}$	14	7 5_	0.0008443	0.0007565	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0	("05" 11 1	Enriched 1	naterial "25"	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	6 ¹²⁵ -10, 1	57.0012	0.168862	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	9 <u>2</u>	57.0009	0.168805	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	د ک ج ۸	57.0072	0.100040	
Interview Structure Constraint Constraint <thconstraint< th=""> Constraint Constraint</thconstraint<>	10	5 4 8 5	57.0515	0.168843	
177 "26"-1b, 1 0.38757 274.74 180 2 0.38675 274.36 183 3 0.38675 274.32 186 4 0.38668 274.11	10	o <u>5</u>	Fnriched -	0.100043 naterial "76"	
180 2 0.38675 274.36 183 3 0.38675 274.32 186 4 0.38668 274.11	17	7 "26"-1b 1	0 38757	274 74	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	20 - 10, 1	0 38675	274 36	
186 4 0.38668 274.11	18	3 3	0.38675	274 32	
	18	6 4	0.38668	274 11	
189 5 0.38665 274.27	18	9 5	0.38665	274.27	

 Table S3 Drift-corrected data, sample sequence (BAM, "-1b-3"), based on data in tables S1a to S1c.

Cite this: DOI: 10.1039/c0xx00000x

S3 Evaluation Equations

The analytical solution to the underlying system of calibration equations allowed to set up an uncertainty budget using GUM Workbench, and to directly obtain uncertainty results for the evaluations of the experiments. The system of calibration 5 equations as well as its analytical solution(s) can be obtained in the following way. Tables S4 and S5 compile all necessary symbols.

Table S4: Symbols of q	juantities needed	to derive the	he evaluation	equations

Symbol	Unit	Quantity
$R_{j,i}$	mol/mol	isotope amount ratio, i^{th} isotope divided by 1 st isotope (²⁴ Mg), in material <i>j</i>
R^{m}	V/V	measured signal intensity ratio
Ι	V	signal intensity (voltage)
п	mol	amount of substance
т	g	mass
Μ	g/mol	molar mass
x	mol/mol	amount-of-substance fraction
Κ	(mol/mol)/(V/V)	calibration factor

10

Table S5: Subscripts used throughout the derivation of the evaluation equations

Subscript	Meaning
1	isotope ²⁴ Mg
2	isotope ²⁵ Mg
3	isotope ²⁶ Mg
А	Mg material enriched with respect to ²⁴ Mg
В	Mg material enriched with respect to ²⁵ Mg
С	Mg material enriched with respect to ²⁶ Mg
AB	mixture prepared from materials A and B
BC	mixture prepared from materials B and C
AC	mixture prepared from materials A and C

15 The mixing scheme (Fig. S1) shows that up to 12 signal intensity ratios R^m in total could be measured, which represent the two independent isotope amount ratios $R_{j,2} = n({}^{25}\text{Mg})/n({}^{24}\text{Mg})$ and $R_{j,3} = n({}^{26}\text{Mg})/n({}^{24}\text{Mg})$ in the three parent materials and in the three mixtures. To be able to determine the 2 calibration factors (mass discrimination correction factors) *K* from the measurement(s), only 2 out of the 3 mixtures and a set of merely 8 signal intensity ratios R^m and 4 masses *m* are required. But even when focusing on 2 mixtures, 4 mathematically equivalent solutions can be obtained, because apart from the 6 20 signal intensity ratios in the parent materials A, B, and C only 1 intensity ratio in each of the 2 mixtures is necessary. Fig. S2 shows how this leads to 4 possible combinations and in turn to 4 mathematically equivalent solutions.

Fig. S1: Preparation of the three isotope mixtures AB ("²⁴Mg" plus "²⁵Mg"), BC ("²⁵Mg" plus "²⁶Mg"), and AC ("²⁴Mg" plus "²⁶Mg") from the isotopically enriched so-called parent materials A ("²⁴Mg"), B ("²⁵Mg"), and C ("²⁶Mg"). Suitable 5 masses like e.g. *m*_{AB}, mass of solid material A mixed with material B to yield mixture AB, or *m*_{BA}, mass of solid material B mixed with material A to yield mixture AB, were blended via masses of their respective solutions.

10

Since 3 pairs of mixtures can be selected (AB + AC, AB + BC, and BC + AC), each enabling 4 mathematical solutions, all in all 12 mathematically entirely equivalent solutions to determine/calculate the calibration factors are available. These solutions along with their assigned index (to distinguish between them) are listed in Table S6.

5

10

Table S6: Possible combination of pairs of mixtures and selection of signal intensity ratios within these mixtures yields 12 equivalent mathematical solutions to determine/calculate the calibration factors. Numbers in the first column have the following meaning: $2 = I({}^{25}Mg)/I({}^{24}Mg)$ and $3 = I({}^{26}Mg)/I({}^{24}Mg)$. Numbers assigned to a specific combination will be used in the following as indices to distinguish between these solutions.

	AB + AC	AB + BC	BC + AC
2 + 2	01	05	09
2 + 3	02	06	10
3 + 2	03	07	11
3 + 3	04	08	12

The isotope amount ratio $R_{AB,2}$ in mixture AB is connected to the respective measured signal intensity ratio via the calibration factor K_2 . It simply is the amount-of-substance ratio of the isotopes 2 (²⁵Mg) and 1 (²⁴Mg). This in turn can be

- expressed as the respective sums of amounts of the isotopes from the parent materials A and B. The amount of substance 15 $n_{A,2}$ of ²⁵Mg from parent material A is the product of the respective amount-of-substance fraction $x_{A,2}$ and the total amount
- of substance n_A brought into the mixture AB from material A (Eqn. S1).

$$R_{AB,2} = K_2 \cdot R_{AB,2}^m = \frac{n_{AB,2}}{n_{AB,1}} = \frac{n_{A,2} + n_{B,2}}{n_{A,1} + n_{B,1}} = \frac{x_{A,2} \cdot n_A + x_{B,2} \cdot n_B}{x_{A,1} \cdot n_A + x_{B,1} \cdot n_B}$$
(S1)

The amount-of-substance fractions can be replaced with the respective amount ratios (Eqn. S2).

$$K_{2} \cdot R_{AB,2}^{m} = \frac{x_{A,2} \cdot n_{A} + x_{B,2} \cdot n_{B}}{x_{A,1} \cdot n_{A} + x_{B,1} \cdot n_{B}} = \frac{\frac{R_{A,2}}{1 + R_{A,2} + R_{A,3}} \cdot n_{A} + \frac{R_{B,2}}{1 + R_{B,2} + R_{B,3}} \cdot n_{B}}{\frac{1}{1 + R_{A,2} + R_{A,3}} \cdot n_{A} + \frac{1}{1 + R_{B,2} + R_{B,3}} \cdot n_{B}}$$
(S2)

20 On the right-hand side of Eqn. S2, since they are unknown, the amount ratios should be expressed as measured signal intensity ratios (Eqn. S3). Calibration factor K_3 is introduced into the equation the same way.

$$K_{2} \cdot R_{AB,2}^{m} = \frac{\frac{K_{2} \cdot R_{A,2}^{m}}{1 + K_{2} \cdot R_{A,2}^{m} + K_{3} \cdot R_{A,3}^{m}} \cdot n_{A} + \frac{K_{2} \cdot R_{B,2}^{m}}{1 + K_{2} \cdot R_{B,2}^{m} + K_{3} \cdot R_{B,3}^{m}} \cdot n_{B}}{\frac{1}{1 + K_{2} \cdot R_{A,2}^{m} + K_{3} \cdot R_{A,3}^{m}} \cdot n_{A} + \frac{1}{1 + K_{2} \cdot R_{B,2}^{m} + K_{3} \cdot R_{B,3}^{m}} \cdot n_{B}}}$$
(S3)

Dividing eqn. S3 by K_2 yields eqn. S4:

$$R_{AB,2}^{m} = \frac{\frac{R_{A,2}^{m}}{1 + K_{2} \cdot R_{A,2}^{m} + K_{3} \cdot R_{A,3}^{m}} \cdot n_{A} + \frac{R_{B,2}^{m}}{1 + K_{2} \cdot R_{B,2}^{m} + K_{3} \cdot R_{B,3}^{m}} \cdot n_{B}}{\frac{1}{1 + K_{2} \cdot R_{A,2}^{m} + K_{3} \cdot R_{A,3}^{m}} \cdot n_{A} + \frac{1}{1 + K_{2} \cdot R_{B,2}^{m} + K_{3} \cdot R_{B,3}^{m}} \cdot n_{B}}}$$
(S4)

25 In the next step the amounts n_A and n_B should be replaced yielding expressions based on the signal intensity ratios and masses (Eqns. S5 and S6).

