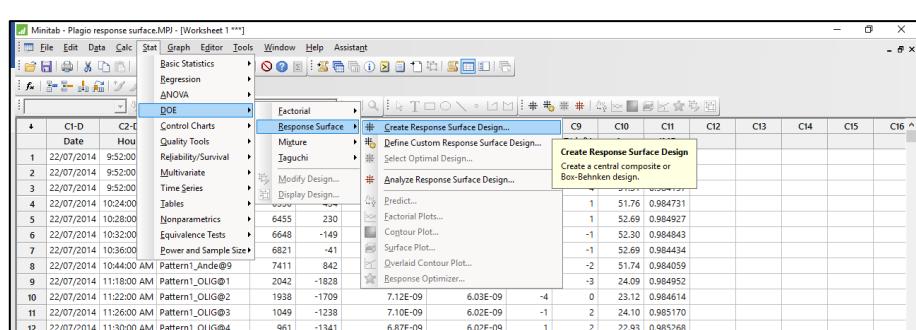

This electronic supporting information S4 contains the main steps for fitting a response surface model using Minitab 17 (Minitab Inc.).

This process was used in “Predicting instrumental mass fractionation (IMF) of stable isotope SIMS analyses by response surface methodology (RSM)” by Fàbrega et al.

1. Copy and paste the SIMS data and IMF calculations from your spreadsheet to Minitab 17.

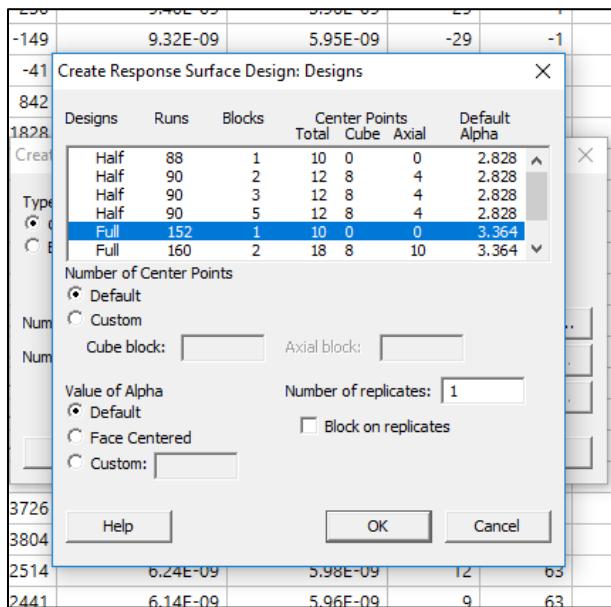


	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S
1	Y	CP	PI	LT1deF	LT1deY	An	16O	18O	d18O_VSMOW	d18O_SE_VSMO	18O/16O	80/16O_Fluorinatio	IMF		
2	1791	8.28E-09	5.98E-09	-24	4	52.77	3126592330	6215301.94	0.44	0.04	0.0019879	0.0020202390	0.98398442		
3	2231	8.58E-09	5.98E-09	-22	6	52.10	3106711861	6176311.25	0.53	0.06	0.0019881	0.0020202390	0.98406877		
4	2004	8.77E-09	5.97E-09	-23	4	51.51	3124918593	6213309.74	0.74	0.06	0.0019883	0.0020202390	0.98419652		
5	454	9.43E-09	5.95E-09	-28	1	51.76	3139019474	6244735.48	1.09	0.06	0.0019894	0.0020202390	0.9847309		
6	230	9.40E-09	5.96E-09	-29	1	52.69	3145286812	625455.13	1.31	0.05	0.0019898	0.0020202390	0.98492722		
7	-149	9.32E-09	5.95E-09	-29	-1	52.30	3115855360	6199359.72	1.11	0.07	0.0019896	0.0020202390	0.98484253		
8	-41	9.38E-09	5.95E-09	-28	-1	52.69	3090874274	6147105.08	0.75	0.07	0.0019888	0.0020202390	0.98443435		
9	842	9.78E-09	5.98E-09	-30	-2	51.74	3114720186	6192165.09	0.46	0.05	0.0019880	0.0020202390	0.98405873		
10	-1828	7.29E-09	6.02E-09	-8	-3	24.09	3276743595	6242715.61	2.27	0.05	0.0019912	0.0020216426	0.98495186		
11	-1709	7.12E-09	6.03E-09	-4	0	23.12	3255122421	6479442.97	1.91	0.05	0.0019905	0.0020216426	0.98461389		
12	-1238	7.10E-09	6.02E-09	-1	2	24.10	3307213612	6586852.52	2.46	0.05	0.0019917	0.0020216426	0.98517028		
13	-1341	6.87E-09	6.02E-09	1	2	22.93	3298855270	6570858.74	2.57	0.06	0.0019919	0.0020216426	0.98526823		
14	-1516	6.81E-09	6.02E-09	7	-1	23.63	3299967522	6576966.56	3.03	0.05	0.0019930	0.0020216426	0.98585168		

