Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is © The Royal Society of Chemistry 2016

Supporting Information to

Accurate high throughput quantification of selenium in biological samplesthe potential of combining isotope dilution ICP-tandem mass spectrometry with flow injection

Luca Bamonti^a, Sarah Theiner^{b,c}, Nataliya Rohr-Udilova^d, Bernhard K. Keppler^{b,c}, Gunda Koellensperger^{a*}

- ^a Institute of Analytical Chemistry, Waehringer Strasse 38, 1090 Vienna, University of Vienna, Austria
- ^b Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090 Vienna, University of Vienna, Austria
- c 'Translational Cancer Research Platform', Institute of Inorganic Chemistry, Waehringer Strasse

42, 1090 Vienna, University of Vienna, Austria

^d Department for Gastroenterology and Hepatology, Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria

Table S1. Precision for each Se isotope ratio is determined from a CRM blend by four consecutive measurements in H_2 and O_2 -ICP-MS/MS mode. CRM blends were prepared and digested as described in the experimental section.

Precision of isotope ratios from CRM blend								
Gas	H ₂		_	O_2				
CRM blend	⁷⁸ Se/ ⁷⁷ Se	⁸⁰ Se/ ⁷⁷ Se		⁷⁸ Se/ ⁷⁷ Se	⁸⁰ Se/ ⁷⁷ Se	⁸² Se/ ⁷⁷ Se		
Average (n=4)	0.26	0.59		0.24	0.54	0.10		
STDEV	0.003	0.006		0.003	0.002	0.002		
RSD [%]	1.13	1.11		1.11	0.35	1.96		
Mass Bias [%]	3.87	12.6		2.64	13.9	17.6		

Figure S1. (1) Isotope dilution equation employed for calculating concentration of selenium in direct infusion. The concentration of the spike (C_{spk}) was calculated by reverse IDMS, whereas (W_{spk}) and (W_{std}) respectively refer to the weights of spike and standard. R refers to the ratio reference-to-enriched isotope into the blend. (h_y) refers to the abundance of the enriched isotope while (h_x) is the IUPAC correspondent abundance. (2) Equation employed for calculating the analyte mass flow (Mx(t)). (3) The mass flow of the spike (My(t)) was assessed by multiplying C_{spk} with the make-up flow rate (f_{sp}) (4) Selenium concentration was calculated by dividing absolute amounts (M_{xj}) as integrated between tl and tl, through the injection volume (IV). (5) (K) Mass bias correction was calculated in external calibration: a 100 μ g L⁻¹ Se-standard was measured 7 times consecutively and the true ratio (R_{true}) was divided by the observed ratio (R_{obs}) .

(1)
$$C = \frac{C_{spk} * W_{spk}}{W_{std}} * \frac{R_y - R_b * K}{K * R_b - R_x} * \frac{h_{iy}}{h_{ix}}$$

(2)
$$M_{x}(t) = M_{y}(t) * \frac{R_{y} - R_{b} * K}{K * R_{b} - R_{x}} * \frac{h_{iy}}{h_{ix}}$$