$$n_{\rm A} = \frac{m_{\rm A}}{M_{\rm A}} = \frac{m_{\rm A}}{x_{\rm A,1} \cdot M_{1} + x_{\rm A,2} \cdot M_{2} + x_{\rm A,3} \cdot M_{3}}$$

$$n_{\rm A} = \frac{m_{\rm A}}{\frac{1}{1 + K_{2} \cdot R_{\rm A,2}^{\rm m} + K_{3} \cdot R_{\rm A,3}^{\rm m}} \cdot M_{1} + \frac{K_{2} \cdot R_{\rm A,2}^{\rm m}}{1 + K_{2} \cdot R_{\rm A,2}^{\rm m} + K_{3} \cdot R_{\rm A,3}^{\rm m}} \cdot M_{2} + \frac{K_{3} \cdot R_{\rm A,3}^{\rm m}}{1 + K_{2} \cdot R_{\rm A,2}^{\rm m} + K_{3} \cdot R_{\rm A,3}^{\rm m}} \cdot M_{2} + \frac{K_{3} \cdot R_{\rm A,3}^{\rm m}}{1 + K_{2} \cdot R_{\rm A,2}^{\rm m} + K_{3} \cdot R_{\rm A,3}^{\rm m}} \cdot M_{3}}$$

$$n_{\rm A} = \frac{m_{\rm A}}{\frac{1}{1 + K_{2} \cdot R_{\rm A,2}^{\rm m} + K_{3} \cdot R_{\rm A,3}^{\rm m}} \cdot (M_{1} + K_{2} \cdot R_{\rm A,2}^{\rm m} \cdot M_{2} + K_{3} \cdot R_{\rm A,3}^{\rm m} \cdot M_{3}})}$$

$$n_{\rm A} = \frac{m_{\rm A} \cdot (1 + K_{2} \cdot R_{\rm A,2}^{\rm m} + K_{3} \cdot R_{\rm A,3}^{\rm m})}{M_{1} + K_{2} \cdot R_{\rm A,2}^{\rm m} \cdot M_{2} + K_{3} \cdot R_{\rm A,3}^{\rm m} \cdot M_{3}}}$$

$$(S5)$$

$$n_{\rm B} = \frac{m_{\rm B} \cdot (1 + K_{2} \cdot R_{\rm B,2}^{\rm m} + K_{3} \cdot R_{\rm B,3}^{\rm m})}{M_{1} + K_{2} \cdot R_{\rm B,2}^{\rm m} \cdot M_{2} + K_{3} \cdot R_{\rm B,3}^{\rm m} \cdot M_{3}}}$$

$$(S6)$$

Replacing n_A and n_B in Eqn. S4 with these expression yields Eqn. S7.

$$5 R_{AB,2}^{m} = \frac{\frac{m_{A} \cdot R_{A,2}^{m}}{M_{1} + K_{2} \cdot R_{A,2}^{m} \cdot M_{2} + K_{3} \cdot R_{A,3}^{m} \cdot M_{3}} + \frac{m_{B} \cdot R_{B,2}^{m}}{M_{1} + K_{2} \cdot R_{B,2}^{m} \cdot M_{2} + K_{3} \cdot R_{B,3}^{m} \cdot M_{3}}}{\frac{m_{A}}{M_{1} + K_{2} \cdot R_{A,2}^{m} \cdot M_{2} + K_{3} \cdot R_{A,3}^{m} \cdot M_{3}} + \frac{m_{B}}{M_{1} + K_{2} \cdot R_{B,2}^{m} \cdot M_{2} + K_{3} \cdot R_{B,3}^{m} \cdot M_{3}}}$$
(S7)

A completely analogue expression can be derived in the case of the amount-of-substance ratio of the isotopes 3 (^{26}Mg) and 1 (^{24}Mg) to be found in mixture AC.

$$R_{AC,3}^{m} = \frac{\frac{m_{A} \cdot R_{A,3}^{m}}{M_{1} + K_{2} \cdot R_{A,2}^{m} \cdot M_{2} + K_{3} \cdot R_{A,3}^{m} \cdot M_{3}} + \frac{m_{C} \cdot R_{C,3}^{m}}{M_{1} + K_{2} \cdot R_{C,2}^{m} \cdot M_{2} + K_{3} \cdot R_{C,3}^{m} \cdot M_{3}}}{\frac{m_{A}}{M_{1} + K_{2} \cdot R_{A,2}^{m} \cdot M_{2} + K_{3} \cdot R_{A,3}^{m} \cdot M_{3}} + \frac{m_{C}}{M_{1} + K_{2} \cdot R_{C,2}^{m} \cdot M_{2} + K_{3} \cdot R_{C,3}^{m} \cdot M_{3}}}$$
(S8)

Apart from measured signal intensity ratios and masses as well as published molar masses of all Mg isotopes, Eqns. S7 and 10 S8 contain merely the two unknown calibration factors K_2 and K_3 . Therefore, after several rearrangement steps [1] the equations expressing the calibration factors can be written down explicitly.

$$K_2 = \frac{M_1 \cdot N_2}{M_2 \cdot D}$$
$$K_3 = -\frac{M_1 \cdot N_3}{M_3 \cdot D}$$

While both factors share D, N_i is different. D and N_i are different for each of the 12 combinations listed in Table S5 [2]. All these combinations are mathematically entirely equivalent and yield exactly the same result. In practice, when used with

- 15 experimental data and its associated uncertainties, they each can yield significantly different results with quite different associated uncertainties. Since all results agree within the limits of their uncertainties, the uncertainties associated with a particular set of *K* factors are therefore already the criterions to decide which is the most suitable set. In the case of the Mg measurements described here, combination 02 yielded the smallest uncertainties of all sets, which is in perfect agreement with the theoretical prediction, that measuring in the mixture AB of "²⁵Mg" and "²⁴Mg" the signal intensity ratio "2" =
- 20 $I({}^{25}Mg)/I({}^{24}Mg)$ and in mixture AC of " ${}^{26}Mg$ " and " ${}^{24}Mg$ " the signal intensity ratio "3" = $I({}^{26}Mg)/I({}^{24}Mg)$ would be preferable, since the mixtures were prepared in a way that these ratios were adjusted close to unity.

Combination 01:

$$\frac{R_{AB,2}^{m}, R_{AC,2}^{m}}{D = m_{AB}m_{AC} \cdot (R_{A,2}^{m} - R_{AB,2}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m}) (R_{B,2}^{m}R_{C,3}^{m} - R_{B,3}^{m}R_{C,2}^{m})}
+ m_{AB}m_{CA} \cdot (R_{A,2}^{m} - R_{AB,2}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m}) (R_{A,3}^{m}R_{B,2}^{m} - R_{A,2}^{m}R_{B,3}^{m})
+ m_{AC}m_{BA} \cdot (R_{B,2}^{m} - R_{AB,2}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m}) (R_{A,2}^{m}R_{C,3}^{m} - R_{A,3}^{m}R_{C,2}^{m})
\frac{K_{2}}{N_{2}}
N_{2} = m_{AB}m_{AC} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,2}^{m} - R_{A,2}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})
+ m_{AB}m_{CA} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,2}^{m} - R_{A,2}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})
+ m_{AC}m_{BA} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,2}^{m} - R_{A,2}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})
+ m_{AC}m_{BA} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})
+ m_{AC}m_{BA} \cdot (R_{C,2}^{m} - R_{B,2}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})
+ m_{AC}m_{BA} \cdot (R_{C,2}^{m} - R_{B,2}^{m}) (R_{AB,2}^{m} - R_{A,2}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})
+ m_{AB}m_{CA} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{AB,2}^{m} - R_{A,2}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})
+ m_{AC}m_{BA} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{AB,2}^{m} - R_{A,2}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})$$

5 Combination 02:

$$\frac{R_{AB,2}^{m}, R_{AC,3}^{m}}{D = m_{AB}m_{AC} \cdot (R_{A,2}^{m} - R_{AB,2}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m}) (R_{B,2}^{m}R_{C,3}^{m} - R_{B,3}^{m}R_{C,2}^{m})
+ m_{AB}m_{CA} \cdot (R_{A,2}^{m} - R_{AB,2}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m}) (R_{A,3}^{m}R_{B,2}^{m} - R_{A,2}^{m}R_{B,3}^{m})
+ m_{AC}m_{BA} \cdot (R_{B,2}^{m} - R_{AB,2}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m}) (R_{A,2}^{m}R_{C,3}^{m} - R_{A,3}^{m}R_{C,2}^{m})
\frac{K_{2}}{N_{2}}
N_{2} = m_{AB}m_{AC} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,2}^{m} - R_{A,2}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})
+ m_{AC}m_{BA} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,2}^{m} - R_{A,2}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})
+ m_{AC}m_{BA} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,2}^{m} - R_{A,2}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})
+ m_{AC}m_{BA} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,2}^{m} - R_{A,2}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})
+ m_{AC}m_{BA} \cdot (R_{C,3}^{m} - R_{B,2}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})
+ m_{AC}m_{BA} \cdot (R_{C,2}^{m} - R_{B,2}^{m}) (R_{AB,2}^{m} - R_{A,2}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})
+ m_{AB}m_{CA} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{AB,2}^{m} - R_{A,2}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})
+ m_{AC}m_{BA} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{AB,2}^{m} - R_{A,2}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})$$