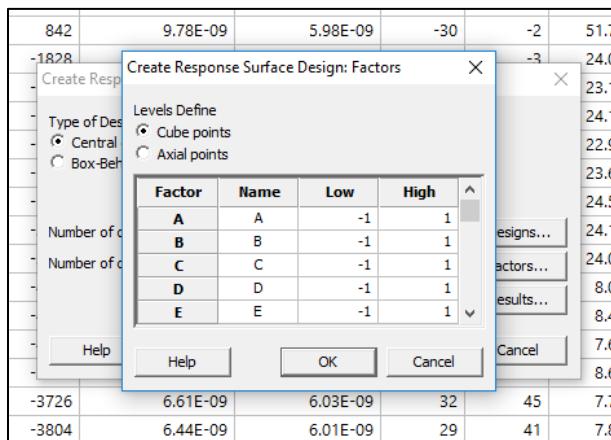
	C1-D	C2-D	C3-T	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C
1	22/07/2014	9:52:00	Pattern1_Ande001@1	6100	1791	8.28E-09	5.98E-09	-24	4	52.77	3126592330	6215301.94	0.44	0.04	0.0019879	0.0020202390	0.98398442		
2	22/07/2014	9:52:00	Pattern1_Ande001@1	5980	2231	8.58E-09	5.98E-09	-22	6	52.10	3106711861	6176311.25	0.53	0.06	0.0019881	0.0020202390	0.98406877		
3	22/07/2014	9:52:00	Pattern1_Ande002@2	5933	2004	8.77E-09	5.97E-09	-23	4	51.51	3124918593	6213309.74	0.74	0.06	0.0019883	0.0020202390	0.98419652		
4	22/07/2014	10:24:00	Pattern1_Ande@4	6350	454	9.43E-09	5.95E-09	-28	1	51.76	3139019474	6244735.48	1.09	0.06	0.0019894	0.0020202390	0.9847309		
5	22/07/2014	10:28:00	Pattern1_Ande@5	6455	230	9.40E-09	5.96E-09	-29	1	52.69	3145286812	625455.13	1.31	0.05	0.0019898	0.0020202390	0.98492722		
6	22/07/2014	10:32:00	Pattern1_Ande@6	6648	-149	9.32E-09	5.95E-09	-29	-1	52.30	3115855360	6199360	1.11	0.07	0.0019896	0.0020202390	0.98484353		
7	22/07/2014	10:36:00	Pattern1_Ande@7	6621	-41	9.48E-09	5.95E-09	-28	-1	52.69	3090874274	6147108	0.75	0.07	0.0019898	0.0020202390	0.98443443		
8	22/07/2014	10:44:00	Pattern1_Ande@9	7411	842	9.78E-09	5.98E-09	-30	-2	51.77	3114720186	6192169	0.46	0.05	0.0019880	0.0020202390	0.98405873		
9	22/07/2014	11:18:00	Pattern1_OUIG@1	2042	-1828	7.29E-09	6.02E-09	-8	-3	24.09	3276743595	6242715.61	2.27	0.05	0.0019912	0.0020216426	0.98495186		
10	22/07/2014	11:22:00	Pattern1_OUIG@2	1938	-1709	7.12E-09	6.03E-09	-4	0	23.12	3255122421	6479442.97	1.91	0.05	0.0019905	0.0020216426	0.98461389		
11	22/07/2014	11:36:00	Pattern1_OUIG@3	1049	-1238	7.10E-09	6.02E-09	-1	2	24.10	3307213612	6586852.52	2.46	0.05	0.0019917	0.0020216426	0.98517028		
12	22/07/2014	11:40:00	Pattern1_OUIG@5	961	-1341	6.87E-09	6.02E-09	-1	2	23.55	3298855270	6570858.74	2.57	0.05	0.0019919	0.0020216426	0.98526823		
13	22/07/2014	11:44:00	Pattern1_OUIG@6	72	-1515	8.31E-09	6.02E-09	-7	1	23.43	3299967522	6576966.56	3.03	0.05	0.0019930	0.0020216426	0.98585168		
14	22/07/2014	11:48:00	Pattern1_OUIG@6	72	-1382	6.81E-09	6.02E-09	-5	-2	24.31	3295103086	6579567	3.27	0.05	0.0019935	0.0020216426	0.98590255		
15	22/07/2014	11:52:00	Pattern1_OUIG@7	662	-2132	6.48E-09	6.01E-09	-4	-11	24.14	3281525275	6504079	3.33	0.07	0.0019935	0.0020216426	0.98591109		
16	22/07/2014	11:56:00	Pattern1_OUIG@8	817	-2016	6.74E-09	6.00E-09	-5	-8	24.02	327018054	6516365	2.86	0.06	0.0019927	0.0020216426	0.98566565		
17	22/07/2014	11:58:00	Pattern1_FK2@1	288	-4311	7.12E-09	6.00E-09	-34	33	8.01	3329107974	6645359	5.76	0.05	0.0019961	0.0020247173	0.985870		
18	22/07/2014	11:58:00	Pattern1_FK2@2	193	-4511	7.06E-09	6.01E-09	-34	27	8.46	3331546337	6648212	5.45	0.06	0.0019955	0.0020247173	0.985587		
19	22/07/2014	12:00:00	Pattern1_FK2@3	387	-4520	7.00E-09	6.02E-09	-34	26	7.69	33203735648	6628482	5.74	0.05	0.0019963	0.0020247173	0.985968		
20	22/07/2014	12:00:00	Pattern1_FK2@4	1682	-3531	6.87E-09	6.02E-09	-28	48	8.62	3350082413	6690170	6.22	0.05	0.0019970	0.0020247173	0.986323		

