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Abstract
The supporting information shows:

1. An analytical sensitivity vs analyte concentration for a sigmoidal calibration functions,

2. Analytical sensitivity plots of representative quantitative polymerase chain reaction 

(qPCR) data,

3. The non-parametric procedure for determining the limit of detection (LoD) when blank data 

are truncated at zero and how to calculate pooled sample standard devations,

4. Natural frequencies diagrams for the QuickVue Chlamydia test and Chlamydia Rapid Test,

5. The non-linear dependence of LR+ on diagnostic specificity.
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1. Analytical sensitivity vs. concentration plot
As discussed in Section 1.2, analytical sensitivity is the ability of an analytical procedure to 

differentiate between different amounts of analyte, , which is typically shown as the slope of 𝑑𝑅/𝑑𝑥

the calibration curve.1 Below we show two different response versus concentrations plots for 

hypothetical tests with higher reportable range (A) and lower reportable range (B). Figure S1A 

shows the data from Figure 2 in the manuscript along with a best-fit calibration function, 

, where a and c are fitting constants equal to 0.06 and 75 respectively. Figure S1B 
𝑦 =

1

1 + 𝑒 ‒ 𝑎(𝑥 ‒ 𝑐)

shows a plot of a test with very limited reportable range, with the same sigmoidal fit as (A), except 

a and c are are equal to 0.90 and 45 respectively.  

By taking the derivative of the calibration function with respect to x, the analyte concentration, we 

are able to obtain a plot of analytical sensitivity versus concentration for the entire calibration 

function range, as shown in Figure S1C and S1D, for Figure S1A and S1B respectively. The 

specific derivative that we plot is:  , with the a=0.06 or 0.90 and c=75 
𝑑𝑦
𝑑𝑥

= 𝑎𝑒 ‒ 𝑎(𝑥 ‒ 𝑐)/(1 + 𝑒 ‒ 𝑎(𝑥 ‒ 𝑐))2

or 45. The difference between reportable ranges in Figure S1A and S1B is distinctly shown by 

the width of the Gaussian-type curve in the respective analytical sensitivity plots. Figure S1C has 

moderate analytical sensitivity over a larger analyte concentration, which means that it could 

provide quantitative results with greater certainty for more analyte values. Figure S1D, on the 

other hand, has very high analytical sensitivity at its peak, but it only covers a small analyte 

concentration range. In this small analyte concentration range the test from S1D could provide 

extremely high analyte concentration certainty, but any analyte concentrations outside of this 

range effectively could not be quantified at all. These figures show the trade-off that can occur 

between high analytical sensitivity and reportable range, which is explored more in the next 

section.



Figure 1. Theoretical response plots for a test that has higher reportable range (A) versus lower 
reportable (B) with sigmoidal curve fits. Plots (C) and (D) show the derivative of the sigmoidal 
calibration function as a function of analyte concentration, which gives the analytical sensitivity at 
each different concentration. The width and peaks of the analytical sensitivity plots show the 
broader reportable range with less analytical sensitivity for (A) versus the very narrow reportable 
range for (B). These analytical sensitivities can be used to calculate the quantitative response for 
a given measurement uncertainty at each concentration, as discussed in section 1.1 of the 
manuscript.

2. Analytical sensitivity qPCR example

Higher slope magnitudes (high analytical sensitivity) mean that a test is more sensitive to changes 

in analyte amount and the analyte can be determined with higher certainty, while lower slope 

magnitudes (low analytical sensitivity) means that a test is less sensitive to changes in analyte 

amount. High analytical sensitivity is preferred for quantitative tests where small changes in 

analyte concentration should be monitored. For example, it is recommended that 3-fold changes 

in viral load should be able to be detected by a test monitoring the viral load of HIV patients who 

are receiving antiretroviral treatment (ART).2 However, a trade-off between high analytical 



sensitivity and the reportable range of analytes that can be quantified must often be considered 

because higher analytical sensitivity often leads to lower reportable range due to signal saturation 

at high analyte amounts or noise from blank samples at low analyte amounts.3 Ideally, the high 

analytical sensitivity region covers the concentration range of interest for the clinical application, 

where the noise and saturated ends of the curve are clinically irrelevant. Figure S2 below 

demonstrates these ideas.

Figures S2A and S2C show representative qPCR data for a serial dilution of target nucleic acid 

copies. For detailed descriptions of qPCR data and analysis, see Bustin et al and Pabinger et 

al.4,5 Normalized fluorescence intensity is plotted versus the number of cycles required to amplify 

the nucleic acid for detection. The copy numbers are labeled for each curve and the data shows 

that as copy number decreases, more thermal cycles are required in order to amplify the nucleic 

acid. The typical data analysis for qPCR is to set a threshold near the intensity where the 

fluorescence curves begin to increase exponentially. The point where the fluorescence crosses 

the threshold is known as the threshold cycle, which is the number of cycles required to create 

amplification equal to the threshold. The threshold cycles for each number of copies can be plotted 

versus the logarithm of copy number to create a linear calibration plot, as shown in Figure S2B 

and S2D for the data in Figure S2A and S2C respectively. 