Combination 03:

$$\frac{R_{AB,3}^{m}, R_{AC,2}^{m}}{D = m_{AB}m_{AC} \cdot (R_{A,3}^{m} - R_{AB,3}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m}) (R_{B,2}^{m}R_{C,3}^{m} - R_{B,3}^{m}R_{C,2}^{m})}
+ m_{AB}m_{CA} \cdot (R_{A,3}^{m} - R_{AB,3}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m}) (R_{A,3}^{m}R_{B,2}^{m} - R_{A,2}^{m}R_{B,3}^{m})
+ m_{AC}m_{BA} \cdot (R_{B,3}^{m} - R_{AB,3}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m}) (R_{A,2}^{m}R_{C,3}^{m} - R_{A,3}^{m}R_{C,2}^{m})
\frac{K_{2}}{N_{2}}
N_{2} = m_{AB}m_{AC} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,3}^{m} - R_{A,3}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})
+ m_{AB}m_{CA} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,3}^{m} - R_{A,3}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})
+ m_{AC}m_{BA} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})
\frac{K_{3}}{N_{3}} = m_{AB}m_{AC} \cdot (R_{C,2}^{m} - R_{B,2}^{m}) (R_{AB,3}^{m} - R_{A,3}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})
+ m_{AB}m_{CA} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{AB,3}^{m} - R_{A,3}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})
+ m_{AB}m_{AC} \cdot (R_{C,2}^{m} - R_{B,2}^{m}) (R_{AB,3}^{m} - R_{A,3}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})
+ m_{AB}m_{CA} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{AB,3}^{m} - R_{A,3}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})
+ m_{AB}m_{CA} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{AB,3}^{m} - R_{A,3}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})$$

5 Combination 04:

$$\frac{R_{AB,3}^{m}, R_{AC,3}^{m}}{D = m_{AB}m_{AC} \cdot (R_{A,3}^{m} - R_{AB,3}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m}) (R_{B,2}^{m} R_{C,3}^{m} - R_{B,3}^{m} R_{C,2}^{m})
+ m_{AB}m_{CA} \cdot (R_{A,3}^{m} - R_{AB,3}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m}) (R_{A,3}^{m} R_{B,2}^{m} - R_{A,2}^{m} R_{B,3}^{m})
+ m_{AC}m_{BA} \cdot (R_{B,3}^{m} - R_{AB,3}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m}) (R_{A,2}^{m} R_{C,3}^{m} - R_{A,3}^{m} R_{C,2}^{m})
\frac{K_{2}}{N_{2}}
N_{2} = m_{AB}m_{AC} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,3}^{m} - R_{A,3}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})
+ m_{AC}m_{CA} \cdot (R_{A,3}^{m} - R_{B,3}^{m}) (R_{AB,3}^{m} - R_{A,3}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m})
+ m_{AC}m_{BA} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,3}^{m} - R_{A,3}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})
\frac{K_{3}}{N_{3}} = m_{AB}m_{AC} \cdot (R_{C,2}^{m} - R_{B,2}^{m}) (R_{AB,3}^{m} - R_{A,3}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})
+ m_{AC}m_{BA} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{AB,3}^{m} - R_{A,3}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})
+ m_{AB}m_{CA} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{AB,3}^{m} - R_{A,3}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})
+ m_{AB}m_{CA} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{AB,3}^{m} - R_{A,3}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})
+ m_{AC}m_{BA} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{AB,3}^{m} - R_{A,3}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})$$

Combination 05:

$$\frac{R_{AB,2}^{m}, R_{BC,2}^{m}}{D = m_{BA}m_{BC} \cdot (R_{B,2}^{m} - R_{AB,2}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m}) (R_{A,2}^{m}R_{C,3}^{m} - R_{A,3}^{m}R_{C,2}^{m})}
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{AB,2}^{m}) (R_{BC,2}^{m} - R_{C,2}^{m}) (R_{B,3}^{m}R_{A,2}^{m} - R_{B,2}^{m}R_{A,3}^{m})
+ m_{BC}m_{AB} \cdot (R_{A,2}^{m} - R_{AB,2}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m}) (R_{B,2}^{m}R_{C,3}^{m} - R_{B,3}^{m}R_{C,2}^{m})
\frac{K_{2}}{N_{2}}
N_{2} = m_{BA}m_{BC} \cdot (R_{C,3}^{m} - R_{A,3}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,3}^{m} - R_{A,3}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BC}m_{AB} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BC}m_{AB} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BC}m_{AB} \cdot (R_{C,2}^{m} - R_{A,2}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{A,2}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{A,2}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{A,2}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{A,2}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})$$

Combination 06:

$$\frac{R_{AB,2}^{m}, R_{BC,3}^{m}}{D = m_{BA}m_{BC} \cdot (R_{B,2}^{m} - R_{AB,2}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m}) (R_{A,2}^{m}R_{C,3}^{m} - R_{A,3}^{m}R_{C,2}^{m})}
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{AB,2}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{B,3}^{m}R_{A,2}^{m} - R_{B,2}^{m}R_{A,3}^{m})
+ m_{BC}m_{AB} \cdot (R_{A,2}^{m} - R_{AB,2}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m}) (R_{B,2}^{m}R_{C,3}^{m} - R_{B,3}^{m}R_{C,2}^{m})
\frac{K_{2}}{5} N_{2} = m_{BA}m_{BC} \cdot (R_{C,3}^{m} - R_{A,3}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})
+ m_{BC}m_{AB} \cdot (R_{B,3}^{m} - R_{A,3}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})
+ m_{BC}m_{AB} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})
+ m_{BC}m_{AB} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})
+ m_{BC}m_{AB} \cdot (R_{C,2}^{m} - R_{A,2}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{A,2}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{A,2}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{A,2}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{A,2}^{m}) (R_{AB,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})$$

Combination 07:

$$\frac{R_{AB,3}^{m}, R_{BC,2}^{m}}{D = m_{BA}m_{BC} \cdot (R_{B,3}^{m} - R_{AB,3}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m}) (R_{A,2}^{m}R_{C,3}^{m} - R_{A,3}^{m}R_{C,2}^{m})}
+ m_{BA}m_{CB} \cdot (R_{B,3}^{m} - R_{AB,3}^{m}) (R_{BC,2}^{m} - R_{C,2}^{m}) (R_{B,3}^{m}R_{A,2}^{m} - R_{B,2}^{m}R_{A,3}^{m})
+ m_{BC}m_{AB} \cdot (R_{A,3}^{m} - R_{AB,3}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m}) (R_{B,2}^{m}R_{C,3}^{m} - R_{B,3}^{m}R_{C,2}^{m})
\frac{K_{2}}{N_{2}}
N_{2} = m_{BA}m_{BC} \cdot (R_{C,3}^{m} - R_{A,3}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,3}^{m} - R_{A,3}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BC}m_{AB} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BC}m_{AB} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BC}m_{AB} \cdot (R_{C,2}^{m} - R_{A,2}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{A,2}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{A,2}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{A,2}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{A,2}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m})$$

Combination 08:

$$\frac{R_{AB,3}^{m}, R_{BC,3}^{m}}{D = m_{BA}m_{BC} \cdot (R_{B,3}^{m} - R_{AB,3}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m}) (R_{A,2}^{m}R_{C,3}^{m} - R_{A,3}^{m}R_{C,2}^{m})}
+ m_{BA}m_{CB} \cdot (R_{B,3}^{m} - R_{AB,3}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{B,3}^{m}R_{A,2}^{m} - R_{B,2}^{m}R_{A,3}^{m})
+ m_{BC}m_{AB} \cdot (R_{A,3}^{m} - R_{AB,3}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m}) (R_{B,2}^{m}R_{C,3}^{m} - R_{B,3}^{m}R_{C,2}^{m})
\frac{K_{2}}{5} N_{2} = m_{BA}m_{BC} \cdot (R_{C,3}^{m} - R_{A,3}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})
+ m_{BC}m_{AB} \cdot (R_{C,3}^{m} - R_{A,3}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})
+ m_{BC}m_{AB} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})
+ m_{BC}m_{AB} \cdot (R_{C,2}^{m} - R_{B,3}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})
+ m_{BC}m_{AB} \cdot (R_{C,2}^{m} - R_{A,2}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{A,2}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})
+ m_{BA}m_{CB} \cdot (R_{B,2}^{m} - R_{A,2}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})
+ m_{BC}m_{AB} \cdot (R_{B,2}^{m} - R_{A,2}^{m}) (R_{AB,3}^{m} - R_{B,3}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m})$$

