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NOTES ON THE REGRESSION MODEL 

Following the comments we received in a process of reviewing of the manuscript we find it 
useful to add some notes on the regression model, illustrating its independence from any 
assumption on a particular form of mass fractionation law used to represent instrumental isotope 
fractionation in MC-ICPMS. 

It is worth noting out that although benefits of using regression analysis of simultaneously 
measured isotope ratios of analyte and internal standard for mass bias correction were known 
since the approach by Maréchal et al. (1999), the fact that the regression model is free from any 
aforementioned assumptions was explicitly shown only in subsequent works (Meija et al. 2009; 
Baxter et al. 2012). An inherent property of logarithms with the same base to produce a linear 
array when plotted against each other, e.g. as as ln(ranalyte) vs ln(ristd), is what makes the regression 
model free from the above assumptions. This advantage of the regression model was probably 
best illustrated in the derivation by Meija et al. (2009), which we reproduce here with additional 
details, omitted for the sake of brevity in the original work. 

For calibration factors of analyte, Kanalyte, and internal standard, Kinstd, which relate measured 
value of isotope ratio, r, to its true value, R, the following can be written
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Once a ratio of the calibration factors of analyte and internal standard is considered the following 
re-arrangements can be made
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from which it follows
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The eqn 6 is the form of a linear equation (y=bx + a), where
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is the intercept. Solving eqn 7 for Ranalyte yields the formula used in the regression model
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To illustrate the universal value of the formula used in the regression model further, we show 
below that it can also be derived even if one would prefer to assume that instrumental isotope 
fractionation is governed by popular mass fractionation “laws” such as exponential and power 
ones.

1. Derivation for the case of exponential law of Russel et al. (1978)  governing mass 
fractionation

Baxter et al. (2006) were first to describe this derivation and showed that if the exponential 
model of Russell et al. (1978) was assumed the following could be written  
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where m1, m2, m3 and m4 are masses of isotopes making up isotope ratios. Re-arrangement of eqn 
9 and 10 leads to
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After further re-arrangement the following equation is obtained

(13)
 
 

 
  instd

3instd

analyte
instd

3instd

analyte
analyteanalyte r

mm
mm

R
mm
mm

Rr ln
/ln
/ln

ln
/ln
/ln

lnln
4

12

4

12 









which is the form of a linear equation (y =a+bx) 
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are the slope and the intercept, respectively.

It is from eqn 16 the formula used in the regression model is readily obtained
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2. Derivation for the case of power “law” governing mass fractionation

Once the power “law” is assumed to operate the calibration factors for analyte and internal 
standard can be written as follows 
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where g is the power-law mass fractionation coefficient. As isotope ratio data are expressed as 
logarithms, the following can be written 
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where m1  and m2 are masses making up isotope ratio of analyte; m3 and m4 are masses making up 
isotope ratio of internal standard. Further re-arragement leads to
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which is the form of a linear equation (y =a +bx) 
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are the slope and the intercept, respectively.

It is from eqn 25 the formula used in the regression model is readily obtained
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