The exponential amplification curves in Figure S2A are more closely spaced compared to the 

curves from Figure S2C. The closer spacing in S2A leads to less differentiation between different 

concentrations than if the spacing is further apart, such as S2C. As a result, the corresponding 

analytical sensitivity slope magnitude in Figure S2B (–3.1) is not as steep as the slope in Figure 

S2D (–5.4). The lower analytical sensitivity for the test shown by Figures S2A and S2B would 

result in a qPCR procedure that is less able to differentiate between number of nucleic acid copies. 

It also means that assuming equal measurement variance between the two procedures, that the 

(A,B) procedure will give less certainty in the determined copy number due to worse quantitative 

resolution.6 The test shown by Figures S2C and S2D has higher analytical sensitivity that would 

give better differentiation and improved quantitative resolution. However, the qPCR procedure in 

(C,D) reaches a saturation point and cannot quantify samples containing less than 10 copies 

because the dynamic range has decreased (35 cycles is a common end-point due to reagent 

degradation and primer-dimer false positives). If the test requires high diagnostic sensitivity, the 

inability to detect and quantify 10 copies would hinder diagnosis. Overall, the test that would be 

preferred for a given application would likely depend on the relevant clinical concentrations, as 



well as the confidence in analyte concentration that would be needed to be detected for a given 

application.

 
Figure S2. Example demonstrating the trade-off between high analytical sensitivity and dynamic 
range. Plots A and C show representative qPCR data for a test with (A) lower analytical sensitivity 
and (C) higher analytical sensitivity. Plots B and D show the calibration curves that can be 
generated from the data in A and C respectively. Test (A) has more closely spaced amplification 
curves than test (C) which leads to less analyte differentiation and the lower analytical sensitivity 
shown in the corresponding calibration curve. The lower analytical sensitivity for test (A,B) would 
result in worse quantitative resolution than the test for (C,D). However, the qPCR procedure for 
(C,D) is only able to quantify 5 out of the 7 concentrations, assuming a cut-off at 35 cycles. The 
test that would be preferred for a given application would likely depend on the relevant clinical 
concentrations, as well as the change in analyte concentration that would be needed to be 
detected for a given application. 

3. Non-parametric determination of LoB pooled standard deviation for LoD

If the test developer is unable to determine or assume that the blank distribution is Gaussian and 

comes from a normal distribution, which may occur when blank values are truncated at zero, a 

non-parametric procedure is required for determining the LoB. In this case, the LoB is determined 

using,7



,       (1)
𝐿𝑜𝐵 = 𝑅𝑒𝑠𝑢𝑙𝑡 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 [𝑁𝐵( 𝑝

100) + 0.5]

where NB  is the number of blank measurements, and p  is the percentile of interest such as the 

95th percentile. In this non-parametric case, the blank measurements are ordered according to 

their values, i.e. lowest to highest, and the 95th percentile is estimated by choosing the blank 

values that occur at approximately the 95% position of the order. For 200 samples,

, which means the LoB is the value of a linear  𝐿𝑜𝐵 = 𝑅𝑒𝑠𝑢𝑙𝑡 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 [200 ∙ 0.95 + 0.5] = 190.5

interpolation between the 190th and 191th ranked LoB measurements. For ten ordered blank 

samples such as: [0 0 0 1 1 2 2 4 5 6], the LoB would be the average between the 9th and 10th 

measurements or (5+6)/2 = 5.5. Advantages of this method are that it does not rely on the data 

being normally distributed and that it is not as sensitive to outliers as a parametric model where 

the standard deviation can be skewed due to a small number of samples that vary greatly from 

the mean. A disadvantage however, is that it only takes into account a very small subset of the 

data at the tail of the distribution when determining the LoB instead of using the entire set to 

calculate the estimated mean and variance of the population.

