Speciation Analysis of Silver Sulfide Nanoparticles in Environmental Waters by Magnetic Solid Phase Extraction Coupled with ICP-MS **Supporting Information**

Xiaoxia Zhou,^{†,‡} Jingfu Liu,^{*,†,‡} Chungang Yuan,[#] and Yongsheng Chen^{*§}

[†]State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China [‡]University of Chinese Academy of Sciences, Beijing 100049, China [#]School of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China [§]School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta,

Georgia 30332, United States

* Corresponding authors.

Tel.: +86-10-62849192; Fax: +86-10-62849192; E-mail: jfliu@rcees.ac.cn

Tel.: 001-404-894-3089; Fax: 001-404-894-2278; E-mail: yongsheng.chen@ce.gatech.edu

Synthesis and Purification of AgCNPs.

Ag₂S NPs. The Ag₂S NPs were synthesized directly according to a previously published paper.¹ Briefly, 60 mg bis(p-sulfonatophenyl)phenylphosphane dehydrate dipotassium salt (BSPP) was added into 30 mL of freshly dissolved AgNO₃ aqueous solution (1mM) to complex with Ag⁺. After stirring for 1 h, 1 mL of Na₂S aqueous solution (50 mM) was fleetly added into the BSPP-Ag^I system, which accompanied a series of color changes and finally produced a brown Ag₂S hydrosol.

Ag&Ag₂S NPs. The mixture of AgNPs and Ag₂S NPs were synthesized by part sulfidation of AgNPs following a procedure modified from Li et al.² Specifically, under vigorous stirring, 0.6 mL of Na₂S solution (10 mM) was quickly added into 30 mL of commercial AgNP aqueous solution (10 mg/L), which was placed in a septum-sealed 50 mL flask. Afterwards, stirring was continued for another 3 h, while pale yellow color gradually turned fulvous reflecting the formation of Ag₂S NPs.

AgCl NPs. The synthesis of AgCl NPs was accomplished through reaction of AgNO₃ with NaCl. Simply, under vigorous stirring, 1 mL of NaCl solution (50 mM) was added dropwise into 50 mL of freshly prepared aqueous solution containing 0.05 mmol AgNO₃ and 25 mg TX-114. Then the mixture was stirred for another 30 min.

Citrate-AgNPs. Citrate-AgNPs were synthesized using a previously described method for reducing an aqueous solution of boiling silver nitrate in the presence of trisodium citrate dihydrate with sodium borohydride with slight modification.³ Briefly, adding 0.43 mL of 58.8 mM AgNO₃ and 3.7 mL 34 mM trisodium citrate dihydrate into boiling ultrapure water. After several minutes, 1 mL 50 mM NaBH₄ was introduced into the system dropwise under vigorous stirring and stirred for another 30 min.

PVP-3.5-AgNPs. Briefly, 3.4 g AgNO₃ was added into 20 mL ultrapure water water, which was pre-heated at 50 $^{\circ}$ C in water bath. Then, a mixture of aqueous solution (125 mL) containing

1.325 g NaH₂PO₂ H₂O, 0.43 g sodium hexametaphosphate, 3.4 g PVP (MW=3,500) and 2.5 mL of H_2SO_4 (1.0 mol/L) was stirred vigorously. Then, the prepared AgNO₃ solution was dropped into the mixture with 20-30 drops per minute and stirred vigorously for another 30 min.

PVP-58-AgNPs. To prepare PVP 58-AgNPs, 0.375 g PVP (MW=58,000) was dissolved in 70 mL ultrapure water according to previous study.⁴ Then, 2.25 mL of AgNO₃ aqueous solution (100 mM) was added into the solution, and the mixture was stirred for 5 min before 2.75 mL of ice-cold NaBH₄ (80 mM) was added under vigorous stirring and stirred in ice cold bath for further 30 min.

PVA-protected AgNPs. Poly(vinyl alcohol)-124 (PVA) coated AgNPs were synthesized by reduction of AgNO₃ with KBH₄ and stabilized with PVA following the method described by Chio and Hu.⁵ Typically, 0.3 mL of PVA aqueous solution (10%, m/v) was added into 50 mL of KBH₄ solution (20 mM) in ice bath. Then, 50 mL of 200 mM AgNO₃ solution was rapidly injected into the ice-cooled mixture under vigorous stirring.