$$M_{y}(t) = f_{sp} * C_{spk}$$

$$C = \frac{t2}{t1} \int M_{xj}$$

$$IV$$

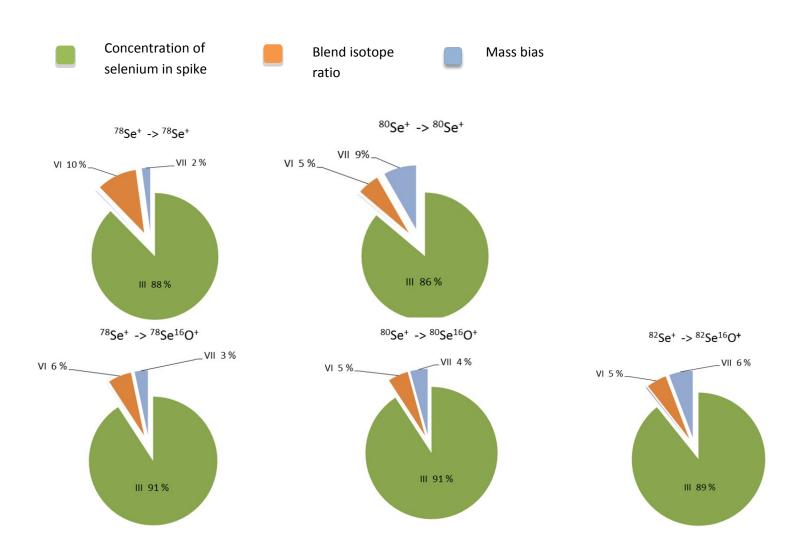

(5)
$$K = \frac{R_{true}}{R_{obs}}$$

Table S2. Table reporting value/unit and respective standard uncertainties for each factor included in the TCU. Quantification parameters as well as variables are reported in model equation (1).

H ₂ mode Quantification parameter	Variables	⁷⁸ Se		⁸⁰ Se		⁸² Se	
		Value/unit	Standard uncertainty	Value/unit	Standard uncertainty	Value/unit	Standard uncertainty
Weight of spike	W_{spk}	198.2 mg	0.002	198.2 mg	0.002	198.2 mg	0.002
Weight of CRM/serum	W_{crm}	182.65 mg	0.002	182.65 mg	0.002	182.65 mg	0.002
Concentration of isotopically enriched 77Se "spike"	C_{spk}	0.67 μmol L ⁻¹ (n=5)	0.026	0.68 μmol L ⁻¹ (n=5)	0.024	0.71 μmol L ⁻¹ (n=5)	0.041
sotopic abundance of the reference isotope in the spike	A_{spk}	0.3 % (certificate)	0.020	0.2 % (certificate)	0.020	0.2 % (certificate)	0.020
sotopic abundance of the enriched isotope in the spike	B_{spk}	99.2 % (certificate)	0.020	99.2 % (certificate)	0.020	99.2 % (certificate)	0.020
sorope ratio in the test blend	R_b	0.219 (n=5)	0.003	0.500 (n=5)	0.006	0.097 (n=5)	0.002
Mass bias	K	1.08 (n=7)	0.005	0.986 (n=7)	0.005	0.935 (n=7)	0.006

Quantification parameter	Variables	⁷⁸ Se		⁸⁰ Se		⁸² Se	
		Value/unit	Standard uncertainty	Value/unit	Standard uncertainty	Value/unit	Standard uncertainty
Weight of spike	W_{spk}	200.04 mg	0.002	200.04 mg	0.002	200.04 mg	0.002
Weight of CRM/serum	W_{crm}	191.93 mg	0.002	191.93 mg	0.002	191.93 mg	0.002
Concentration of isotopically enriched 77Se "spike"	C_{spk}	0.77 μmol L ⁻¹ (n=5)	0.039	0.79 μmol L ⁻¹ (n=5)	0.018	0.85 μmol L ⁻¹ (n=5)	0.074
Isotopic abundance of the reference isotope in the spike	A_{spk}	0.3 % (certificate)	0.020	0.2 % (certificate)	0.020	0.2 % (certificate)	0.020
Isotopic abundance of the enriched isotope in the spike	B_{spk}	99.2 % (certificate)	0.020	99.2 % (certificate)	0.020	99.2 % (certificate)	0.020
Isorope ratio in the test blend	R_b	0.204 (n=5)	0.003	0.491 (n=5)	0.002	0.085 (n=5)	0.002
Mass bias	K	1.05 (n=7)	0.004	0.913 (n=7)	0.003	0.85 (n=7)	0.003

Figure S2. Uncertainty budget "pies": each pie illustrates the contribution brought to respectively ⁷⁸Se, ⁸⁰Se, ⁸²Se in either gas mode as given by I- Weight of spike. II- Weight of CRM. III- Concentration of selenium in spike. IV- Isotopic abundance of reference isotope in spike. V- Isotopic abundance of enriched isotope in spike. VI- Blend isotope ratio. VII- Mass bias.

