Investigation of the Oxidative Transformation of Roxarsone by Electrochemistry Coupled to Hydrophilic Interaction Liquid Chromatography/Mass Spectrometry

Lisa Maria Frensemeier, Lars Büter, Martin Vogel and Uwe Karst*

University of Münster, Institute of Inorganic and Analytical Chemistry,

Corrensstraße 30, 48149 Münster, Germany

Supporting Information

Parameters	Mass voltammogram	HILIC separation	GSH adduct formation	
mode	ESI(-)	ESI(-)	ESI(-)	
scan range [m/z]	100-600	100-600	100-600	
resolution	high	high	high	
	(50,000 @ 2Hz)	(50,000 @ 2Hz)	(50,000 @ 2Hz)	
polarity	negativ	negativ	negativ	
microscans	1	1	1	
lock masses	off	off	off	
AGC* target	balanced	balanced	balanced	
maximum injection time [ms]	100	250	100	
sheath-gas flow rate	10.00	60.0	10.0	
aux-gas flow rate	0.00	10.0	0.00	
sweep-gas flow rate	0.00	0.00	0.00	
spray voltage [kV]	4.00	4.00	3.50	
capillary temperature [°C]	275	285	275	
capillary voltage [V]	-32.5	-25.0	-57.5	
tube-lens voltage [V]	-80.0	-80.0	-110	
skimmer voltage [V]	-22.0	-24.0	-22.0	

Table S-1: Mass spectrometric parameters of the ExactiveTM mass spectrometer for the generation of a mass voltammogram, the HILIC separation of the TPs and adduct formation with GSH illustrated in Figure 1 and 3 as well as Figure S-7.

* automatic gain control

Parameter	Value
spray chamber geometry	cyclonic (quartz)
spray chamber temperature [°C]	-3
nebulizer type	PFA MicroFlow ST
injector	1 mm
sampler material	Pt
skimmer material	Pt
power [W]	1550
cool gas flow rate [mL/min]	14.0
auxiliary gas flow rate [mL/min]	0.8
nebulizer gas flow rate [mL/min]	0.5
additional gas	O ₂ (5% (v/v))
extraction lens voltage [V]	-157.4
detector voltage [V]	1787
dwell time [s]	0.1 (⁷⁵ As)
collision gas	He (4.2 mL/min)

Table S-2: Mass spectrometric parameters of the iCAP Qc ICP-MS for the HILIC separation of the TPs in Figure 4.

Table S-3: LC gradient profile for the separation of a) roxarsone and its TPs and b) the protein adduct formation of oxidized roxarsone with β -lactoglobulin A and human serum albumin. The mobile phases consisted of a) NH₄FA (solvent A, 50 mM, pH 3.0) and AcN (solvent B) as well as b) 0.1% formic acid in water (solvent A) and AcN (solvent B).

a)	t [min]	5	20	30	35	36	55
	%B	85	75	5	5	85	85
					-		

b)

t [min]	2	6	9	12	15
%В	25	60	60	25	25

Parameter	Value
nebulizer pressure [bar]	1.8
dry gas flow rate [L/min]	8.0
dry temperature [°C]	180
capillary voltage [V]	4500.0
endplate offset [V]	-350.0
capillary exit voltage [V]	180.0
skimmer 1 voltage [V]	60.0
skimmer 2 voltage [V]	22.0
hexapole 1 voltage [V]	23.0
hexapole RF voltage [Vpp]	700.0
transfer time [µs]	50.0
pre-pulse storage time [µs]	30.0
lens 1 storage voltage [V]	40.0
lens 1 extraction voltage [V]	21.7
lens 2 voltage [V]	9.0
lens 3 voltage [V]	22.0
lens 4 voltage [V]	1.0
lens 5 voltage [V]	-35.5
<i>m/z</i> range	50-2500

Table S-4: Mass spectrometric parameters of the micrOToF mass spectrometer for the adduct formation with proteins β -LGA and HSA displayed in Figures 6 and 7.