2. Go to Stat, DOE (Design of Experiments), Create a Response Surface Design.

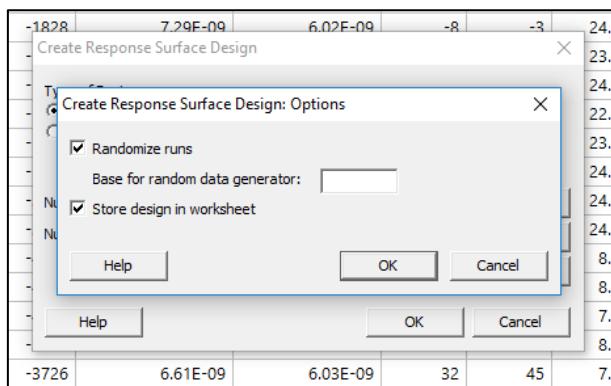
	C1-D	C2-D	C3-T	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C
1	22/07/2014	9:52:00	Pattern1_Ande001@1	6100	1791	8.28E-09	5.98E-09	-24	4	52.77	3126592330	6215301.94	0.44	0.04	0.0019879	0.0020202390	0.98398442		
2	22/07/2014	9:52:00	Pattern1_Ande001@1	5980	2231	8.58E-09	5.98E-09	-22	6	52.10	3106711861	6176311.25	0.53	0.06	0.0019881	0.0020202390	0.98406877		
3	22/07/2014	9:52:00	Pattern1_Ande002@2	5933	2004	8.77E-09	5.97E-09	-23	4	51.51	3124918593	6213309.74	0.74	0.06	0.0019883	0.0020202390	0.98419652		
4	22/07/2014	10:24:00	Pattern1_Ande@4	6350	454	9.43E-09	5.95E-09	-28	1	51.76	3139019474	6244735.48	1.09	0.06	0.0019894	0.0020202390	0.9847309		
5	22/07/2014	10:28:00	Pattern1_Ande@5	6455	230	9.40E-09	5.96E-09	-29	1	52.69	3145286812	625455.13	1.31	0.05	0.0019898	0.0020202390	0.98492722		
6	22/07/2014	10:32:00	Pattern1_Ande@6	6648	-149	9.32E-09	5.95E-09	-29	-1	52.30	3115855360	6199360	1.11	0.07	0.0019896	0.0020202390	0.98484353		
7	22/07/2014	10:36:00	Pattern1_Ande@7	6621	-41	9.48E-09	5.95E-09	-28	-1	52.69	3090874274	6147108	0.75	0.07	0.0019898	0.0020202390	0.98443443		
8	22/07/2014	10:44:00	Pattern1_Ande@9	7411	842	9.78E-09	5.98E-09	-30	-2	24.09	3276743595	6242715.61	2.27	0.05	0.0019912	0.0020216426	0.98495186		
9	22/07/2014	11:18:00	Pattern1_OUIG@1	2042	-1828	7.29E-09	6.02E-09	-8	-3	24.09	3255122421	6479442.97	1.91	0.05	0.0019905	0.0020216426	0.98461389		
10	22/07/2014	11:22:00	Pattern1_OUIG@2	1938	-1709	7.12E-09	6.03E-09	-4	0	23.12	3255122421	6479442.97	1.91	0.05	0.0019917	0.0020216426	0.98517028		
11	22/07/2014	11:26:00	Pattern1_OUIG@3	1049	-1238	7.10E-09	6.02E-09	-1	2	24.10	3307213612	6586852.52	2.46	0.05	0.0019917	0.0020216426	0.98517028		
12	22/07/2014	11:30:00	Pattern1_OUIG@4	961	-1341	6.87E-09	6.02E-09	1	2	22.93</td									

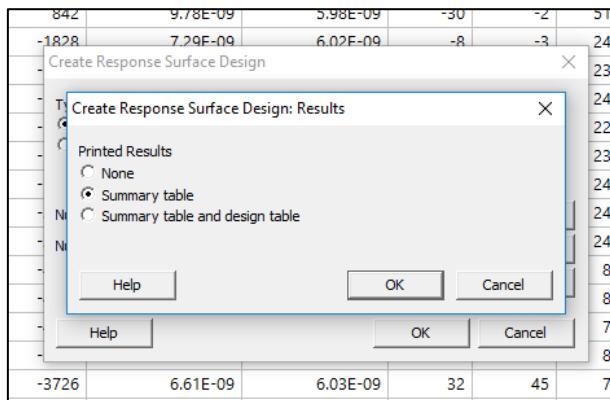

3. If desired, a Response Surface Design toolbar can be created in *Tools*.

4. Select *Create Response Surface Design*.


5. Introduce the number of continuous factors (predictor variables).

6. Look at the *Available Designs* proposed by Minitab.


7. Choose one of the proposed *Designs*.


8. Define the *Factors*.

9. Define the *Options*:

10. Define the Results.

11. Click OK - OK and Minitab will generate the specified Response Surface Design. The design appears in the *Session Window*, and the *Matrix Design* appears in the newly created *Worksheet 2*.