The equation for pooled variance for low-level samples to determine the LoD is:  

               (2)𝑆𝐷𝑆
2 = (𝑛1{𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛}𝑆𝐷2

1 + 𝑛2𝑆𝐷2
2 + …)/(𝑛1 + 𝑛2 + …)

where   is the number of replicates tested and  is the variance of sample concentration .7 𝑛𝑖 𝑆𝐷2
𝑖 𝑖

The pooled standard deviation is simply the square root of this pooled variance. The CLSI EP17 

document recommends testing and pooling 4–6 low level samples for LoD determination, but F-

tests or Cochran’s test must be run prior to pooling to ensure that all variances are equal. The 

CLSI EP17 document provides further details.7

4. Frequency diagram for QuickVue and Chlamydia Rapid Test

Section 4.3 in the manuscript discusses the accuracy of a number of lateral flow Chlamydia tests 

including the QuickVue Chlamdyia test and Chlamydia Rapid Test (CRT). van Dommelen et al 

showed the the QuickVue test had a diagnostic sensitivity of 25% and a diagnostic specificity of 

99.7%, with a high positive likelihood ratio (LR+) of 83.3.8 The high specificity and LR+ suggest 

that the QuickVue test may have utility has a rule-in test. Natural frequencies diagrams are useful 

for visualizing testing results for a theoretical patient population.9,10 Figure S3A shows the 

frequency diagram for 10,000 patients and 11% prevalence being tested with the QuickVue test. 

The positive predictive value (PPV) for this test is high (11% pre-test to 91.2% post-test), meaning 

that a positive result would likely lead to conclusive diagnosis and treatment. However, detecting 

275 patients (25% of those infected) would require 10,000 tests to be run, as well as 9,725 backup 



tests. Section 4.3 in the manuscript and Gift et al. discuss the implications of using a test with 

poor sensitivity, yet high specificity in more detail.11

The Chlamydia Rapid Test (CRT) has a higher diagnostic sensitivity (42%), but lower diagnostic 

specificity (96.8%) compared to the QuickVue test. This lower diagnostic specificity compared to 

the QuickVue may not appear to be largely signficant, but results in a much higher false positive 

rate and lower PPV (91% for QuickVue and 57% for CRT). Figure S3B shows a natural 

frequencies diagram for the CRT that can be compared to the QuickVue diagram, Figure S3.

10000#people

1100#diseased

275#pos 825#neg 27#pos 8873##neg

275/302#pos correct#=#91%#PPV

8900#healthy

10000#people

920#diseased

386#pos 534#neg 291#pos 8789##neg

386/677#pos correct#=#57%#PPV

9080#healthy

A

B

Figure S3. Natural frequencies diagrams for the (A) QuickVue and (B) Chlamydia Rapid Tests. 
(A) Natural frequency diagram of a 10,00 patient population with 11% prevalence being testing 
with the QuickVue Chlamydia test from van Dommelen et al. The high test diagnostic specificity 
results in a high PPV of 91.2%, but the overall economic and clinical benefit of the test requires 
consideration of additional factors outlined by Gift et al. in the “rapid test paradox”. (B) The CRT 
has higher diagnostic sensitivity compared to the QuickVue test (42% vs. 25%), but lower 
diagnostic specificity (96.8% vs. 99.7%). The seemingly small decrease in diagnostic specificity 
leads to a much lower PPV (57%) for the CRT, although it should be noted that the prevalence is 
slightly lower in the CRT case.

5. Non-linearity of LR+ versus diagnostic specificity

The equations for positive (LR+) and negative (LR–) likelihood ratios are given below. 



LR 

TP
TP FN
FP

FP TN

 sensitivity
1 specificity

 (3)            LR– 

FN
TP FN
TN

TN FP

 1 sensitivity
specificity

 (4)

Positive likelihood ratios are interesting due to the non-linear dependency on specificity. Figure 

S4 shows a plot of LR+ versus diagnostic specificity+ for various diagnostic sensitivities. As the 

diagnostic specificity approaches 1, the curve begins to show highly non-linear behavior due to 

the 1/(1-x) dependence. This plot demonstrates that when diagnostic specificities are over 

approximately 90%, that small increases can lead to drastically improved LR+ that give more 

confident positive diagnostic results. The specificity at which the non-linear behavior begins 

depends slightly on the test diagnostic sensitivity, as shown by plot A-D. Negative likelihood ratios 

do not exhibit the same non-linear dependence, and have linear dependency over the entire range 

of possible diagnostic sensitivities and specificities.

Figure S4. Non-linear dependence of LR+ on diagnostic specificity. As the diagnostic specificity 
approaches 1, the LR+ greatly increases, which means that much more confident positive 
diagnoses can be made with tests as the diagnostic specificity gets closer to 1. The point at which 
the non-linearity begins to drastically impact LR+ is slightly dependent on diagnostic sensitivity, 
as shown by plots A–D that increase in diagnostic sensitivity from 25% to 100%. The plots show 
diagnostic specificity from 0.5–1 and LR+ from 0 to 100 for clarity. The LR+ for a diagnostic 
specificity of 99.9% are 250, 500, 750, and 1000 for A–D respectively. 
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