Combination 09:

$$\frac{R_{BC,2}^{m}, R_{AC,2}^{m}}{D = m_{CB}m_{CA} \cdot (R_{C,2}^{m} - R_{BC,2}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m}) (R_{B,2}^{m}R_{A,3}^{m} - R_{B,3}^{m}R_{A,2}^{m})
+ m_{CB}m_{AC} \cdot (R_{C,2}^{m} - R_{BC,2}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m}) (R_{C,3}^{m}R_{B,2}^{m} - R_{C,2}^{m}R_{B,3}^{m})
+ m_{CA}m_{BC} \cdot (R_{B,2}^{m} - R_{BC,2}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m}) (R_{C,2}^{m}R_{A,3}^{m} - R_{C,3}^{m}R_{A,2}^{m})
\frac{K_{2}}{N_{2}}
N_{2} = m_{CB}m_{CA} \cdot (R_{A,3}^{m} - R_{B,3}^{m}) (R_{BC,2}^{m} - R_{C,2}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})
+ m_{CB}m_{AC} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{BC,2}^{m} - R_{C,2}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})
+ m_{CA}m_{BC} \cdot (R_{A,3}^{m} - R_{B,3}^{m}) (R_{BC,2}^{m} - R_{C,2}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})
+ m_{CA}m_{BC} \cdot (R_{A,3}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})
+ m_{CA}m_{BC} \cdot (R_{A,3}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{C,2}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})
+ m_{CB}m_{AC} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{C,2}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})
+ m_{CB}m_{AC} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{C,2}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})
+ m_{CA}m_{BC} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})$$

Combination 10:

$$\frac{R_{BC,2}^{m}, R_{AC,3}^{m}}{D = m_{CB}m_{CA} \cdot (R_{C,2}^{m} - R_{BC,2}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m}) (R_{B,2}^{m}R_{A,3}^{m} - R_{B,3}^{m}R_{A,2}^{m})
+ m_{CB}m_{AC} \cdot (R_{C,2}^{m} - R_{BC,2}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m}) (R_{C,3}^{m}R_{B,2}^{m} - R_{C,2}^{m}R_{B,3}^{m})
+ m_{CA}m_{BC} \cdot (R_{B,2}^{m} - R_{BC,2}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m}) (R_{C,2}^{m}R_{A,3}^{m} - R_{C,3}^{m}R_{A,2}^{m})
\frac{K_{2}}{2}
5 N_{2} = m_{CB}m_{CA} \cdot (R_{A,3}^{m} - R_{B,3}^{m}) (R_{BC,2}^{m} - R_{C,2}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m})
+ m_{CB}m_{AC} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{BC,2}^{m} - R_{C,2}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m})
+ m_{CA}m_{BC} \cdot (R_{A,3}^{m} - R_{B,3}^{m}) (R_{BC,2}^{m} - R_{B,2}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m})
\frac{K_{3}}{2}
N_{3} = m_{CB}m_{CA} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{C,2}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m})
+ m_{CB}m_{AC} \cdot (R_{C,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{C,2}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m})
+ m_{CB}m_{AC} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{C,2}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m})
+ m_{CB}m_{AC} \cdot (R_{C,2}^{m} - R_{B,2}^{m}) (R_{BC,2}^{m} - R_{C,2}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m})
+ m_{CA}m_{BC} \cdot (R_{A,2}^{m} - R_{C,2}^{m}) (R_{BC,2}^{m} - R_{C,2}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m})$$

Combination 11:

$$\frac{R_{BC,3}^{m}, R_{AC,2}^{m}}{D = m_{CB}m_{CA} \cdot (R_{C,3}^{m} - R_{BC,3}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m}) (R_{B,2}^{m}R_{A,3}^{m} - R_{B,3}^{m}R_{A,2}^{m})}
+ m_{CB}m_{AC} \cdot (R_{C,3}^{m} - R_{BC,3}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m}) (R_{C,3}^{m}R_{B,2}^{m} - R_{C,2}^{m}R_{B,3}^{m})
+ m_{CA}m_{BC} \cdot (R_{B,3}^{m} - R_{BC,3}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m}) (R_{C,2}^{m}R_{A,3}^{m} - R_{C,3}^{m}R_{A,2}^{m})
\frac{K_{2}}{N_{2}}
N_{2} = m_{CB}m_{CA} \cdot (R_{A,3}^{m} - R_{B,3}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})
+ m_{CB}m_{AC} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{AC,2}^{m} - R_{A,2}^{m})
+ m_{CA}m_{BC} \cdot (R_{A,3}^{m} - R_{B,3}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})
+ m_{CA}m_{BC} \cdot (R_{A,3}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})
+ m_{CB}m_{AC} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})
+ m_{CB}m_{AC} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})
+ m_{CB}m_{AC} \cdot (R_{C,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})
+ m_{CB}m_{AC} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})
+ m_{CA}m_{BC} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m}) (R_{AC,2}^{m} - R_{C,2}^{m})$$

Combination 12:

$$\frac{R_{BC,3}^{m}, R_{AC,3}^{m}}{D = m_{CB}m_{CA} \cdot (R_{C,3}^{m} - R_{BC,3}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m}) (R_{B,2}^{m}R_{A,3}^{m} - R_{B,3}^{m}R_{A,2}^{m}) + m_{CB}m_{AC} \cdot (R_{C,3}^{m} - R_{BC,3}^{m}) (R_{AC,3}^{m} - R_{A,3}^{m}) (R_{C,3}^{m}R_{B,2}^{m} - R_{C,2}^{m}R_{B,3}^{m}) + m_{CA}m_{BC} \cdot (R_{B,3}^{m} - R_{BC,3}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m}) (R_{C,2}^{m}R_{A,3}^{m} - R_{C,3}^{m}R_{A,2}^{m}) + m_{CB}m_{AC} \cdot (R_{A,3}^{m} - R_{B,3}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m}) + m_{CB}m_{AC} \cdot (R_{C,3}^{m} - R_{B,3}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m}) + m_{CA}m_{BC} \cdot (R_{A,3}^{m} - R_{C,3}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m}) + m_{CA}m_{BC} \cdot (R_{A,3}^{m} - R_{C,3}^{m}) (R_{BC,3}^{m} - R_{B,3}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m}) + m_{CB}m_{AC} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m}) + m_{CB}m_{AC} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m}) + m_{CB}m_{AC} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m}) + m_{CB}m_{AC} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m}) + m_{CA}m_{BC} \cdot (R_{A,2}^{m} - R_{B,2}^{m}) (R_{BC,3}^{m} - R_{C,3}^{m}) (R_{AC,3}^{m} - R_{C,3}^{m})$$

)

www.rsc.org/xxxxx

Journal of

S4 Results of All Sequences

The data compiled in tables S6 to S8 show all results for the isotopic composition of the three IRM candidates measured with the calibrated mass spectrometers with associated expanded 5 uncertainties (for k = 2) based on the uncertainty budgets; there is one table per laboratory (S6 shows data from LGC, S7 shows PTB data, and S8 data from BAM). Those data are also represented in

- graphical form in Fig. 7 in the main part of this publication. There are three sets of calibration mixtures, denoted 1b, 2b, and 3b (b 10 denotes the fact that this is the second setup of calibration
- solutions; data from the first setup are only shown in one part of this paper, see Fig. 6 in the main part and the discussion). Only one set of calibration solutions was used per sequence. PTB measured three sequences per set of calibration mixture, which resulted in
- 15 nine measured sequences in each of those labs; BAM measured one additional sequence, resulting in 10 measured sequences; LGC has measured one sequence per set of calibration mixtures, which resulted in three total sequences measured.

This journal is © The Royal Society of Chemistry [year]

Table S7 All values (3 sequences) for absolute isotopic composition of 20 the three IRM candidates measured at LGC, with expanded uncertainties (k = 2).

		Candidate	
Parameter	ERM-AE143	ERM-AE144	ERM-AE145
Isotope amount fract	ions		
	x	(²⁴ Mg) / (mol/mol)
Solutions -1b	0.789931(18)	0.790132(19)	0.790065(19)
Solutions -2b	0.789972(19)	0.790167(19)	0.790079(24)
Solutions -3b	0.789967(20)	0.790165(26)	0.790066(27)
Average	0.789957(19)	0.790155(22)	0.790070(24)
$s(x(^{24}Mg))/(mol/mol)$	0.000022	0.000020	0.0000078
	x	(²⁵ Mg) / (mol/mol	l)
Solutions -1b	0.099989(11)	0.099933(13)	0.099955(12)
Solutions -2b	0.099982(13)	0.099927(11)	0.099957(15)
Solutions -3b	0.099982(12)	0.099926(17)	0.099959(17)
Average	0.099984(12)	0.099929(14)	0.099957(15)
$s(x(^{25}Mg))/(mol/mol)$	0.0000039	0.0000038	0.0000021
	x	(26Mg) / (mol/mol	l)
Solutions -1b	0.110080(16)	0.109935(16)	0.109980(17)
Solutions -2b	0.110045(17)	0.109906(18)	0.109963(22)
Solutions -3b	0.110052(18)	0.109909(23)	0.109975(25)
Average	0.110059(17)	0.109917(19)	0.109973(22)
$s(x(^{26}Mg))/(mol/mol)$	0.000018	0.000016	0.0000084
Isotope amount ratio	5		
-	n(²⁵ M	lg)/n(²⁴ Mg) / (mol	/mol)
Solutions -1b	0.126579(16)	0.126477(18)	0.126514(16)
Solutions -2b	0.126564(18)	0.126464(15)	0.126515(21)
Solutions -3b	0.126565(17)	0.126462(24)	0.126520(24)
Average	0.126569(17)	0.126468(19)	0.126518(21)
$s(n(^{25}Mg)/n(^{24}Mg))$	0.0000084	0.0000079	0.0000028
-	$n(^{26}M)$	[g)/n(²⁴ Mg) / (mol	/mol)
Solutions -1b	0.139354(23)	0.139135(23)	0.139203(24)
Solutions -2b	0.139303(25)	0.139092(25)	0.139180(31)
Solutions -3b	0.139312(26)	0.139096(32)	0.139197(36)
Average	0.139323(25)	0.139108(27)	0.139193(31)
$s(n(^{26}Mg)/n(^{24}Mg))$	0.000027	0.000024	0.000012
Relative atomic		$A_{\rm r}({\rm Mg})$	
Solutions -1b	24 305001(32)	24 304655(32)	24 304766(34)
Solutions - 2h	24 304925(35)	24 304591(35)	24 304736(43)
Solutions - 3b	24 304937(37)	24 304597(45)	24 304760(49)
Average	24.304954(35)	24.304614(38)	24.304754(42)
$s(A_r(Mg))$	0.000041	0.000035	0.000016

J. Anal. At. Spectrom., 2015, [vol], 00-00 | 14

PAPER

Table S8 All values (9 sequences) for absolute isotopic composition of the three IRM candidates measured at PTB, with expanded uncertainties (k = 2).