Session Window Output:

```

10/10/2016 23:14:17
Welcome to Minitab, press F1 for help.

31/10/2016 15:41:12

Welcome to Minitab, press F1 for help.
Retrieving project from file: 'C:\Users\Carles\Desktop\Plagio response
surface.MPT'

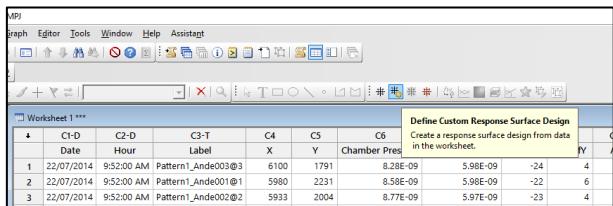
Results for: Worksheet 2

Central Composite Design

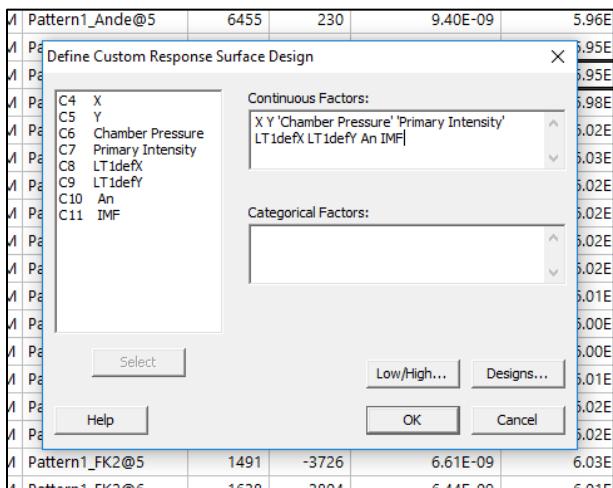
Factors: 7 Replicates: 1
Base runs: 152 Total runs: 152
Base blocks: 1 Total blocks: 1

Two-level factorial: Full factorial

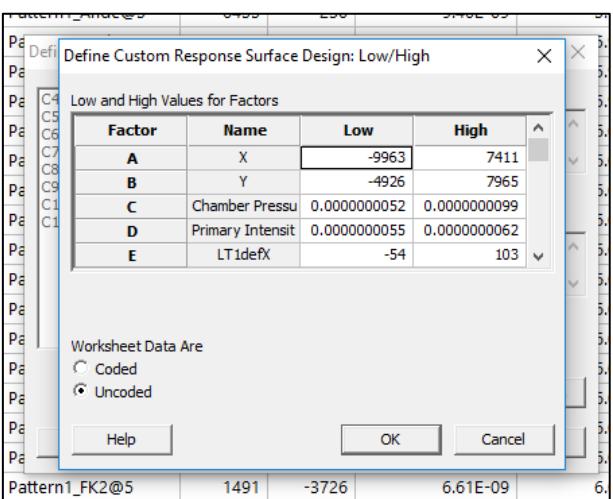
Cube points: 128
Center points in cube: 10
Axial points: 14
Center points in axial: 0

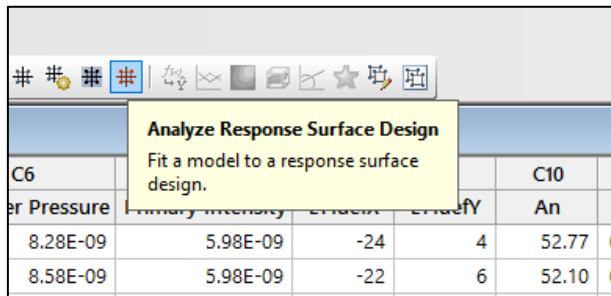

o: 3.36359

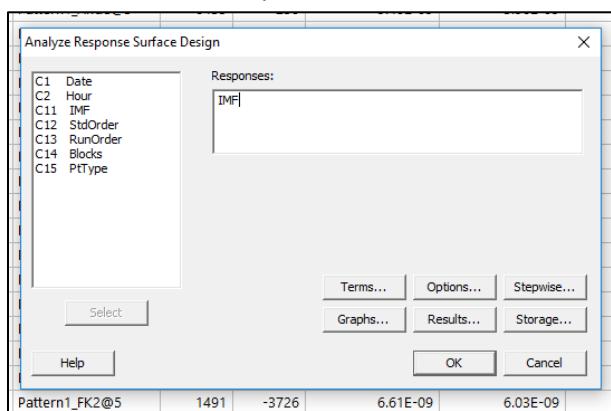
```

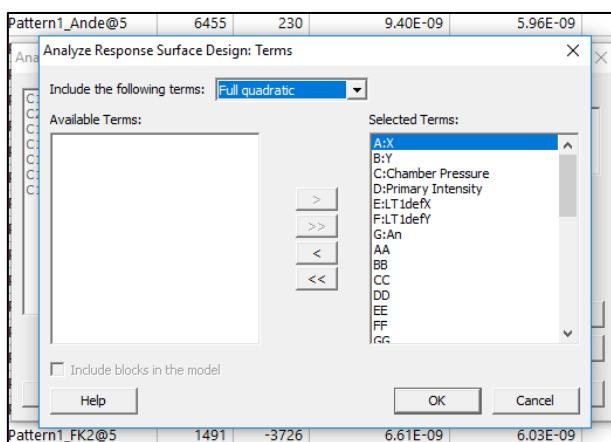

Worksheet 2 Data:

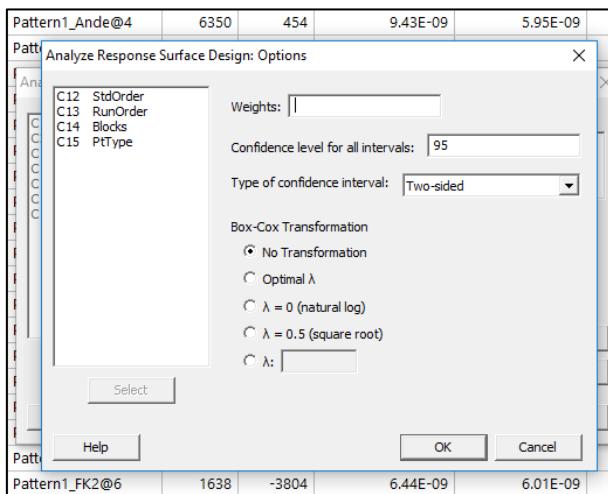
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
1	58	1	1	1	1.00000	-1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	-1.00000
2	142	2	0	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
3	3	1	1	-1	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
4	21	4	1	1	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
5	40	5	1	1	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
6	115	6	1	1	1.00000	-1.00000	1.00000	-1.00000	1.00000	1.00000	1.00000	1.00000
7	77	7	1	1	-1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
8	147	8	0	1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
9	61	4	1	1	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
10	135	10	-1	1	0.00000	0.00000	0.00000	-1.00000	1.00000	1.00000	1.00000	1.00000
11	42	11	1	1	1.00000	-1.00000	-1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
12	120	12	1	1	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
13	51	13	1	1	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
14	77	14	1	1	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
15	4	15	1	1	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