GA-protected AgNPs. Following a previous literature,⁶ into a boiling solution containing 10 mL of Gum arabic (GA, 10 g/L), 5 mL AgNO₃ (100 mM) and 34 mL of ultrapure water was added 1 mL of trisodium citrate dehydrate (100 mM). After 10 min, the system was cooled in an ice-bath.

Purification of AgCNPs. AgCNPs solutions were purified by centrifugal ultracentrifugation through 3 kD membrane (pore size around 1 nm, Millipore, MA) to remove dissolved Ag^+ and soluble byproducts. Specifically, Ag-containing NPs were centrifuged at 9600 rpm for 30 min and further purified by water with three replicates, after which the stock solutions were kept at 4 °C in the dark for later use, whereas the stock solutions were quantified by ICP-MS after HNO₃ digestion weekly.

REFERENCES

(1) Yang, J.; Ying, J. Y. Angew. Chem. Int. Edit. 2011, 50, 4637-4643.

(2) Li, L.; Hartmann, G.; Doeblinger, M.; Schuster, M. Environ. Sci. Technol. 2013, 47, 7317-7323.

(3) MacCuspie, R. I. J. Nanopart. Res. 2011, 13, 2893-2908.

(4) Yang, X. Y.; Gondikas, A. P.; Marinakos, S. M.; Auffan, M.; Liu, J.; Hsu-Kim, H.; Meyer, J. N. *Environ. Sci. Technol.* **2012**, *46*, 1119-1127.

(5) Choi, O.; Hu, Z. Environ. Sci. Technol. 2008, 42, 4583-4588.

(6) Yin, L.; Cheng, Y.; Espinasse, B.; Colman, B. P.; Auffan, M.; Wiesner, M.; Rose, J.; Liu, J.; Bernhardt, E. S. *Environ. Sci. Technol.* **2011**, *45*, 2360-2367.

Fig. S1 TEM characterization and size distribution of aged AgCNPs: commercial AgNPs with unknown coating (A); Ag₂S NPs (B); Ag&Ag₂S NPs (C); AgCl NPs (D); Citrate-AgNPs (E); GA-protected AgNPs (F); PVP-3.5-AgNPs (G); PVP-58-AgNPs (H); PVA-protected AgNPs (I).

Fig. S2 Extraction efficiency of AgCNPs and Ag⁺ by the proposed method. Here, 200 μ L of IOMP suspension (100 mg/mL) was added to 50 mL HAc/NaAc buffer solution (10 mM, pH 7.0) containing ~ 1 mg/L various AgCNPs. The resulting solution was then shaken at 300 rpm for 1 h.

Table S1 Leaching	g of Fe after Sus	pending 20 mg	g IOMPs in 40 mL	of different solutions for 3 h.
			J	

	%Fe leached per total Fe		
water matrix	without aging	With aging	
tap water, pH 7.94	0.009 ± 0.001	0.006 ± 0.001	
river water, pH 8.24	$0.061\ \pm 0.008$	0.050 ± 0.003	
lake water, pH 8.35	0.008 ± 0.001	0.007 ± 0.001	
WWTP effluent, pH 8.01	0.074 ± 0.001	0.074 ± 0.001	
deionized water, pH 6.77	0.084 ± 0.004	0.043 ± 0.005	
0.001 M HCl	1.14 ± 0.21	0.33 ± 0.09	
0.01 M HCl	1.44 ± 0.20	$0.67\ \pm 0.05$	
0.1M HCl	1.76 ± 0.16	1.58 ± 0.30	
0.5 M HCl	$14.4\ \pm 0.9$	$10.8\ \pm 1.4$	
1 M HCl	45.4 ± 1.7	$37.9\ \pm0.6$	
5 M HCl	100	100	

 Table S2 Analytical Performance of the Proposed Method.

Analyte	Ag ₂ S NPs	
Linear range (µg/L)	0.20 - 100	
Calibration curve	y = 38.31 x + 10.4	
r ²	0.9967	
RSD (%, n = 6)	3.0	
LOD (µg/L)	0.068	

Table 55 Dasic Characteristics of water samples.				
Sample	pН	TOC (mg/L)		
Tap water	7.94	5.3		
River water	8.24	25.8		
Lake water	8.35	18.4		
WWTP effluent	8.01	36.7		

Table S3 Basic Characteristics of water samples.