_		Candidate	
Parameter	ERM-AE143	ERM-AE144	ERM-AE145
Isotope amount fraction	ons		
	x(*	²⁴ Mg) / (mol/mol)	
(Solutions -1b) 1	0.789958(18)	0.790166(18)	0.790109(19)
2	0.7899021(91)	0.7901089(91)	0.7900653(91)
3_	0.7899100(92)	0.7901136(91)	0.7900719(93)
(Solutions -2b) 4	0.789900(10)	0.790102(10)	0.790066(10)
5	0.789912(13)	0.790115(13)	0.790077(13)
6_	0.789907(10)	0.7901128(93)	0.7900714(92)
(Solutions -3b) 7	0.789912(11)	0.790116(10)	0.790073(11)
8	0.789941(26)	0.790138(41)	0.790114(25) 0.700124(11)
<u> </u>	0.789967(11)	0.790160(10)	0.790124(11)
r(r(24Mq))/(mol/mol)	0.789923(14)	0.790120(17) 0.000023	0.790086(14)
s(x(Wig))/(III01/III01)	0.000025	$\frac{0.000023}{5Ma}$ (mal/mal)	0.000023
(Solutions 1b) 1	<u> </u>	$\frac{100}{100}$	0.000041(12)
(Solutions -10) 1 2	0.099980(12) 0.1000030(55)	0.099924(12) 0.0999462(55)	0.099941(13) 0.0999622(56)
23	0.1000030(33) 0.0999920(55)	0.0999358(55)	0.0999518(56)
(Solutions -2b) 4	0.1000080(67)	0.0999520(69)	0.0999660(66)
(Solutions 20) 4 5	0.1000025(63)	0.0999454(62)	0.0999610(63)
6	0.1000037(55)	0.0999477(55)	0.0999624(54)
(Solutions -3b) 7	0.0999903(75)	0.0999353(74)	0.0999498(76)
(20000000000000000000000000000000000000	0.099988(12)	0.099933(19)	0.099943(11)
9	0.0999752(63)	0.0999187(62)	0.0999367(65)
Average	0.0999936(79)	0.0999375(93)	0.0999527(79)
s(x(²⁵ Mg))/(mol/mol)_	0.000011	0.000011	0.000011
-	x(*	²⁶ Mg) / (mol/mol)	
(Solutions -1b) 1	0.110062(16)	0.109911(16)	0.109949(17)
2	0.1100948(66)	0.1099449(66)	0.1099725(65)
3_	0.1100980(66)	0.1099506(65)	0.1099/62(67)
(Solutions -2b) 4	0.1100917(72)	0.1099460(72)	0.1099681(71)
5	0.110085(11) 0.1100801(72)	0.109939(11) 0.1000205(60)	0.109962(11) 0.1000662(68)
(Solutions 2h) 7	0.1100891(72) 0.1100070(71)	0.1099393(09)	0.1099002(08)
(Solutions - 50) /	0.1100979(71) 0.110072(20)	0.1099490(08) 0.100020(37)	0.1099708(72) 0.109943(10)
8	0.110072(20) 0.1100575(86)	0.109929(37) 0.1099209(76)	0.109943(19) 0.1099389(77)
Average	0.1100375(30)	0.109927(15)	0.109961(11)
$s(x(^{26}Mg))/(mol/mol)$	0.000016	0.000014	0.000014
Isotone amount ratios			
<u>1000000000000000000000000000000000000</u>	n(²⁵ Mg	$n(^{24}Mg) / (mol/mol/mol/mol/mol/mol/mol/mol/mol/mol/$	mol)
(Solutions -1b) 1	0.126564(17)	0.126459(17)	0.126490(18)
2	0.1266018(80)	0.1264967(80)	0.1265240(82)
3	0.1265865(81)	0.1264829(81)	0.1265098(82)
(Solutions -2b) 4	0.126608(10)	0.126505(10)	0.126529(10)
5	0.1265995(91)	0.1264947(89)	0.1265207(92)
6_	0.1266019(81)	0.1264980(80)	0.1265233(79)
(Solutions -3b) 7	0.126584(11)	0.126482(11)	0.126507(11)
8	0.126576(18)	0.126476(28)	0.126492(17)
. 9_	0.1265561(92)	0.1264537(90)	0.126482(10)
Average	0.126586(12)	0.126483(14)	0.126509(12)
$s(n(2^{-1}Mg)/n(2^{-1}Mg))$	0.000018	$\frac{0.000018}{(mol/s)}$	0.000017
(Solutions 1b) 1	0 130326(23)	$\frac{3}{120008(23)}$	0.130157(24)
(Solutions -10) 1	0.139320(23) 0.139378(10)	0.139098(23) 0.139152(10)	0.139137(24) 0.139194(10)
2	0 139380(10)	0.139152(10) 0.139158(10)	0.139198(10)
(Solutions -2b) 4	0 139374(11)	0 139154(10)	0.139189/10)
(501010115-20) 4	0.139364(16)	0.139143(16)	0.139179(16)
6	0.139370(11)	0.139144(10)	0.139185(10)
(Solutions -3b) 7	0.139380(10)	0.139156(10)	0.139198(10)
8	0.139342(30)	0.139127(54)	0.139148(28)
9	0.139319(13)	0.139112(11)	0.139141(11)
Average	0.139359(16)	0.139138(22)	0.139177(16)
$s(n(^{26}Mg)/n(^{24}Mg))$	0.000024	0.000021	0.000022

Relative atomic		$A_{\rm r}({\rm Mg})$	
weights			
(Solutions -1b) 1	24.304955(32)	24.304597(32)	24.304692(34
2	24.305044(15)	24.304688(15)	24.304759(15
3	24.305040(15)	24.304689(15)	24.304756(15
(Solutions -2b) 4	24.305043(16)	24.304696(16)	24.304754(16
5	24.305025(23)	24.304676(23)	24.304738(23
6	24.305034(16)	24.304679(15)	24.304747(15
(Solutions -3b) 7	24.305038(16)	24.304685(16)	24.304755(16
8	24.304983(45)	24.304643(76)	24.304680(44
9	24.304942(19)	24.304612(17)	24.304666(17
Average	24.305011(24)	24.304663(31)	24.304728(24
$s(A_r(Mg))$	0.000040	0.000036	0.000037

Table S9 All values (10 sequences) for the absolute isotopic composition of the three IRM candidates measured at BAM, with expanded

 uncertainties (k = 2).