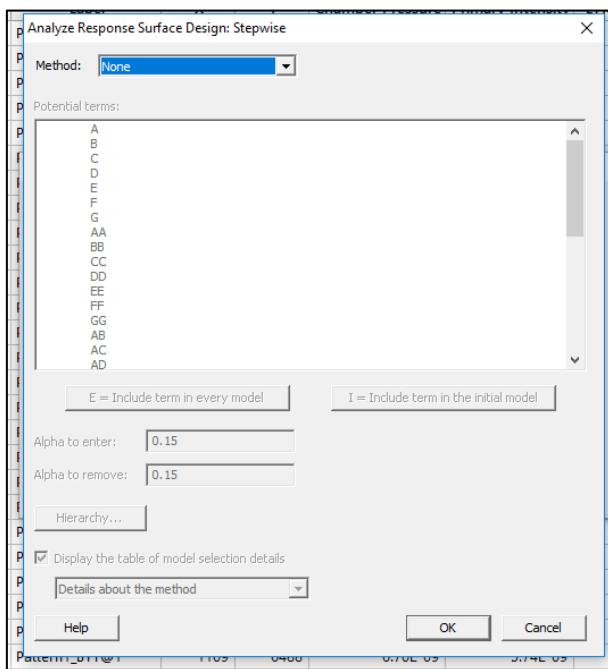

12. Go back to the *Worksheet 1* (SIMS data). Select *Define Custom Response Surface Design*.

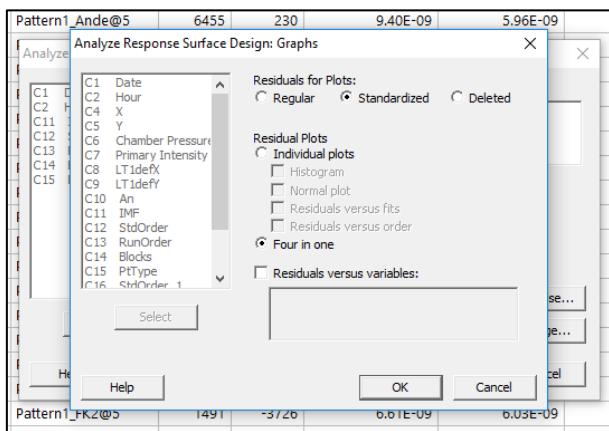

13. With double click, select the *Continuous Factors* (predictor variables) from the left.

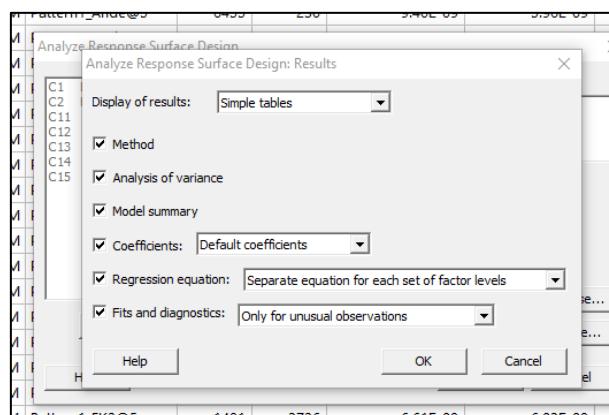

14. Define the *Low* and *High* *Values* for the *Factors*.

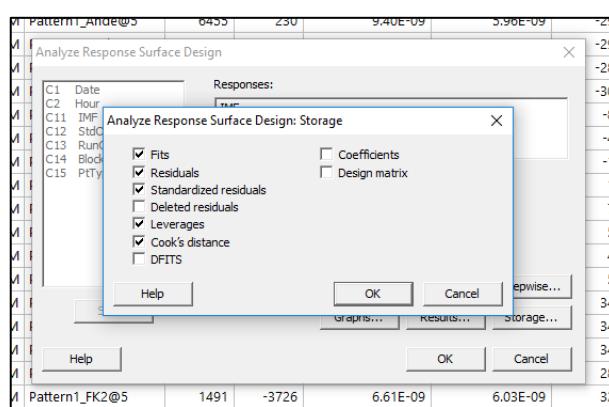

15. Go to *Analyze Response Surface Design*:

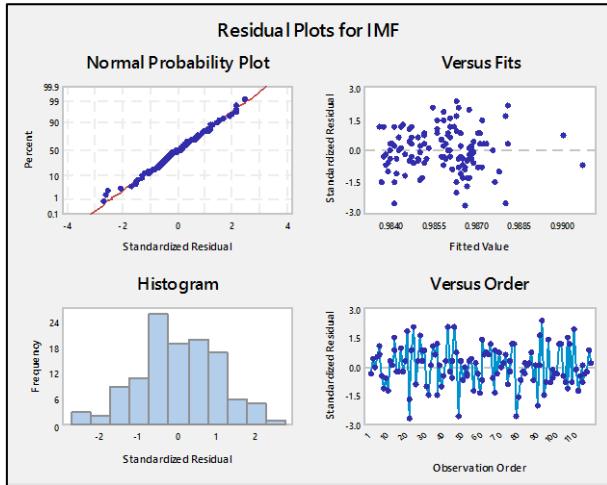

16. Introduce the *Response*. In this case IMF.


17. Select the initial model *Terms*.


18. If desired, in *Options* you can weight and transform the variables.

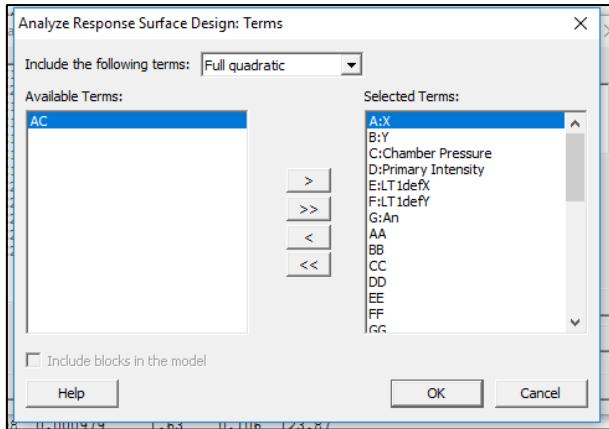

19. If desired, in Stewise you can select an automatic stepwise selection method of the model terms (we recommend None).


20. In *Graphs*, it is recommended to select *Standardized residuals* and *Four in one*:


21. In *Results*, choose the results you want to visualize.

22. In *Storage*, choose (recommended) *Fits*, *Residuals*, *Standardized Residuals*, *Leverage* and *Cook's distance*. The values will be stored in the *Worksheet 1* in the final columns of the right. Click *OK - OK* and Minitab will create the starting **Response Surface Model**.