		Modification	Sum formula	Theoretical	Detected	Relative deviation
				m/z	m/z	[ppm]
		[M-H] ⁻	C ₆ H ₅ O ₆ NAs	261.9338	261.9334	1.5
		[M-H ₂ O-H] ⁻	C ₆ H ₃ O ₅ NAs	243.9233	243.9223	4.1
		[M+CI] ⁻	C ₆ H ₆ O ₆ NAsCI	297.9105	297.9105	0.0
	ROX	[2M-H] ⁻	$C_{12}H_{11}O_{12}N_2As_2$	524.8750	524.8746	0.8
		[2M-H ₂ O-H] ⁻	$C_{12}H_9O_{11}N_2As_2$	506.8644	506.8639	1.0
		[2M+Na-2H]⁻	C ₁₂ H ₁₀ O ₁₂ N ₂ As ₂ Na	546.8569	546.8567	0.4
		[2M+K-2H] ⁻	$C_{12}H_{10}O_{12}N_2As_2K$	562.8308	562.8302	1.1
	M1.1	[M+O-H] [_]	C ₆ H ₅ O ₇ NAs	277.9287	277.9286	0.4
	M1.2	[M+2O-H] ⁻	C ₆ H ₅ O ₈ NAs	293.9237	293.9238	0.3
		[M+2O-H ₂ O-H] ⁻	C ₆ H ₃ O ₇ NAs	275.9131	275.9130	0.4
	M1.3	[M+2O-2H-H] ⁻	C ₆ H ₃ O ₈ NAs	291.9080	291.9082	0.4
M4		[M+2O-2H-H ₂ O-H] ⁻	C ₆ HO ₇ NAs	273.8974	273.8973	0.4
IVIII	M1.4	[M+3O-H] ⁻	C ₆ H ₅ O ₉ NAs	309.9186	309.9187	0.3
		[M+3O-H ₂ O-H] ⁻	C ₆ H ₃ O ₈ NAs	291.9080	291.9082	0.4
	M1.5	[M+O+NH-H] ⁻	C ₆ H ₆ O ₇ N ₂ As	292.9396	292.9398	0.7
	M1.6	[M+O+NH-2H-H] ⁻	C ₆ H ₄ O ₇ N ₂ As	290.9240	290.9242	0.7
	M1.7	[M+2O+NH-2H-H] ⁻	$C_6H_4O_8N_2As$	306.9189	306.9190	0.3
		As(V)	H ₂ AsO ₄	140.9162	140.9170	5.7
ⁱ As		As(V)-H ₂ O	AsO ₃	122.9069	122.9063	4.9
		As(V)+FA	CH ₄ O ₆ As	186.9229	186.9228	0.5
	M2.1	[M+O-HAsO ₃ -H] ⁻	$C_6H_4O_4N$	154.1046	154.1043	1.9
	M2.2	[M+2O–HAsO ₃ -H] ⁻	$C_6H_4O_5N$	170.0095	170.0094	0.6
	M2.3	[M+2O-2H-HAsO ₃ -H] ⁻	$C_6H_2O_5N$	167.9938	167.9937	0.6
M2	M2.4	[M+3O–HAsO ₃ -H] ⁻	$C_6H_4O_6N$	186.0044	186.0042	1.1
	M2.5	[M+2O+NH-2H–HAsO ₃ -H] ⁻	$C_6H_3O_5N_2$	183.0047	183.0046	0.6
	M2.6	[M+3O+NH-HAsO ₃ -H] ⁻	$C_6H_5O_6N_2$	201.0153	201.0151	1.0
	M2.7	[M+3O-2H+NH-HAsO ₃ -H] ⁻	$C_6H_3O_6N_2$	198.9997	198.9994	1.5
	M _{red} 1	[M-2O+2H-H] ⁻	C ₆ H ₇ O ₄ NAs	231.9597	231.9588	3.9
М		[M-2O+2H-H ₂ O-H] ⁻	C ₆ H ₅ O ₃ NAs	213.9487	213.9487	0.0
red	M _{red} 2	[M+NH-2O+2H-H]-	C ₆ H ₈ O ₄ N ₂ As	246.9706	246.9694	4.9
	M _{red} 3	[M+O-2H-2O+2H-H] ⁻	$C_6H_5O_5NAs$	245.9389	245.9378	4.5
Dimor	dimer 1	[2M-2H-H] ⁻	$C_{12}H_9O_{12}N_2As_2$	522.8593	522.8591	0.4
Dille	dimer 2	[2M+2O+NH-4H-HAsO ₃ -H] ⁻	$C_{12}H_7O_{11}N_3As$	443.9302	443.9301	0.2
U	U1	unknown	n. d.	n. d.	157.9729	-
	U2	unknown	n. d.	n. d.	208.9044	-
	U3	unknown	n. d.	n. d.	224.8782	-
	U4	unknown	$C_6H_3O_7N_3$	227.9887	227.9893	2.6
	U5	unknown	$C_8H_2O_5N_2As$	279.9096	279.9080	5.7

Table S-5: Sum formulae, calculated as well as detected m/z, and relative mass deviations [ppm] of roxarsone and its TPs.

n. d. = not determined

e S-1: Mass voltammogram (m/z 270-310) of roxarsone obtained with ESI(-)-MS in the potential range 0-2,500 mV vs. Pd/H_2 . The section shows formation of M1 products and U5.

Figure S-2: Structure proposals and reaction pathway of type M1 oxidation products of roxarsone.

Figur

e S-3: Mass voltammogram (m/z 120-205) of roxarsone obtained by ESI(-)-MS in the potential range 0-2,500 mV vs. Pd/H₂. The section shows formation of M2 products, As(V) and U1.

Figure S-4: Mass voltammogram (m/z 205-250) of roxarsone obtained by ESI(-)-MS in the potential range 0-2,500 mV vs. Pd/H₂. The section shows formation of M_{red} products, U2, U3 and U4.

Figur

Figure S-5: Structure proposals and reaction pathway M_{red} formation.

Figure S-6: Response function of the ICP-MS (iCap Qc) for the used gradient during HILIC separation of roxarsone and its TPs.

Figure S-7: Adduct formation of ROX with GSH. Depicted are the extracted ion chromatograms of ROX (m/z 262), GSH (m/z 306) and adducts GSH+168 (m/z 475) and GSH+230 (m/z 537) as well as their dehydrogenation products GSH+166 (m/z 473) and GSH+228 (m/z 535).

Modification	Sum formula	Calculated m/z	Detected m/z	Relative deviation [ppm]
ROX	$C_6H_5O_6NAs$	261.9338	261.9333	1.9
GSH	$C_{10}H_{16}O_6N_3S$	306.0754	306.0765	3.6
GSH+168	$C_{16}H_{19}O_{11}N_4S$	475.0766	475.0778	2.5
GSH+166	$C_{16}H_{17}O_{11}N_4S$	473.0609	473.0620	2.3
GSH+230	$C_{16}H_{22}O_{10}N_4AsS$	537.0267	537.0282	2.8
GSH+228	$C_{16}H_{20}O_{10}N_4AsS$	535.0111	535.0124	2.4

Table S-6: Sum formulae and calculated as well as detected m/z of roxarsone, GSH and detected adducts presented in Figure 8.