	Candidate							
Parameter	ERM-AE143	ERM-AE144	ERM-AE145					
Isotope amount fractions								
	x(²⁴ Mg) / (mol/mol)							
(Solutions -1b) 1	0.789894(18)	0.790104(18)	0.790059(19)					
2	0.789889(10)	0.790102(10)	0.7900632(98)					
3_	0.789880(11)	0.790087(10)	0.790051(10)					
(Solutions -2b) 4	0.7899146(95)	0.7901237(96)	0.7900834(96)					
5	0.789913(12)	0.790124(12)	0.790081(12)					
6	0.789910(11)	0.790118(10)	0.7900787(98)					
7_	0.789921(10)	0.790126(10)	0.790083(10)					
(Solutions -3b) 8	0.789913(12)	0.790121(12)	0.790084(12)					
9	0.7899079(98)	0.790115(10)	0.7900698(98)					
10_	0.7899113(99)	0.790118(10)	0.7900731(97)					
Average	0.789905(12)	0.790114(11)	0.790073(12)					
$s(x(^{24}Mg))/(mol/mol)_{a}$	0.000013	0.000013	0.000012					
-	x(*	²⁵ Mg) / (mol/mol)	·					
(Solutions -1b) 1	0.099999(13)	0.099941(13)	0.099957(13)					
2	0.1000021(61)	0.0999450(58)	0.0999579(59)					
3_	0.1000066(72)	0.0999500(67)	0.0999618(69)					
(Solutions -2b) 4	0.1000035(58)	0.0999459(57)	0.0999595(58)					
5	0.1000004(71)	0.0999425(70)	0.0999570(70)					
6	0.1000101(60)	0.0999528(59)	0.0999655(58)					
7_	0.1000009(57)	0.0999448(57)	0.0999582(57)					
(Solutions -3b) 8	0.0999952(65)	0.0999378(61)	0.0999498(62)	5				
9	0.0999943(56)	0.0999387(61)	0.0999541(56)	3				
10_	0.0999989(63)	0.0999435(64)	0.0999570(60)					
Average	0.1000011(72)	0.0999442(72)	0.0999577(71)					
s(x(25Mg))/(mol/mol) =	0.000048	26 M (m) / (m = 1/m = 1)	0.0000042					
(0,1,7, 11),1	x(²⁰ Nig) / (mol/mol)	0.100005(15)					
(Solutions -1b) 1	0.11010/(15) 0.1101095(7())	0.109955(15) 0.1000524(70)	0.109985(15)					
2	0.1101083(70) 0.1101120(82)	0.1099334(79) 0.1000622(76)	0.1099789(74) 0.1000875(76)					
(0 - 1) + (1 - 1) = (1 - 1)	0.1101129(83)	0.1099035(70)	0.1099873(70)	10				
(Solutions -20) 4	0.1100820(70) 0.1100866(88)	0.1099303(72) 0.1000227(80)	0.1099370(72) 0.1000615(80)	10				
5	0.1100800(88) 0.1100804(84)	0.1099337(89) 0.1000202(78)	0.1099013(89) 0.1000558(74)					
07	0.1100804(84) 0.1100783(82)	0.1099292(78) 0.1099288(85)	0.1099556(74) 0.1099585(82)					
(Solutions 3b) 8	0.1100703(02)	0.1099200(00)	0.109966(10)					
(301010115-30) 8	0.110092(10) 0.1100978(76)	0.109941(10) 0.1000465(77)	0.109900(10)					
10	0.1100973(73)	0.1099382(80)	0.1099699(71)					
Average	0.1100936(91)	0.1099419(91)	0.1099696(91)					
$s(r(^{26}Mg))/(mol/mol)$	0.000012	0.000012	0.000012					
Isotone amount ratio	0.000012	0.000012	0.000012					
isotope amount ratios	n(25Mg	$(mol)/n(^{24}Mg) / (mol)/$	mol)					
(Solutions -1b) 1	0.126597(19)	0.126491(19)	0.126518(19)					
(50101015 10)1	0.1266027(89)	0.1264964(84)	0.1265189(86)					
3	0.126610(10)	0.1265050(97)	0.1265258(99)					
(Solutions -2b) 4	0.1266004(85)	0 1264939(83)	0.1265177(84)					
5	0.126597(10)	0.126490(10)	0.126515(10)					
6	0.1266095(87)	0.1265036(86)	0.1265260(84)					
7	0.1265961(83)	0.1264922(83)	0.1265161(83)					
(Solutions -3b) 8	0.1265902(93)	0.1264841(88)	0.1265053(88)					
9	0.1265898(81)	0.1264863(88)	0.1265130(82)					
10	0.1265951(91)	0.1264919(93)	0.1265161(88)					
Average	0.126599(10)	0.126493(10)	0.126517(10)					
$s(n(^{25}Mg)/n(^{24}Mg))$	0.0000070	0.0000067	0.0000060					

Isotope amount ratios	5						
•	$n({}^{26}Mg)/n({}^{24}Mg) / (mol/mol)$						
(Solutions -1b) 1	0.139395(21)	0.139165(21)	0.139211(22)				
2	0.139397(11)	0.139164(11)	0.139203(11)				
3	0.139405(12)	0.139179(11)	0.139216(11)				
(Solutions -2b) 4	0.139359(10)	0.139131(10)	0.139171(11)				
5	0.139365(13)	0.139135(13)	0.139177(13)				
6	0.139358(12)	0.139130(11)	0.139171(11)				
7	0.139354(12)	0.139128(12)	0.139173(12)				
(Solutions -3b) 8	0.139373(15)	0.139144(15)	0.139183(15)				
9	0.139381(11)	0.139153(11)	0.139198(11)				
10	0.139370(11)	0.139141(12)	0.139190(10)				
Average	0.139376(13)	0.139147(13)	0.139189(13)				
$s(n(^{26}Mg)/n(^{24}Mg))$	0.000018	0.000017					
Relative atomic		$A_{\rm r}({\rm Mg})$					
weights							
(Solutions -1b) 1	24.305064(31)	24.304703(30)	24.304778(31)				
2	24.305071(17)	24.304704(17)	24.304768(16)				
3_	24.305084(18)	24.304728(17)	24.304789(17)				
(Solutions -2b) 4	24.305019(16)	24.304659(16)	24.304726(16)				
5	24.305025(20)	24.304662(20)	24.304732(20)				
6	24.305023(18)	24.304663(17)	24.304729(16)				
7	24.305009(18)	24.304654(18)	24.304727(18)				
(Solutions -3b) 8	24.305031(21)	24.304671(21)	24.304734(22)				
9	24.305042(17)	24.304684(17)	24.304758(17)				
10	24.305030(16)	24.304672(17)	24.304749(16)				
Average	24.305040(20)	24.304680(19)	24.304749(19)				
$s(A_r(Mg))$	0.000025	0.000024	0.000023				

S5 Discussion

Published fractionation laws and their conversion into equations of the same systematic:

$$5 R_i = \frac{x_i}{x_1}$$

Linear Law 1 (Taylor et al. [3]):

$$\frac{R_{2}^{true}}{R_{2}^{true}} = 1 + \Delta M_{2} \times \varepsilon = 1 + (M_{1} - M_{2}) \times \varepsilon$$

$$\frac{R_{3}^{true}}{R_{3}^{meas}} = 1 + \Delta M_{3} \times \varepsilon = 1 + (M_{1} - M_{3}) \times \varepsilon$$

$$\varepsilon = \frac{R_{2}^{true}}{M_{1} - M_{2}}$$

$$\frac{R_{3}^{true}}{R_{3}^{meas}} = 1 + (M_{1} - M_{3}) \times \frac{\frac{R_{2}^{true}}{R_{2}^{meas}} - 1}{M_{1} - M_{2}}$$

$$\frac{R_{3}^{true}}{R_{3}^{meas}} = 1 + \frac{M_{1} - M_{3}}{M_{1} - M_{2}} \times \left(\frac{R_{2}^{true}}{R_{2}^{meas}} - 1\right)$$

$$\frac{R_{3}^{true}}{R_{3}^{meas}} = 1 + \frac{M_{3} - M_{1}}{M_{2} - M_{1}} \times \left(\frac{R_{2}^{true}}{R_{2}^{meas}} - 1\right)$$

$$R_{3}^{true} = R_{3}^{meas} \times \left[1 + \gamma \times \left(\frac{R_{2}^{true}}{R_{2}^{meas}} - 1\right)\right]$$

$$R_{3}^{true} = R_{3}^{meas} \times \left[1 + \gamma \times \left(\frac{R_{2}^{true}}{R_{2}^{meas}} - 1\right)\right]$$

Linear Law 2 (Zindler and Hart [4]):

$$R_{3}^{irue} = R_{3}^{meas} \cdot \frac{\left(\frac{R_{2}^{irue}}{R_{2}^{meas}}\right)}{\gamma + \left(\frac{R_{2}^{irue}}{R_{2}^{meas}}\right) \cdot (1 - \gamma)}$$
$$\gamma = \frac{M_{3} - M_{1}}{M_{2} - M_{1}}$$
$$10 \quad R_{3}^{irue} = R_{3}^{meas} \cdot \frac{K_{2}}{\sqrt[4]{4} \frac{4}{2} 2 \cdot \frac{4}{2} \frac{-4}{3}}$$
$$R_{3}^{irue} = R_{3}^{meas} \cdot \frac{K_{2}}{\frac{M_{3} - M_{1}}{M_{2} - M_{1}} + K_{2} \cdot \left(1 - \frac{M_{3} - M_{1}}{M_{2} - M_{1}}\right)}$$

$$R_{3}^{true} = R_{3}^{meas} \cdot \frac{1}{1 + \gamma \cdot \frac{R_{2}^{meas} - R_{2}^{true}}{1 \ 4 \ 42 \ 2} \frac{R_{2}^{true}}{4^{2} \ 4 \ 43}}$$
$$R_{3}^{true} = R_{3}^{meas} \cdot \frac{1}{1 + \frac{M_{3} - M_{1}}{M_{2} - M_{1}} \cdot \frac{R_{2}^{meas} - R_{2}^{true}}{R_{2}^{true}}}$$

Power Law (Zindler and Hart [4])

$$R_{3}^{true} = R_{3}^{meas} \cdot \left(\frac{R_{2}^{true}}{R_{2}^{meas}}\right)^{\gamma}$$

$$14^{-\frac{2}{2}2} 43$$

$$14^{-\frac{2}{2}2} 43$$

$$r = \frac{M_{3} - M_{1}}{M_{2} - M_{1}}$$

$$R_{3}^{true} = R_{3}^{meas} \cdot \left(\frac{R_{2}^{true}}{R_{2}^{meas}}\right)^{\left(\frac{M_{3} - M_{1}}{M_{2} - M_{1}}\right)}$$