23. Check the *Residual Plots*:

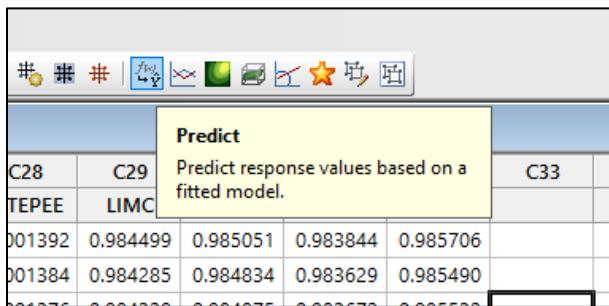

24. Check the *Leverage (HI)* and *Cook's distance (COOK)* of the model points looking for high influential observations.

Plagioclase database ***						
	C21	C22	C23	C24	C25	C26
PTType						
1	1		0.984775	-0.0007906	-1.85511	0.096418
2	1		0.984560	-0.0004911	-1.15153	0.095350
3	1		0.984602	-0.0004053	-0.94974	0.094198
4	1		0.984524	0.0002066	0.49105	0.119493
5	1		0.984558	0.0003695	0.87911	0.121358
6	1		0.984531	0.0003120	0.74413	0.125601

25. In the *Session Window*, Minitab shows the *statistics of the model*. Check the *Model Summary*, which contains the statistics S , $R\text{-sq}$ (R^2), $R\text{-sq adj}$. (adjusted R^2) and $R\text{-sq pred}$ (prediction R^2). From the *Analysis of Variance*, decide the first term that shouldn't stay in the model, using as elimination criteria the *p-value*, the *VIF* or your background knowledge. In this example, the first term eliminated from the model will be $X\text{*Chamber Pressure}$, because it displays the highest *p-value* (0.895) of all the terms.

Model Summary						
	S	R-sq	R-sq(adj)	R-sq(pred)		
	0.0003758	94.61%	92.33%	85.59%		
Coded Coefficients	Term	Effect	Coeff	SE Coef	T-Value	P-Value
	Constant		0.985144	0.000446	2209.68	0.000
	X	-0.002758	-0.001379	0.000667	-2.07	0.042
	Y	0.000801	0.000401	0.000377	1.06	0.292
	Chamber Pressure	-0.002586	-0.001293	0.000621	-2.08	0.040
	Primary Intensity	0.001596	0.000793	0.000600	0.26	0.724
	L1idefX	-0.001628	-0.000814	0.000717	-1.14	0.259
	L1idefY	-0.002696	-0.001348	0.000692	-1.95	0.055
	An	0.005600	0.002800	0.000612	4.58	0.000
	X*X	-0.002720	-0.001360	0.000785	-1.73	0.087
	Y*Y	0.000930	0.000465	0.000538	0.86	0.399
	Chamber Pressure*Chamber Pressure	0.000888	0.000444	0.000544	0.82	0.417
	Primary Intensity*Primary Intensity	-0.001596	-0.000793	0.000600	-1.04	0.297
	L1idefX*L1idefX	0.001596	0.000793	0.000692	1.15	0.252
	L1idefY*L1idefY	0.003496	0.001748	0.000610	2.87	0.005
	An*An	-0.000630	-0.000315	0.000688	-0.46	0.64
	X*Y	-0.000220	-0.000147	0.000916	-0.16	0.873
	X*Chamber Pressure	0.000221	0.000110	0.000835	0.13	0.895
	X*Primary Intensity	-0.004156	-0.002078	0.000939	-2.21	0.030
	X*X*Y	0.000221	0.000110	0.000835	2.11	0.038
	X*X*Chamber Pressure	-0.0002093	-0.0001503	0.000644	-1.59	0.105
	X*An	-0.002093	-0.001244	0.000641	-1.63	0.106
	Y*Chamber Pressure	0.002079	0.001039	0.000676	1.54	0.126
	Y*Primary Intensity	-0.004218	-0.002109	0.000938	-2.25	0.027
	Y*L1idefX	0.001515	0.000757	0.000749	1.01	0.315

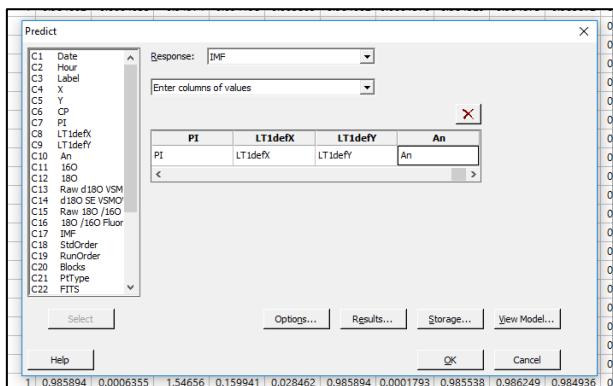
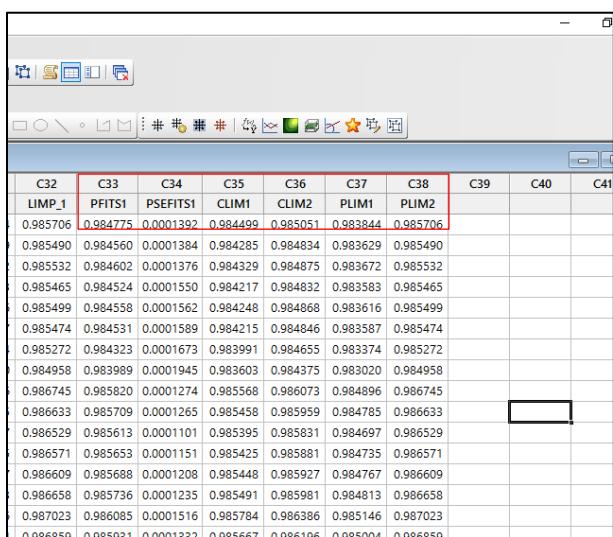
26. Go back to *Terms* (Ctrl+E) and move the term decided in Step 25 (*X*Chamber Pressure in the example*) from the list of *Selected Terms* to the list of *Available Terms*.



