Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information for: Computational model of inductively coupled plasma sources in comparison to experimental data for different torch designs and plasma conditions. Part I: experimental study

M. Voronov*1, V. Hoffmann2, C. Engelhard3, W. Buscher1

¹University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstrasse 30, D-48149 Münster, Germany

²IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden, Germany

³University of Siegen, Department of Chemistry and Biology, Adolf-Reichwein-Str. 2, D-57076 Siegen, Germany

E-mail: VoronovMV@mail.ru

Table S-1. Wavelength, excitation energies, transition probabilities and degree of degeneracy of levels of Fe lines, which were used for calculation of the excitation temperature. Fundamental data are taken from [1]

Wavelength (nm)	Transition probability (10 ⁶ s ⁻¹)	Excitation	Degree of degeneracy
		energy (eV)	
371.994	16.2	3.33202	11
373.487	90.1	4.1777	11
373.713	14.1	3.36826	9
374.556	11.5	3.39651	7
374.949	76.3	4.22036	9
375.824	63.4	4.25622	7

Table S-2. Wavelength, transition probabilities, and excitation energies of lines of the OH (0,0) rotational band $(A^2\Sigma^+ \rightarrow X^2\Pi_i)$, which were used for calculation of the OH rotational temperature. Fundamental data are taken from [2].

Wavelength (nm)	Transition probability (10 ⁹ s ⁻¹)	Excitation energy (eV)
308.328	3.37	4.06414
308.52	4.22	4.08507
308.734	5.06	4.11009
309.859	8.41	4.25054
311.022	10.88	4.39673
314.746	4.75	4.29517
317.708	6.4	4.51219
318.608	6.81	4.57538
319.485	7.22	4.64199

References

- 1. NIST Atomic Spectra Database, available: http://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD, accessed on 01.06.2015.
- 2. G.H. Dieke, H.M. Crosswhite, "The ultraviolet bands of OH fundamental data", *J. Quant. Spectrosc. Radiat. Transfer*, 1962, **2**, 97-199.