Power Law (Taylor et al. [3])

$$\frac{R_2^{true}}{R_2^{meas}} = (1+\varepsilon)^{M_2} = (1+\varepsilon)^{(M_1-M_2)}$$

$$\left(\frac{R_2^{true}}{R_2^{meas}}\right)^{\frac{1}{M_1-M_2}} = 1+\varepsilon$$

$$\varepsilon = \left(\frac{R_2^{true}}{R_2^{meas}}\right)^{\frac{1}{M_1-M_2}} - 1$$

$$\frac{R_3^{true}}{R_3^{meas}} = (1+\varepsilon)^{(M_1-M_3)}$$

$$\frac{R_3^{true}}{R_3^{meas}} = \left(1+\left(\frac{R_2^{true}}{R_2^{meas}}\right)^{\frac{1}{M_1-M_2}} - 1\right)^{(M_1-M_3)}$$

$$\frac{R_3^{true}}{R_3^{meas}} = \left(\frac{R_2^{true}}{R_2^{meas}}\right)^{\frac{M_1-M_3}{M_1-M_2}}$$

$$\frac{R_3^{true}}{R_3^{meas}} = \left(\frac{R_2^{true}}{R_2^{meas}}\right)^{\frac{M_3-M_1}{M_2-M_1}}$$

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Exponential Law (Taylor et al. [3]):

$$\begin{aligned} \frac{R_2^{true}}{R_2^{meas}} &= e^{\varepsilon \times \Delta M_2} = e^{\varepsilon \times (M_1 - M_2)} \\ \frac{R_2^{true}}{R_2^{meas}} &= \left(e^{\varepsilon}\right)^{M_1 - M_2} \\ \left(\left(\frac{R_2^{true}}{R_2^{meas}}\right)^{\overline{M_1 - M_2}} &= e^{\varepsilon} \\ \ln\left(\left(\frac{R_2^{true}}{R_2^{meas}}\right)^{\overline{M_1 - M_2}} &= \ln e^{\varepsilon} = \varepsilon \times \ln e = \varepsilon \\ \frac{R_3^{true}}{R_3^{meas}} &= e^{\varepsilon \times (M_1 - M_3)} \\ \frac{R_3^{true}}{R_3^{meas}} &= e^{\left(M_1 - M_3\right) \cdot \ln\left(\frac{R_2^{true}}{R_2^{meas}}\right)^{\overline{M_1 - M_2}}} \\ \frac{R_3^{true}}{R_3^{meas}} &= e^{\left(M_1 - M_3\right) \cdot \ln\left(\frac{R_2^{true}}{R_2^{meas}}\right)^{\overline{M_1 - M_2}}} \\ \frac{R_3^{true}}{R_3^{meas}} &= e^{\left(M_1 - M_3\right) \cdot \ln\left(\frac{R_2^{true}}{R_2^{meas}}\right)^{\overline{M_1 - M_2}}} \\ \frac{R_3^{true}}{R_3^{meas}} &= e^{\left(\frac{R_2^{true}}{R_2^{meas}}\right)^{\overline{M_1 - M_2}}} \\ \frac{R_3^{true}}{R_3^{meas}} &= \left(\frac{R_2^{true}}{R_2^{meas}}\right)^{\frac{M_3 - M_1}{M_2 - M_1}} \\ \frac{R_3^{true}}{R_3^{meas}} &= \left(\frac{R_2^{true}}{R_2^{meas}}\right)^{\frac{M_3 - M_1}{M_2 - M_1}} \end{aligned}$$

$R_{3}^{true} = R_{3}^{meas} \cdot \frac{\left(\sqrt{\frac{M_{1}}{M_{2}}}\right)^{\left(\frac{1-\sqrt{\frac{M_{1}}{M_{3}}}}{1-\sqrt{\frac{M_{1}}{M_{2}}}}\right)}}{\sqrt{\frac{M_{1}}{M_{3}}}} \cdot \left(\frac{R_{2}^{true}}{R_{2}^{meas}}\right)^{\left(\frac{1-\sqrt{\frac{M_{1}}{M_{3}}}}{1-\sqrt{\frac{M_{1}}{M_{2}}}}\right)}$

Exponential Law (Zindler and Hart [4])

$$\begin{aligned} R_{3}^{true} &= R_{3}^{meas} \cdot \left(\frac{R_{2}^{true}}{R_{2}^{meas}}\right)^{\gamma} \\ & 4 2 43 \\ & 14 2^{2} 43 \\ & -\kappa_{3} \end{aligned}$$
$$\gamma &= \frac{\ln\left(\frac{M_{3}}{M_{1}}\right)}{\ln\left(\frac{M_{2}}{M_{1}}\right)} \\ R_{3}^{true} &= R_{3}^{meas} \cdot \left(\frac{R_{2}^{true}}{R_{2}^{meas}}\right)^{\left(\frac{\ln\left(\frac{M_{3}}{M_{1}}\right)}{\ln\left(\frac{M_{2}}{M_{1}}\right)}} \end{aligned}$$

Rayleigh Law (Zindler and Hart [4])

PAPER

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Russel's Law [5]:

$$\begin{split} \frac{R_2^{\text{true}}}{R_2^{\text{meas}}} &= \left(\frac{M_2}{M_1}\right)^{\varepsilon} \\ \ln \frac{R_2^{\text{true}}}{R_2^{\text{meas}}} &= \ln \left(\frac{M_2}{M_1}\right)^{\varepsilon} = \varepsilon \times \ln \left(\frac{M_2}{M_1}\right) \\ &\varepsilon = \frac{\ln \left(\frac{R_2^{\text{true}}}{R_2^{\text{meas}}}\right)}{\ln \left(\frac{M_2}{M_1}\right)} \\ \frac{R_3^{\text{true}}}{R_3^{\text{meas}}} &= \left(\frac{M_3}{M_1}\right)^{\varepsilon} \\ \frac{R_3^{\text{true}}}{R_3^{\text{meas}}} &= \left(\frac{M_3}{M_1}\right)^{\frac{\ln \left(\frac{R_2^{\text{true}}}{R_2^{\text{meas}}}\right)}{\ln \left(\frac{M_2}{M_1}\right)}} \\ \ln \left(\frac{R_3^{\text{true}}}{R_3^{\text{meas}}}\right) &= \ln \left[\left(\frac{M_3}{M_1}\right)^{\frac{\ln \left(\frac{R_2^{\text{true}}}{R_2^{\text{meas}}}\right)}{\ln \left(\frac{M_2}{M_1}\right)}}\right] \\ &= \frac{\ln \left(\frac{R_2^{\text{true}}}{R_2^{\text{meas}}}\right)}{\ln \left(\frac{M_3}{M_1}\right)} \\ \ln \left(\frac{R_3^{\text{true}}}{R_3^{\text{meas}}}\right) &= \ln \left[\left(\frac{R_2^{\text{true}}}{R_2^{\text{meas}}}\right)^{\frac{\ln \left(\frac{M_3}{M_1}\right)}{\ln \left(\frac{M_2}{M_1}\right)}} \times \ln \left(\frac{R_2^{\text{true}}}{R_2^{\text{meas}}}\right)\right] \\ &= \ln \left(\frac{R_3^{\text{true}}}{R_3^{\text{meas}}}\right) \\ &= \ln \left[\left(\frac{R_2^{\text{true}}}{R_2^{\text{meas}}}\right)^{\frac{\ln \left(\frac{M_3}{M_1}\right)}{\ln \left(\frac{M_2}{M_1}\right)}} \right] \\ &= \frac{R_3^{\text{true}}}{R_3^{\text{meas}}} = \left(\frac{R_2^{\text{true}}}{R_2^{\text{meas}}}\right)^{\frac{\ln \left(\frac{M_3}{M_1}\right)}{\ln \left(\frac{M_3}{M_1}\right)}} \end{split}$$

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Table S10 *K*-factor $K_{26/24}$ calculated for different fractionation laws by using $K_{2.02}$ (²⁵Mg/²⁴Mg) as the input quantity and comparison with the reference *K*-factor $K_{3.02}$ (²⁶Mg/²⁴Mg) determined by using the synthetic isotope mixtures; expanded uncertainties (k = 2) are given in brackets. The Δ values reflect the difference between the *K*-factor calculated by using a specific fractionation law and the reference *K*-factor $K_{3.02}$ (²⁵Mg/²⁴Mg) determined by using the input quantity $K_{2.02}$ expressed in ‰. The uncertainty of the Δ values contain the uncertainties of the input quantity $K_{2.02}$ (²⁵Mg/²⁴Mg) and the uncertainty contributions deriving from the calculation by using the fractionation laws. Calculations were made for all sequences measured at three different institutes using three different MC-ICPMS instruments.