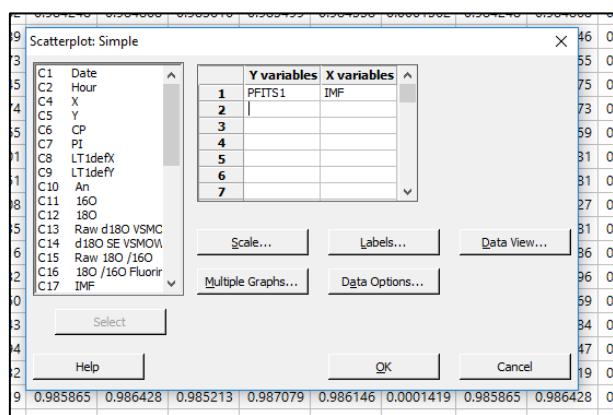
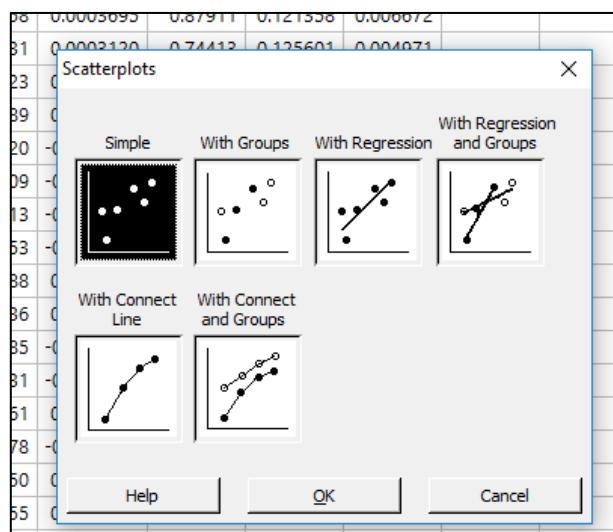
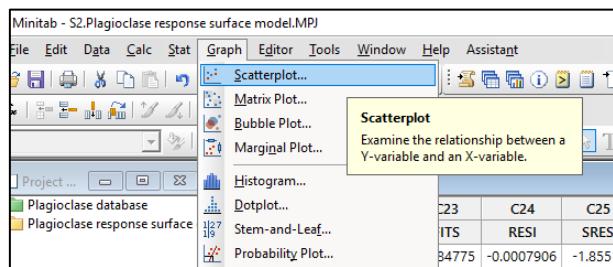
27. Click *OK-OK* and run the model again. Repeat the backward selection process of steps 23-24-25-26 until a satisfactory model is reached. Most of the terms remaining in the final model should be significant for the regression ($p\text{-value} \leq 0.05$) and present low multicollinearity ($VIF \leq 10$). The single terms of a hierarchical model can be no significant ($p\text{-value} \geq 0.05$).

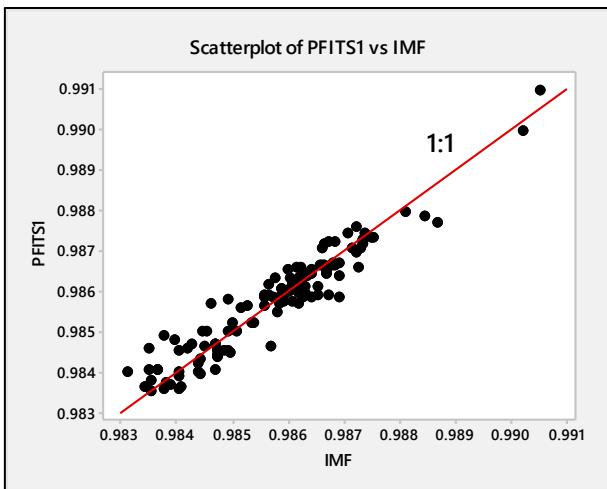
Model Summary							
S	R-sq	R-sq(adj)	R-sq(pred)				
0.0004484	90.47%	89.09%	86.74%				
Coded Coefficients							
Term	Effect	Coef	SE Coef	T-Value	P-Value	VIF	
Constant		0.985444	0.000125	7852.86	0.000		
X		-0.000592	-0.000296	0.000106	-2.80	0.006	1.94
Y		-0.003127	-0.00064	0.000099	-0.64	0.524	2.36
CP		-0.001696	-0.000848	0.000187	-4.53	0.000	4.27
PI		0.000038	0.000019	0.000297	0.06	0.949	6.08
L1idefX		-0.000883	-0.000442	0.000171	-2.58	0.011	4.09
L1idefY		0.000090	0.000045	0.000169	0.27	0.790	2.97
An		0.003279	0.001639	0.000127	12.91	0.000	3.46
XX		-0.004733	-0.002366	0.000213	-11.11	0.000	2.77
L1idefX*L1idefX		0.005032	0.002516	0.000301	8.36	0.000	4.18
L1idefY*L1idefY		0.002678	0.001338	0.000217	6.16	0.000	2.14
X*An		-0.004078	-0.002039	0.000220	-9.29	0.000	4.16
Y*PI		-0.002055	-0.001024	0.000438	-2.35	0.021	5.40
Y*An		0.002364	0.001182	0.000346	3.42	0.001	6.50
L1idefX*L1idefY		0.002117	0.001058	0.000403	2.63	0.010	5.39
L1idefX*An		-0.002931	-0.001465	0.000230	-6.36	0.000	2.85
Regression Equation in Uncoded Units							
$IMF = 0.98306 + 0.000000 X + 0.000002 Y - 362389 CP + 697098 PI - 0.000011 L1idefX$ $- 0.000018 L1idefY + 0.000032 An - 0.000000 X*X + 0.000000 L1idefX*L1idefX$ $+ 0.000000 L1idefY*L1idefY - 0.000000 X*An - 425 Y*PI + 0.000000 Y*An$ $+ 0.000000 L1idefX*An$							
Fits and Diagnostics for Unusual Observations							
Obs	IMF	Fit	Resid	Std Resid	R		
9	0.984952	0.985820	-0.000869	-2.02	R		
10	0.984614	0.985709	-0.001095	-2.55	R		
24	0.986922	0.985866	0.001056	2.59	R		
37	0.983517	0.984610	-0.001093	-2.60	R		
39	0.983772	0.984885	-0.001114	-2.70	R		
42	0.985685	0.984662	0.001017	2.52	R		
46	0.988683	0.987705	0.000979	2.37	R		
50	0.990551	0.990996	-0.000444	-1.49			
80	0.983119	0.984003	-0.000884	-2.11	R		
R Large residual X Unusual X							

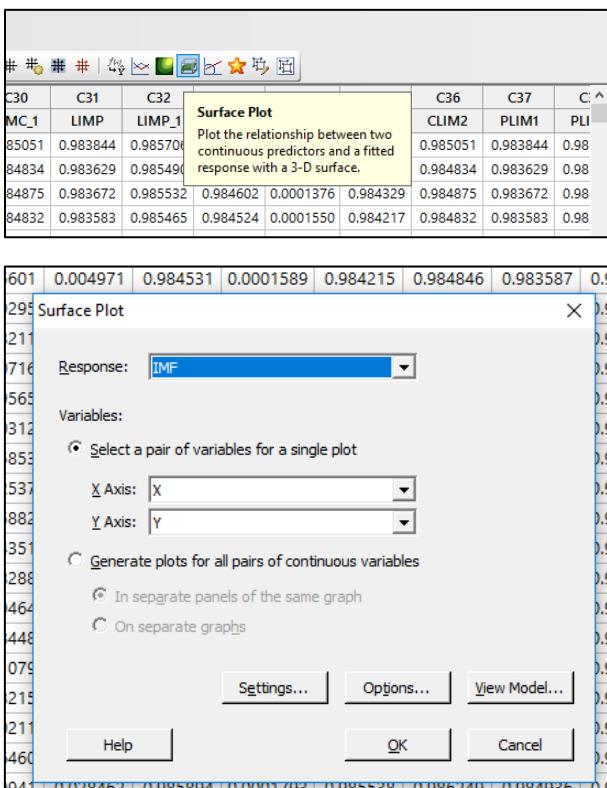
28. Check the *Leverage* and *Cook's distance* of the model points to ensure that the final fitted model does not contain highly influential points.

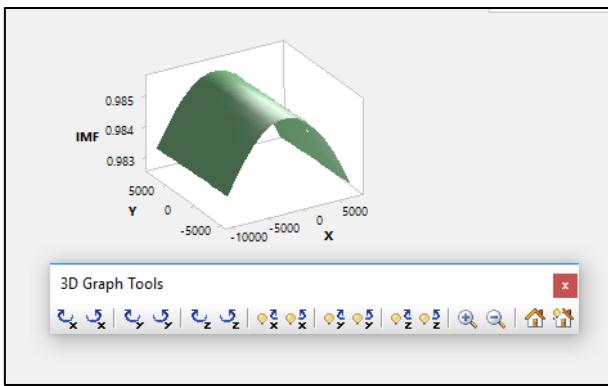


29. Go to *Predict*.

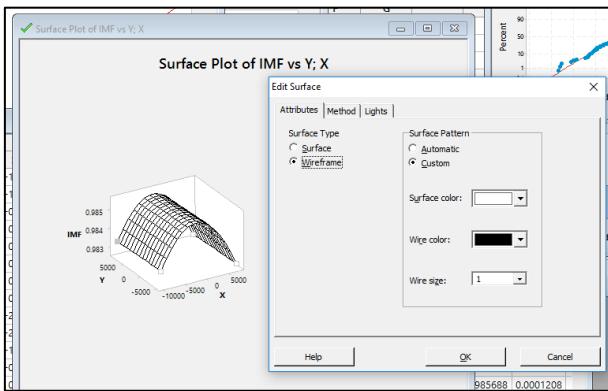
The screenshot shows a software interface with a toolbar at the top. Below the toolbar is a dialog box titled "Predict" with the sub-instruction "Predict response values based on a fitted model." The dialog box contains two rows of data:




C28	C29				C33	
TEPEE	LIMC	001392	0.984499	0.985051	0.983844	0.985706
		001384	0.984285	0.984834	0.983629	0.985490


30. Enter the columns of values for prediction. The predicted values will be stored in the final columns of the right:


The screenshot shows a software interface with a toolbar at the top. Below the toolbar is a table with columns labeled C32 through C41. The first row contains column headers: C32, C33, C34, C35, C36, C37, C38, C39, C40, C41. The second row contains the label "LIMP_1" and column headers: PFITS1, PSEFITS1, CLIM1, CLIM2, PLIM1, PLIM2. The data table below has 18 rows, each containing 10 numerical values. The first row of data is highlighted with red borders around the first five columns: 0.985706, 0.984775, 0.0001392, 0.984499, 0.985051, 0.983844, 0.985706.


31. Generate the scatterplot of the predicted vs. the actual IMF values. The points should follow a 1:1 slope.


32. If desired, you can generate 3D surfaces or contour plots to visualize the behavior of the response respect to different pairs of predictor variables.

The 3D surfaces can be rotated with the *3D Graph Tools* toolbar.

33. A double click on each part of the graph (surface, axis, title...) opens the respective edition window.