Sequence	K ₂₋₀₂ (25/24) / (V/V/mol/mol)	<i>K</i> ₃₋₀₂ (26/24) / (V/V/mol/mol)	<i>K</i> _{lin1} (26/24) / (V/V/mol/mol)	$\Delta_{ m lin1-ref}$ / %0	<i>K</i> _{lin2} (26/24) / (V/V/mol/mol)	$\Delta_{ m lin2-ref}$ / %0	<i>K</i> _{pow} (26/24) / (V/V/mol/mol)	$\Delta_{ m pow-ref}$ / %0	<i>K</i> _{ray} (26/24) / (V/V/mol/mol)	$\Delta_{ m ray-ref}$ / %0	<i>K</i> _{exp} (26/24) / (V/V/mol/mol)	$\Delta_{ m exp-ref}$ / %0
LGC 01 LGC 02 LGC 03	0.926828(86) 0.927411(81) 0.928081(93)	0.86170(10) 0.86260(12) 0.86386(13)	0.85395(17) 0.85511(16) 0.85645(19)	-9.0(2.1) -8.7(2.0) -8.6(2.3)	0.86387(15) 0.86488(14) 0.86605(16)	2.52(53) 2.64(56) 2.54(60)	0.85927(16) 0.86035(15) 0.86159(17)	-2.82(62) -2.61(58) -2.63(65)	0.86340(16) 0.86446(15) 0.86567(17)	1.97(43) 2.16(48) 2.10(52)	0.86183(16) 0.86289(15) 0.86411(17)	0.149(33) 0.336(75) 0.289(72)
PTB 01 PTB 02 PTB 03 PTB 04 PTB 05 PTB 06 PTB 07 PTB 08 PTB 09	0.93339(13) 0.934042(59) 0.933638(59) 0.935489(71) 0.935638(66) 0.935528(58) 0.935511(78) 0.93524(12) 0.934954(66)	$\begin{array}{c} 0.87349(14)\\ 0.874594(60)\\ 0.873914(60)\\ 0.877024(66)\\ 0.87739(10)\\ 0.877377(62)\\ 0.877123(63)\\ 0.87697(15)\\ 0.876394(67) \end{array}$	0.86705(26) 0.86835(12) 0.86754(12) 0.87124(14) 0.87154(13) 0.87132(12) 0.87088(16) 0.87074(24) 0.87017(13)	$\begin{array}{c} -7.4(2.5) \\ -7.1(1.1) \\ -7.3(1.1) \\ -6.6(1.2) \\ -6.7(1.2) \\ -6.9(1.1) \\ -7.1(1.4) \\ -7.1(2.3) \\ -7.1(1.2) \end{array}$	$\begin{array}{c} 0.87532(23)\\ 0.87647(10)\\ 0.87576(10)\\ 0.87901(13)\\ 0.87927(12)\\ 0.87908(10)\\ 0.87870(14)\\ 0.87857(21)\\ 0.87807(12) \end{array}$	$\begin{array}{c} 2.10(65)\\ 2.15(29)\\ 2.11(28)\\ 2.26(38)\\ 2.15(38)\\ 1.94(26)\\ 1.80(31)\\ 1.83(54)\\ 1.91(30) \end{array}$	0.87146(24) 0.87267(11) 0.87192(11) 0.87538(13) 0.87565(12) 0.87545(11) 0.87504(15) 0.87491(22) 0.87438(12)	-2.32(74) -2.20(32) -2.28(33) -1.87(31) -1.98(35) -2.20(32) -2.38(44) -2.35(71) -2.30(36)	$\begin{array}{c} 0.87529(24)\\ 0.87647(11)\\ 0.87574(11)\\ 0.87911(13)\\ 0.87938(12)\\ 0.87918(11)\\ 0.87878(14)\\ 0.87878(14)\\ 0.87865(22)\\ 0.87813(12) \end{array}$	$\begin{array}{c} 2.06(65)\\ 2.15(31)\\ 2.09(30)\\ 2.38(39)\\ 2.27(40)\\ 2.06(30)\\ 1.89(33)\\ 1.92(58)\\ 1.98(31)\end{array}$	0.87381(24) 0.87500(11) 0.87426(11) 0.87766(13) 0.87793(12) 0.87773(11) 0.87733(14) 0.87720(22) 0.87668(12)	$\begin{array}{c} 0.37(12)\\ 0.464(67)\\ 0.396(57)\\ 0.73(12)\\ 0.62(11)\\ 0.403(58)\\ 0.236(41)\\ 0.264(80)\\ 0.326(51) \end{array}$
BAM 01 BAM 02 BAM 03 BAM 04 BAM 05 BAM 06 BAM 07 BAM 08 BAM 09 BAM 10	$\begin{array}{c} 0.93436(14)\\ 0.934198(61)\\ 0.933474(71)\\ 0.934165(60)\\ 0.934635(75)\\ 0.934772(62)\\ 0.935150(60)\\ 0.934933(64)\\ 0.935103(60)\\ 0.935268(64) \end{array}$	0.87544(13) 0.875066(63) 0.873705(69) 0.874802(64) 0.875780(80) 0.875843(66) 0.876656(73) 0.876466(91) 0.876809(68) 0.876997(65)	0.86898(28) 0.86866(12) 0.86722(14) 0.86860(12) 0.86953(15) 0.86981(12) 0.87056(12) 0.87013(13) 0.87047(12) 0.87080(13)	$\begin{array}{c} -7.4(2.6) \\ -7.3(1.1) \\ -7.4(1.3) \\ -7.1(1.1) \\ -7.1(1.4) \\ -6.9(1.1) \\ -7.0(1.1) \\ -7.2(1.3) \\ -7.2(1.1) \\ -7.1(1.2) \end{array}$	$\begin{array}{c} 0.87702(25)\\ 0.87674(11)\\ 0.87547(12)\\ 0.87668(11)\\ 0.87751(13)\\ 0.87775(11)\\ 0.87841(11)\\ 0.87803(11)\\ 0.87833(11)\\ 0.87862(11) \end{array}$	$\begin{array}{c} 1.80(58)\\ 1.91(28)\\ 2.02(32)\\ 2.15(31)\\ 1.98(34)\\ 2.18(32)\\ 2.00(30)\\ 1.78(29)\\ 1.73(26)\\ 1.85(27) \end{array}$	$\begin{array}{c} 0.87327(26)\\ 0.87297(11)\\ 0.87162(13)\\ 0.87290(11)\\ 0.87378(14)\\ 0.87404(12)\\ 0.87474(11)\\ 0.87434(12)\\ 0.87434(12)\\ 0.87465(11)\\ 0.87496(12) \end{array}$	-2.48(82) -2.40(35) -2.39(40) -2.17(32) -2.28(42) -2.06(32) -2.19(33) -2.43(42) -2.46(36) -2.32(36)	$\begin{array}{c} 0.87705(25)\\ 0.87676(11)\\ 0.87544(13)\\ 0.87670(11)\\ 0.87755(14)\\ 0.87780(11)\\ 0.87849(11)\\ 0.87810(12)\\ 0.87840(11)\\ 0.87871(12) \end{array}$	$\begin{array}{c} 1.84(59)\\ 1.94(28)\\ 1.99(33)\\ 2.17(32)\\ 2.02(37)\\ 2.23(33)\\ 2.09(31)\\ 1.86(32)\\ 1.81(27)\\ 1.95(30) \end{array}$	$\begin{array}{c} 0.87559(26)\\ 0.87529(11)\\ 0.87396(13)\\ 0.87523(11)\\ 0.87609(14)\\ 0.87634(11)\\ 0.87704(11)\\ 0.87664(12)\\ 0.87695(11)\\ 0.87725(12) \end{array}$	$\begin{array}{c} 0.171(57)\\ 0.256(37)\\ 0.292(49)\\ 0.489(71)\\ 0.354(65)\\ 0.567(83)\\ 0.438(66)\\ 0.199(34)\\ 0.161(24)\\ 0.288(45) \end{array}$

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

PAPER

Notes and references

^a BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany. E-mail: <u>jochen.vogl@bam.de</u>

5 ^b Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany. E-mail: <u>olaf.rienitz@ptb.de</u> ^c LGC Limited, Queens Road, Teddington, Middlesex, TW11 0LY, United Kingdom. E-mail: <u>dmitriy.malinovskiy@lgcgroup.com</u>

- 10 1 G. Mana and O. Rienitz, *Int. J. Mass Spectrom.*, 2010, 291, 55.
 - 2 A. Pramann, O. Rienitz, J. Noordmann, B. Güttler and D. Detlef Schiel, *Zeitschrift für Physikalische Chemie*, 2014, **228**, 405.
 - 3 P. D. P Taylor, P. Debievre, A. J. Walder, A. Entwistle, *J. Anal. At. Spectrom.*, 1995, **10**, 395.
- 15 4 S. R. Hart, A. Zindler, A., Int. J. Mass Spectrom. Ion Proc., 1989, 89, 287.
- 5 J. Meija, L. Yang, Z. Mester and R. Sturgeon, "Correction of Instrumental Mass Discrimination for Isotope Ratio Determination with Multi-Collector Inductively Coupled Plasma Mass
- 20 Spectrometry," in Isotopic Analysis, Weinheim, Wiley-VCH Verlag & Co KGaA, 2012, pp. 113-138.